	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
			0000000000000

A contribution to the simulation of Vlasov-based models

Francesco Vecil

Universitat Autònoma de Barcelona

Universitat Autònoma de Barcelona, 17/12/07

Introduction	Numerical methods	Benchmark tests	TS-WENO for a BTE 000000000	Intermediate approximations	The nanoMOSFET
Outli	ne				
1	Introduction				
_	Introduction				
2	Numerical methods	1			
	PWENO interpol	lations			
	 Splitting technique 	ues			
	 Linear advection 				
3	Benchmark tests				
•	 Vlasov with conf 	ining potentia	1		
	Vlasov-Poisson	0.			
4	TS-WENO for a B	ГЕ			
•	Overview				
	Numerics				
	Experiments				
5	Intermediate approx	ximations			
	Motivations				
	Asymptotic-pres	erving scheme	s		
	 Experiments 	C			

- 6 The nanoMOSFET
 - The model
 - Numerical methods for the Schrödinger-Poisson block
 - Experiments

	Numerical methods	OOOOO	15-WENO for a B1E 000000000		The nanoMOSFET
Outli	ine				
1	Introduction				
	 Introduction 				
2	Numerical methods				
	 PWENU interpo Splitting technic 	lations			
	 Splitting techniq Linear advection 	ues			
	Benchmark tests				
	 Vlasov with cont 	ining potentia	1		
	• Vlasov-Poisson	8 F			
4	TS-WENO for a B	ГЕ			
	Overview				
	Numerics				
	Experiments				
5	Intermediate approx	ximations			
	Motivations				
	 Asymptotic-pres 	erving scheme	ès		
	 Experiments 				
0	The nanomOSFET				
	 The model Numerical methods 	de for the Sch	rödinger Poisson	block	0 FB
	 Experiments 		nounger-r 0188011		► Ξ • • • • •

Objecto	of the sim	ulations			
Introduction					
0000	000000000000		00000000	000000000000000000000000000000000000000	0000000000000000
Introduction	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET

Objects of the simulations

The goal of this work is a contribution to the numerical simulation of kinetic models for electronic engineering and plasma physics.

- Plasmas are ionized gases: positive, negative and neutral charges dissociate.
- **Electronic devices** are physical solid state devices, like semiconductors, which exploit the electronic properties of semiconductor materials (e. g. silicon) by manipulating their conductivity via the *doping*.

Figure: A Metal Oxide Semiconductor Field Effect Transistor.

э

イロト 不得 トイヨト イヨト

Objecto	of the sim	ulations			
Introduction					
0000					
Introduction	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET

Objects of the simulations

The goal of this work is a contribution to the numerical simulation of kinetic models for electronic engineering and plasma physics.

- Plasmas are ionized gases: positive, negative and neutral charges dissociate.
- **Electronic devices** are physical solid state devices, like semiconductors, which exploit the electronic properties of semiconductor materials (e. g. silicon) by manipulating their conductivity via the *doping*.

Figure: A Metal Oxide Semiconductor Field Effect Transistor.

э

イロト 不得 トイヨト イヨト

Objects	of the sim	ulations			
Introduction					
0000					
Introduction	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET

Objects of the simulations

The goal of this work is a contribution to the numerical simulation of kinetic models for electronic engineering and plasma physics.

- Plasmas are ionized gases: positive, negative and neutral charges dissociate.
- **Electronic devices** are physical solid state devices, like semiconductors, which exploit the electronic properties of semiconductor materials (e. g. silicon) by manipulating their conductivity via the *doping*.

Figure: A Metal Oxide Semiconductor Field Effect Transistor.

э

イロト 不得 トイヨト イヨト

Introduction	Numerical methods	Benchmark tests	TS-WENO for a BTE 000000000	Intermediate approximations	The nanoMOSFET
Introduction					
Aspect	s of the mo	odelling			

Transport.

The Boltzmann Transport Equation (BTE) describes, at microscopic level, how the charge carriers move inside the object of study:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + \frac{F(t,x)}{m} \cdot \nabla_v f = \mathcal{Q}[f].$$

Force field.

Apart from the free motion, the charge carriers may be driven by the effect of a force field, usually of three categories:

- self-consistent Poisson equation, in semiconductors;
- coupled Schrödinger-Poisson equation, in nanostructures;
- Lorentz force (Maxwell equations), in plasmas.

Collisions.

The charge carriers may have collisions with other carriers, with the fixed lattice or with phonons (pseudo-particles describing the vibration of the lattice).

Aspect	of the mo	delling			
Introduction					
0000	000000000000		00000000	000000000000000000000000000000000000000	0000000000000
Introduction			TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET

Transport.

The Boltzmann Transport Equation (BTE) describes, at microscopic level, how the charge carriers move inside the object of study:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + \frac{F(t,x)}{m} \cdot \nabla_v f = \mathcal{Q}[f].$$

Force field.

Apart from the free motion, the charge carriers may be driven by the effect of a force field, usually of three categories:

- self-consistent Poisson equation, in semiconductors;
- coupled Schrödinger-Poisson equation, in nanostructures;
- Lorentz force (Maxwell equations), in plasmas.

Collisions.

The charge carriers may have collisions with other carriers, with the fixed lattice or with phonons (pseudo-particles describing the vibration of the lattice).

Aspects	of the mo	delling			
Introduction					
0000	000000000000		00000000	000000000000000000000000000000000000000	0000000000000
Introduction			TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET

Transport.

The Boltzmann Transport Equation (BTE) describes, at microscopic level, how the charge carriers move inside the object of study:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + \frac{F(t,x)}{m} \cdot \nabla_v f = \mathcal{Q}[f].$$

Force field.

Apart from the free motion, the charge carriers may be driven by the effect of a force field, usually of three categories:

- self-consistent Poisson equation, in semiconductors;
- coupled Schrödinger-Poisson equation, in nanostructures;
- Lorentz force (Maxwell equations), in plasmas.

Collisions.

The charge carriers may have collisions with other carriers, with the fixed lattice or with phonons (pseudo-particles describing the vibration of the lattice).

Introduction		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
0000				0000000000000
Introduction				
Transp	ort			

Two categories of transport equations are used.

Microscopic models.

At kinetic level the motion is described by a probabilistic magnitude f defined in the phase space (x, v), (x, p) or (x, k): the choice of the problem may make more suitable the use of the velocity v instead of the impulsion p or the wave vector k.

Macroscopic models.

The system does not depend on v or p or k; the magnitude describing the evolution just depends on time and position. Starting from the BTE, hydrodynamics or diffusion limits give Euler, Navier-Stokes, Spherical Harmonics Expansion, Energy-Transport or Drift-Diffusion systems.

Introduction		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
0000				0000000000000
Introduction				
Transpo	ort			

Two categories of transport equations are used.

Microscopic models.

At kinetic level the motion is described by a probabilistic magnitude f defined in the phase space (x, v), (x, p) or (x, k): the choice of the problem may make more suitable the use of the velocity v instead of the impulsion p or the wave vector k.

Macroscopic models.

The system does not depend on v or p or k; the magnitude describing the evolution just depends on time and position. Starting from the BTE, hydrodynamics or diffusion limits give Euler, Navier-Stokes, Spherical Harmonics Expansion, Energy-Transport or Drift-Diffusion systems.

Introduction		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
0000				0000000000000
Introduction				
Transpo	ort			

Two categories of transport equations are used.

Microscopic models.

At kinetic level the motion is described by a probabilistic magnitude f defined in the phase space (x, v), (x, p) or (x, k): the choice of the problem may make more suitable the use of the velocity v instead of the impulsion p or the wave vector k.

Macroscopic models.

The system does not depend on v or p or k; the magnitude describing the evolution just depends on time and position. Starting from the BTE, hydrodynamics or diffusion limits give Euler, Navier-Stokes, Spherical Harmonics Expansion, Energy-Transport or Drift-Diffusion systems.

A B > A B > A B >

0000 PW/ENO intr	•00000000000	00000	000000000	000000000000000000000000000000000000000	0000000	0000
Outl	ine					
1	Introduction					
_	Introduction					
2	Numerical methods					
	PWENO interpol	ations				
	Splitting technique	les				
	Linear advection					
3	Benchmark tests					
	• Vlasov with confi	ning potentia	al			
	Vlasov-Poisson					
4	TS-WENO for a BT	Е				
	Overview					
	Numerics					
	Experiments					
5	Intermediate approx					
	Motivations					
	Asymptotic-prese	rving schem	es			
	Experiments					
6	The nanoMOSFET					
	The model					UPB
	Numerical metho	ds for the Scl	hrödinger-Poisson	block		and the second
	Experiments		-	▲□▶ ▲圖▶ ▲≧▶ ▲≧)	· = 4	200

Introduction Numerical methods Benchmark tests TS-WENO for a BTE Intermediate approximations

	Numerical methods				The nanoMOSFET
0000	00000000000	00000	00000000	000000000000000000000000000000000000000	0000000000000
PWENO interpolation	IS				
Motivat	tion				

We need a **Pointwise** interpolation method which does not add spurious oscillations when high gradients appear, e.g. when a jump has to be transported.

Figure: Left: PWENO interpolation. Right: Lagrange interpolation.

э

	Numerical methods		Intermediate approximations	The nanoMOSFET
0000	00000000000	00000000	000000000000000000000000000000000000000	0000000000000
PWENO interpolation	IS			
Motivat	tion			

We need a **Pointwise** interpolation method which does not add spurious oscillations when high gradients appear, e.g. when a jump has to be transported.

Figure: Left: PWENO interpolation. Right: Lagrange interpolation.

э

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of Lagrange polynomial reconstructions.

We describe the case of PWENO-6,4: we take a stencil of six points and divide it into three substencils of four points:

PWENO-6,4

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of Lagrange polynomial reconstructions.

We describe the case of PWENO-6,4: we take a stencil of six points and divide it into three substencils of four points:

PWENO-6,4

э

A B > A B > A B >

	Numerical methods			Intermediate approximations	The nanoMOSFET		
	000000000000000000000000000000000000000				000000000000		
PWENO interpolation							
The ave	The average						

If we note $p_r(x)$ the Lagrange polynomials, PWENO reconstruction reads

 $p_{PWENO}(x) = \omega_0(x)p_0(x) + \omega_1(x)p_1(x) + \omega_2(x)p_2(x).$

Convex combination.

The convex combination $\{\omega_r(x)\}_r$ must penalize the substencils S_r in which the $p_r(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils S_r are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^2 -norms of the Lagrange polynomials $p_r(x)$ to measure their regularity close to the reconstruction point *x*. The following smoothness indicators have been proposed by Jiang and Shu:

$$\beta_r = \Delta x \left\| \frac{dp_r}{dx} \right\|_{L^2_{(x_l, x_{l+1})}} + \Delta x^3 \left\| \frac{d^2 p_r}{dx^2} \right\|_{L^2_{(x_l, x_{l+1})}} + \Delta x^5 \left\| \frac{d^3 p_r}{dx^3} \right\|_{L^2_{(x_l, x_{l+1})}}$$

(日)

Introduction	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
PWENO interpolation	IS				
The ave	erage				

If we note $p_r(x)$ the Lagrange polynomials, PWENO reconstruction reads

$$p_{PWENO}(x) = \omega_0(x)p_0(x) + \omega_1(x)p_1(x) + \omega_2(x)p_2(x).$$

Convex combination.

The convex combination $\{\omega_r(x)\}_r$ must penalize the substencils S_r in which the $p_r(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils S_r are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^2 -norms of the Lagrange polynomials $p_r(x)$ to measure their regularity close to the reconstruction point *x*. The following smoothness indicators have been proposed by Jiang and Shu:

$$\beta_r = \Delta x \left\| \frac{dp_r}{dx} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^3 \left\| \frac{d^2 p_r}{dx^2} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^5 \left\| \frac{d^3 p_r}{dx^3} \right\|_{L^2_{(x_i, x_{i+1})}}$$

(日)

	Numerical methods			Intermediate approximations	The nanoMOSFET				
0000	000000000000		00000000	000000000000000000000000000000000000000	00000000000000				
PWENO interpolation	IS								
The ave	erage	The average							

If we note $p_r(x)$ the Lagrange polynomials, PWENO reconstruction reads

$$p_{PWENO}(x) = \omega_0(x)p_0(x) + \omega_1(x)p_1(x) + \omega_2(x)p_2(x).$$

Convex combination.

The convex combination $\{\omega_r(x)\}_r$ must penalize the substencils S_r in which the $p_r(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils S_r are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^2 -norms of the Lagrange polynomials $p_r(x)$ to measure their regularity close to the reconstruction point *x*. The following smoothness indicators have been proposed by Jiang and Shu:

$$\beta_r = \Delta x \left\| \frac{dp_r}{dx} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^3 \left\| \frac{d^2 p_r}{dx^2} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^5 \left\| \frac{d^3 p_r}{dx^3} \right\|_{L^2_{(x_i, x_{i+1})}}$$

UFB Market Administration Attending

イロト イポト イヨト イヨ

Admit for now that the convex combination is given by the normalization $\omega_r(x) = \frac{\tilde{\omega}_r(x)}{\sum_{s=0}^2 \tilde{\omega}_s(x)}$ of the protoweights $\tilde{\omega}_r(x)$ defined this way:

$$\tilde{\omega}_r(x) = \frac{d_r(x)}{(\epsilon + \beta_r)^2}.$$

Regular reconstruction

Suppose that all the β_r are equal; then we have

$$\omega_r(x)=d_r(x).$$

The optimal order is achieved by Lagrange reconstruction $p_{Lagrange}(x)$ in the whole stencil S, so if we define $d_r(x)$ to be the polynomials such that

 $p_{Lagrange}(x) = d_0(x)p_0(x) + d_1(x)p_1(x) + d_2(x)p_2(x),$

then we have achieved the optimal order because $p_{PWENO}(x) = p_{Lagrange}(x)$.

э

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Admit for now that the convex combination is given by the normalization $\omega_r(x) = \frac{\tilde{\omega}_r(x)}{\sum_{s=0}^2 \tilde{\omega}_s(x)}$ of the protoweights $\tilde{\omega}_r(x)$ defined this way:

$$\tilde{\omega}_r(x) = \frac{d_r(x)}{(\epsilon + \beta_r)^2}.$$

Regular reconstruction

Suppose that all the β_r are equal; then we have

$$\omega_r(x) = d_r(x).$$

The optimal order is achieved by Lagrange reconstruction $p_{Lagrange}(x)$ in the whole stencil S, so if we define $d_r(x)$ to be the polynomials such that

$$p_{Lagrange}(x) = d_0(x)p_0(x) + d_1(x)p_1(x) + d_2(x)p_2(x),$$

then we have achieved the optimal order because $p_{PWENO}(x) = p_{Lagrange}(x)$.

Admit for now that the convex combination is given by the normalization $\omega_r(x) = \frac{\tilde{\omega}_r(x)}{\sum_{s=0}^2 \tilde{\omega}_s(x)}$ of the protoweights $\tilde{\omega}_r(x)$ defined this way:

$$\tilde{\omega}_r(x) = \frac{d_r(x)}{(\epsilon + \beta_r)^2}.$$

High gradients

Otherwise, suppose for instance that β_0 is high order than the other ones: in this case S_0 is penalized and most of the reconstruction is carried by the other more "regular" substencils.

(日)(御)(王)(日)(王)

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
Splitting techniqu	es				
Outlin	e				
1 Iı	ntroduction				
0	Introduction				
2 N	lumerical methods	3			
0	PWENO interpo	lations			
0	Splitting techniq	ues			
0	Linear advection				
3 B	enchmark tests				
0	Vlasov with con	fining potentia	1		
0	Vlasov-Poisson				
4 T	S-WENO for a B	ГЕ			
0	Overview				
0	Numerics				
	Experiments				
5 Iı					
0	Motivations				
0	Asymptotic-pres	erving scheme	S		
	Experiments				
6 T	he nanoMOSFET				-
0	The model				UPB Biteriter
0	Numerical metho	ods for the Sch	nrödinger-Poisson	block	
0	Experiments			・ロト ・ 母 ト ・ 国 ト ・ 国	 ヨーのへの

	Numerical methods	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
	0000000000000			0000000000000
Splitting techniques	5			
Motiva	ition			

In this work, splitting techniques are used at different levels, namely:

• to split the Boltzmann Transport Equation into the solution of the transport part and the collisional part for separate, i.e. the **Time Splitting**:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + F \cdot \nabla_v f = \mathcal{Q}[f]$$

splits into

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + F \cdot \nabla_{\mathbf{v}} f = 0, \qquad \frac{\partial f}{\partial t} = \mathcal{Q}[f];$$

• to split the (*x*, *v*)-phase space in a collisionless context (**Dimensional Splitting**):

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + F \cdot \nabla_v f = 0$$

splits into

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = 0, \qquad \frac{\partial f}{\partial t} + F \cdot \nabla_y f = 0.$$

ж

ヘロト 人間 とくほとくほとう

OOOO Splitting techniques	000000000000000	00000	00000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Motivat	tion				

In this work, splitting techniques are used at different levels, namely:

• to split the Boltzmann Transport Equation into the solution of the transport part and the collisional part for separate, i.e. the **Time Splitting**:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{x} f + F \cdot \nabla_{v} f = \mathcal{Q}[f]$$

splits into

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + F \cdot \nabla_{\mathbf{v}} f = 0, \qquad \frac{\partial f}{\partial t} = \mathcal{Q}[f];$$

• to split the (*x*, *v*)-phase space in a collisionless context (**Dimensional Splitting**):

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + F \cdot \nabla_y f = 0$$

splits into

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = 0, \qquad \frac{\partial f}{\partial t} + F \cdot \nabla_y f = 0.$$

	Numerical methods	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
	0000000000000			0000000000000
Splitting techniques				
Motivat	tion			

In this work, splitting techniques are used at different levels, namely:

• to split the Boltzmann Transport Equation into the solution of the transport part and the collisional part for separate, i.e. the **Time Splitting**:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{x} f + F \cdot \nabla_{v} f = \mathcal{Q}[f]$$

splits into

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + F \cdot \nabla_{\mathbf{v}} f = 0, \qquad \frac{\partial f}{\partial t} = \mathcal{Q}[f];$$

• to split the (*x*, *v*)-phase space in a collisionless context (**Dimensional Splitting**):

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + F \cdot \nabla_v f = 0$$

splits into

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = 0, \qquad \frac{\partial f}{\partial t} + F \cdot \nabla_v f = 0.$$

General framework									
Splitting techniques									
0000	00000000000000		00000000	000000000000000000000000000000000000000	00000000000000				
	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET				

$$\frac{\partial f}{\partial t} = \mathbf{L}f, \qquad f(t=0) = f^0$$

is

 $f(t) = e^{Lt} f^0.$

If we can write the linear operator L as the sum of two linear operators,

 $L = L_1 + L_2$

then we may approximate the exact solution by solving for separate

$$\frac{\partial f}{\partial t} = L_1 f$$
 and $\frac{\partial f}{\partial t} = L_2 f$.

Several schemes are proposed for reconstructing the solution of the original PDE from the solution of either blocks; a first order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_2 \Delta t} e^{L_1 \Delta t} f(t),$$

while a second order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_1 \frac{\Delta t}{2}} e^{L_2 \Delta t} e^{L_1 \frac{\Delta t}{2}} f(t).$$

э

A B > A B > A B >

General	framewor	k			
Splitting techniques					
0000	00000000000000		00000000	000000000000000000000000000000000000000	000000000000
	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET

$$\frac{\partial f}{\partial t} = \mathbf{L}f, \qquad f(t=0) = f^0$$

is

 $f(t) = e^{Lt} f^0.$

If we can write the linear operator L as the sum of two linear operators,

 $L = \mathbf{L}_1 + \mathbf{L}_2,$

then we may approximate the exact solution by solving for separate

$$\frac{\partial f}{\partial t} = L_1 f$$
 and $\frac{\partial f}{\partial t} = L_2 f$.

Several schemes are proposed for reconstructing the solution of the original PDE from the solution of either blocks; a first order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_2 \Delta t} e^{L_1 \Delta t} f(t),$$

while a second order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_1 \frac{\Delta t}{2}} e^{L_2 \Delta t} e^{L_1 \frac{\Delta t}{2}} f(t).$$

General framework							
Splitting techniques							
0000	00000000000000		00000000	000000000000000000000000000000000000000	00000000000000		
	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		

$$\frac{\partial f}{\partial t} = \mathbf{L}f, \qquad f(t=0) = f^0$$

is

 $f(t) = e^{Lt} f^0.$

If we can write the linear operator L as the sum of two linear operators,

 $L = \mathbf{L}_1 + \mathbf{L}_2,$

then we may approximate the exact solution by solving for separate

$$\frac{\partial f}{\partial t} = L_1 f$$
 and $\frac{\partial f}{\partial t} = L_2 f$.

Several schemes are proposed for reconstructing the solution of the original PDE from the solution of either blocks; a first order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_2 \Delta t} e^{L_1 \Delta t} f(t),$$

while a second order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_1 \frac{\Delta t}{2}} e^{L_2 \Delta t} e^{L_1 \frac{\Delta t}{2}} f(t)$$

General framework							
Splitting techniques							
0000	00000000000000		00000000	000000000000000000000000000000000000000	00000000000000		
	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		

$$\frac{\partial f}{\partial t} = \mathbf{L}f, \qquad f(t=0) = f^0$$

is

 $f(t) = e^{Lt} f^0.$

If we can write the linear operator *L* as the sum of two linear operators,

 $L = \mathbf{L}_1 + \mathbf{L}_2,$

then we may approximate the exact solution by solving for separate

$$\frac{\partial f}{\partial t} = L_1 f$$
 and $\frac{\partial f}{\partial t} = L_2 f$.

Several schemes are proposed for reconstructing the solution of the original PDE from the solution of either blocks; a first order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_2 \Delta t} e^{L_1 \Delta t} f(t),$$

while a second order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_1 \frac{\Delta t}{2}} e^{L_2 \Delta t} e^{L_1 \frac{\Delta t}{2}} f(t).$$

0000	000000000000000000000000000000000000000	00000	000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000
Linear advec	tion				
Outl	ine				
0	Introduction				
	Introduction				
2	Numerical methods				
	 PWENO interno 	lations			
	 Splitting technique 	lies			
	 I inear advection 	405			
	Benchmark tests				
	 Vlasov with conf 	ining potenti	al		
	 Vlasov-Poisson 	ining potenti	u1		
	TS_WENO for a B'				
	• Overview				
	Numerics				
	Experiments				
	Untermediate approx				
	Motivations				
	 Asymptotic pros 	arring schore			
	 Asymptotic-pres Evporimonts 	erving schem	162		
	• Experiments				
0					
	 I ne model Neme ni sel meste 		1	111-	UPB
	• Numerical metho	oas for the Sc	nroainger-Poisson	DIOCK	=
	Experiments				

Linear advection							
Linear advection							
0000	000000000000000		00000000	000000000000000000000000000000000000000	00000000000000		
	Numerical methods			Intermediate approximations	The nanoMOSFET		

We propose two schemes for solving the linear advection

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} = 0:$$

Semi-Lagrangian:

Directly integrate backward in the characteristic

Linear a	advection				
Linear advection					
0000	000000000000000	00000	00000000	000000000000000000000000000000000000000	000000000000000
	Numerical methods			Intermediate approximations	The nanoMOSFET

We propose two schemes for solving the linear advection

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} = 0:$$

Semi-Lagrangian:

Directly integrate backward in the characteristic

æ

Flux Balance Method:

Total mass conservation is forced. It is based on the idea of following backward the characteristics, but integral values are taken instead of point values:

Introduction 0000	Numerical methods	Benchmark tests ●0000	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET			
Vlasov with co	onfining potential							
Outli	ne							
	Introduction							
	Introduction							
2	Numerical methods	8						
	• PWENO interpol	lations						
	• Splitting techniq	ues						
	• Linear advection							
OCCOORDING OCCOORDING OCCOORDING Visuov with confining potential Introduction Introduction Introduction Introduction Numerical methods PWENO interpolations Splitting techniques Linear advection Senchmark tests Vlasov with confining potential Vlasov-Poisson TS-WENO for a BTE Overview Vision-Poisson Ts-weno for a BTE Vision-Poisson Intermediate approximations Motivations Asymptotic-preserving schemes Experiments The nanoMOSFET The model Numerical methods for the Schrödinger-Poisson block								
-	Vlasov with conf	fining potentia	1					
	• Vlasov-Poisson							
4	TS-WENO for a B	ГЕ						
	Overview							
	Numerics							
	• Experiments							
5	Intermediate approx							
	Motivations							
	• Asymptotic-pres	erving scheme	S					
	• Experiments							
6	The nanoMOSFET				-			
	• The model				UPB			
	• Numerical metho	ods for the Sch	rödinger-Poisson	block				
	• Experiments			 ↓ ↓ ↓ ⊕ ↓ ↓ ⊕ ↓ ↓ ⊕ 	▶ Ξ ∽ ۹ (?)			
		Benchmark tests			The nanoMOSFET			
-----------------------	---------------------------------	-----------------	----------	---	----------------	--	--	--
0000	000000000000	00000	00000000	000000000000000000000000000000000000000	000000000000			
Vlasov with confining	Vlasov with confining potential							
The sys	tem							

We solve a Vlasov equation with given potential and a linear relaxation-time operator as collision operator by time (linear) splitting to decouple the Vlasov part and the Boltzmann part, and recursively dimensional splitting to divide the *x*-advection from the *v*-advection:

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} - \frac{d\left(\frac{x^2}{2}\right)}{dx} \frac{\partial f}{\partial v} = \frac{1}{\tau} \left[\frac{1}{\pi} e^{-\frac{v^2}{2}} \rho - f \right], \qquad f(0, x) = f_0(x).$$

We expect the solution to rotate (due to the Vlasov part and the potential) and to converge to an equilibrium (due to collisions) given by

$$f_s = \frac{\max(f)}{\pi^2} \exp\left(-\frac{x^2 + v^2}{2}\right)$$

Setting	up initial	condition	S		
Vlasov with confini	ng potential				
		00000			0000000000000
		Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET

We perform tests with three initial conditions, more or less close to the equilibrium; the relaxation time is set $\tau = 3.5$:

$$\begin{aligned} f_0^{(1)} &= Z_1 \sin^2 \left(\frac{x}{2}\right) e^{-\frac{x^2 + v^2}{2}} \\ f_0^{(2)} &= Z_2 \sin^2 \left(\frac{x}{2}\right) \sin^2 \left(\frac{v}{2}\right) e^{-\frac{x^2 + v^2}{2}} \\ f_0^{(3)} &= Z_3 \left[1 + 0.05 \sin^2 \left(\frac{x}{2}\right)\right] e^{-\frac{x^2 + v^2}{2}}. \end{aligned}$$

Entropies

The global and local relative entropies are defined this way:

$$H[f;f_s] = \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{|f-f_s|^2}{f_s} dv dx$$

$$\tilde{H}[f;\rho M_1] = \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{|f-\rho M_1|^2}{f_s} dv dx.$$

Introduction 0000	Numerical methods	Benchmark tests ○○○●○	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
Vlasov-Poisso	n				
Outli	ne				
	Introduction				
	Introduction				
2	Numerical methods				
	• PWENO interpol	ations			
	• Splitting technique	les			
	 Linear advection 				
3	Benchmark tests				
	• Vlasov with conf	ining potentia	al		
	Vlasov-Poisson	01			
4	TS-WENO for a B7	ГЕ			
	Overview				
	Numerics				
	Experiments				
(3)	Intermediate approx				
	Motivations				
	Asymptotic-prese	erving schem	es		
	Experiments				
6	The nanoMOSFET				
	The model				UPB
	Numerical method	ds for the Scl	hrödinger-Poisson	block	
	Experiments			▲□▶ ▲圖▶ ▲国▶ ▲国	 ● 王 のへで

	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		
		00000			00000000000000		
Vlasov-Poiss	on						
Two-stream instability							

The problem

We set the problem in a collisionless context. The force field is self-consistently computed through a Poisson equation. Equations are normalized, periodic boundary conditions are taken for both the transport and the potential.

$$\begin{aligned} \frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} - \frac{\partial \Phi}{\partial x} \frac{\partial f}{\partial v} &= 0\\ \frac{\partial^2 \Phi}{\partial x^2} &= 1 - \int_{\mathbb{R}} f dv\\ f(t=0,x,v) &= f_{eq}(v) \left[1 + 0.01 \left(\frac{\cos(2kx) + \cos(3kx)}{1.2} + \cos(kx) \right) \right] \end{aligned}$$

As initial condition, we perturb the equilibrium-state given by

$$f_{eq}(v) = K(1+v^2)e^{-\frac{v^2}{2}},$$

K being a normalization factor.

(日)

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE ●OO○○○○○○	Intermediate approximations	The nanoMOSFET
Overview					
Outl	ine				
	Introduction				
	Introduction				
2	Numerical methods				
	 PWENO interpol Sulitting to sharing 	lations			
	 Splitting technique Lincor advaction 	ues			
	Benchmark tests				
	 Vlasov with conf 	ining potentia	1		
	 Vlasov-Poisson 	ining potentia	-A		
4	TS-WENO for a B	ГЕ			
	Overview				
	Numerics				
	Experiments				
5	Intermediate approx				
	Motivations				
	Asymptotic-press	erving scheme	2S		
	Experiments				
6	The nanoMOSFET				-
	• The model	1 6 4 6 1		1.1.1	UPB
	 Numerical metho Environmento 	ods for the Sch	rodinger-Poisson	block	
	w Experiments				- <u>-</u>

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE O●OOOOOOO	Intermediate approximations	The nanoMOSFET
Overview					
The mo	del				

We describe via the Boltzmann Transport Equation the transport/collision in an electronic device

$$\begin{aligned} \frac{\partial f}{\partial t} &+ \frac{1}{\hbar} \nabla_k \varepsilon \cdot \nabla_x f - \frac{q}{\hbar} E \cdot \nabla_k f = \mathcal{Q}[f] \\ \Delta \Phi &= \frac{q}{\epsilon_0} \left[\rho[f] - N_D \right], \qquad E = -\nabla_x \Phi \\ f_0(x,k) &= N_D(x) \mathcal{M}(k), \end{aligned}$$

where the band structure is given in the parabolic approximation

$$\varepsilon(k) = \frac{\hbar^2 |k|^2}{2m_*},$$

 m_* being the Silicon effective mass.

The co	ollision oper	rator			
Overview					
0000	000000000000		00000000	000000000000000000000000000000000000000	0000000000000000
			TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET

The collision operator takes into account the scattering of the carriers with acoustic phonons, in the elastic approximation, and with optical phonons, with a single frequency ω . Therefore the operator reads, in the low-density approximation:

$$\mathcal{Q}[f] = \int_{\mathbb{R}^3} \left[S(k',k)f(t,x,k') - S(k,k')f(t,x,k) \right] dk',$$

where the scattering rate is given by

$$S(k,k') = K \left[(n_q + 1)\delta(\epsilon(k') - \epsilon(k) + \hbar\omega) + n_q \delta(\epsilon(k') - \epsilon(k) - \hbar\omega) \right] + K_0 \delta(\epsilon(k') - \epsilon(k)).$$

э

A D > A P > A D > A D >

0000	Numerical methods	Benchmark tests	TS-WENO for a BTE ○○○●○○○○	Intermediate approximations	The nanoMOSFET
Numerics					
Outli	ne				
1	Introduction				
	Introduction				
2	Numerical methods				
	 PWENO interpol 	ations			
	 Splitting technique 	les			
	• Linear advection				
3	Benchmark tests				
	• Vlasov with confi	ining potentia	al		
	• Vlasov-Poisson				
4	TS-WENO for a B1	E			
	• Overview				
	 Numerics Europing on to 				
	• Experiments				
	Motivations				
	 Mouvations Asymptotic press 	rving schom	96		
	 Asymptotic-prese Experiments 	ervnig schenne	8		
6	The nanoMOSEET				
	• The model				
	 The model Numerical method 	ds for the Sci	hrödinger-Poisson	block	Allerity .
	Fxperiments		in outinger=1 0155011	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	► E - 94.0

A dimensionalization							
Numerics							
0000	000000000000		00000000	000000000000000000000000000000000000000	0000000000000000		
	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		

Adimensionalization

The system is reduced to dimensionless magnitudes in order to improve numerical results by making the computer perform calculations on numbers of order 1. Then splitting schemes are applied to solve for separate transport and collision, and dimensional splitting is applied to separate *x*-dimension from k_1 -dimension.

adim.	parameter	400 nm device	50 nm device
$\tilde{k} = k^* k$	$k^* = \frac{\sqrt{2m^*k_BT_L}}{\hbar}$	$4.65974 \times 10^8 m^{-1}$	$4.65974 \times 10^8 m^{-1}$
$\tilde{x} = l^* x$	$l^* = $ device length	$1 \ \mu m$	250 nm
$\tilde{t} = t^* t$	$t^* =$ typical time	$1 ps = 10^{-12} s$	$1 ps = 10^{-12}s$
$\tilde{V}(\tilde{x}) = V^* V(x)$	$V^* =$ typical Vbias	1V	1V
$\tilde{E}(\tilde{x}) = E^* E(x)$	$E^* = rac{1}{10} rac{V^*}{l^*}$	$100000 Vm^{-1}$	$400000 Vm^{-1}$
$\tilde{\varepsilon}(\tilde{k}) = \varepsilon^* \varepsilon(k)$	$\epsilon^* = \frac{\hbar^2 k^{*2}}{2m^*}$	4.14195e - 21	4.14195e - 21
$\tilde{\rho}(\tilde{x}) = \rho^* \rho(x)$	$\rho^* = \left(\frac{2m^* k_B T_L}{\hbar}\right)^{3/2}$	$1.01178 imes 10^{26}$	$1.01178 imes 10^{26}$
$\tilde{j}(\tilde{x}) = j^* j(x)$	$j^* = \frac{1}{l^* 2 t^*}$	10^{24}	1.6×10^{25}
$\tilde{u}(\tilde{x}) = u^* u(x)$	$u^* = \frac{l^*}{t^*}$	10 ⁶	250000
$\tilde{W}(\tilde{x}) = W^* W(x)$	$W^* = (l^*/t^*)^2$	10 ¹²	6.25×10^{10}

Collisi	on integrai	on			
Numerics					
			000000000		
	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET

The solution of the collisions is achieved when we are able to solve the following integrals (in dimensionless units):

$$\begin{aligned} \mathcal{Q}^{+}[f] &= c_{0}\pi \int_{-\sqrt{\gamma_{0}(k)}}^{\sqrt{\gamma_{0}(k)}} f\left(k'_{1}, \sqrt{\gamma_{0}(k) - k'_{1}^{2}}\right) dk'_{1} \\ &+ c_{+}\pi \int_{-\sqrt{\gamma_{+}(k)}}^{\sqrt{\gamma_{+}(k)}} f\left(k'_{1}, \sqrt{\gamma_{+}(k) - k'_{1}^{2}}\right) dk'_{1} \\ &+ \chi_{\left\{\gamma_{-}(k) > 0\right\}} c_{-}\pi \int_{-\sqrt{\gamma_{-}(k)}}^{\sqrt{\gamma_{-}(k)}} f\left(k'_{1}, \sqrt{\gamma_{-}(k) - k'_{1}^{2}}\right) dk'_{1} \end{aligned}$$

with
$$\gamma_0(k) = \varepsilon(k), \gamma_+(k) = \varepsilon(k) + \frac{h\omega}{\varepsilon^*}, \gamma_-(k) = \varepsilon(k) - \frac{\hbar\omega}{\varepsilon^*}$$
, and

 $\mathcal{Q}^{-}[f] = c_0 2\pi \sqrt{\gamma_0(k)} f(k) + \chi_{\left\{\gamma_-(k)>0\right\}} c_+ 2\pi \sqrt{\gamma_-(k)} f(k) + c_- 2\pi \sqrt{\gamma_+(k)} f(k).$

• □ ▶ • @ ▶ • 图 ▶ • 图 ▶ · 图

For integrating along the $[-\sqrt{\gamma}, \sqrt{\gamma}]$ -segment following a semicircle in the $(k_1, \sqrt{k_2^2 + k_3^2})$ -plane, we have adopted as strategy a plain linear interpolation using the values of the two nearest points along the vertical lines. Other more sofisticated strategies have not significantly improved the results.

э

イロト 不得 トイヨト イヨト

Introduction 0000	Numerical methods	00000	OCOCOCO OCOCOCO OCOCOCO OCOCOCO OCOCOCO OCOCOCO OCOCOCO OCOCOCO OCOCOCO OCOCOCO OCOCOCO OCOCOCO OCOCOCO OCOCOCO OCOCOCO OCOCOCOC		D 000000000000000000000000000000000000
Experiments					
Outl	ine				
	Introduction				
	Introduction				
2	Numerical methods				
	• PWENO interpol	lations			
	Splitting technique	ues			
	 Linear advection 				
3	Benchmark tests				
	Vlasov with conf	ining potentia	1		
	Vlasov-Poisson				
4	TS-WENO for a B	ГЕ			
	Overview				
	• Numerics				
	Experiments				
(5)	Intermediate approx				
	Motivations				
	• Asymptotic-pres	erving scheme	S		
	Experiments				
6	The nanoMOSFET				_
	The model				
	Numerical method	ods for the Sch	rödinger-Poisson	block	
	Experiments			 ↓ □ ▶ < @ ▶ < ≥ ▶ < ≥ 	 ● 王 のへで

			TS-WENO for a BTE		The nanoMOSFET			
0000	000000000000	00000	000000000	000000000000000000000000000000000000000	0000000000000			
Experiments								
Multifre	Multifrequency phonons							

We present the results relative to a device where phonons are not single-frequency: the structure of the solver allows an easy implementation of such model.

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	The nanoMOSFET
Motivations					
Motivations 000000000000000000000000000000000000					
	Introduction				
	Introduction				
2	Numerical methods				
	• PWENO interpol	lations			
	 Splitting technique 	lies			
	 Linear advection 				
3	Benchmark tests				
	Vlasov with conf	ining potentia	1		
	Vlasov-Poisson	01			
4	TS-WENO for a B	ГЕ			
	Overview				
	Numerics				
	Experiments				
5	Intermediate approx	kimations			
-	Motivations				
	Asymptotic-pres	erving scheme	es		
	Experiments				
6	The nanoMOSFET				_
	The model				
	Numerical method	ods for the Sch	nrödinger-Poisson	block	
	• Experiments			< □ > < @ > < ≣ > < ≡	ま うくで

Setting the problem							
Motivations							
0000	000000000000		00000000	000000000000000000000000000000000000000	00000000000000000		
	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		

Consider the following problem: take the transport equation

$$\varepsilon \frac{\partial f_{\varepsilon}}{\partial t} + v \frac{\partial f_{\varepsilon}}{\partial x} = \frac{1}{\varepsilon} \left(\frac{1}{2} \int_{-1}^{1} f_{\varepsilon} dv - f_{\varepsilon} \right)$$

with $(t, x, v) \in [0, T] \times \mathbb{R} \times [-1, 1]$, completed by initial and boundary conditions.

Diffusive limit.

As $\varepsilon \to 0, f_{\varepsilon}$ relaxes to the **heat equation**

$$\frac{\partial \rho}{\partial t} - \frac{1}{3} \frac{\partial^2 \rho}{\partial x^2} = 0.$$

- The heat equation is not v-dependent: no microscopic feature.
- The heat equation transport information at infinite velocity, the transport equation at $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ velocity.

Setting the problem							
Motivations							
0000	000000000000		00000000	000000000000000000000000000000000000000	00000000000000000		
	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		

Consider the following problem: take the transport equation

$$\varepsilon \frac{\partial f_{\varepsilon}}{\partial t} + v \frac{\partial f_{\varepsilon}}{\partial x} = \frac{1}{\varepsilon} \left(\frac{1}{2} \int_{-1}^{1} f_{\varepsilon} dv - f_{\varepsilon} \right)$$

with $(t, x, v) \in [0, T] \times \mathbb{R} \times [-1, 1]$, completed by initial and boundary conditions.

Diffusive limit.

As $\varepsilon \to 0, f_{\varepsilon}$ relaxes to the **heat equation**

$$\frac{\partial \rho}{\partial t} - \frac{1}{3} \frac{\partial^2 \rho}{\partial x^2} = 0.$$

- The heat equation is not v-dependent: no microscopic feature.
- The heat equation transport information at infinite velocity, the transport equation at O (¹/_ε) velocity.

Setting the problem							
Motivations							
0000	000000000000		00000000	000000000000000000000000000000000000000	0000000000000		
	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		

Consider the following problem: take the transport equation

$$\varepsilon \frac{\partial f_{\varepsilon}}{\partial t} + v \frac{\partial f_{\varepsilon}}{\partial x} = \frac{1}{\varepsilon} \left(\frac{1}{2} \int_{-1}^{1} f_{\varepsilon} dv - f_{\varepsilon} \right)$$

with $(t, x, v) \in [0, T] \times \mathbb{R} \times [-1, 1]$, completed by initial and boundary conditions.

Diffusive limit.

As $\varepsilon \to 0, f_{\varepsilon}$ relaxes to the **heat equation**

$$\frac{\partial \rho}{\partial t} - \frac{1}{3} \frac{\partial^2 \rho}{\partial x^2} = 0.$$

- The heat equation is not *v*-dependent: no microscopic feature.
- The heat equation transport information at infinite velocity, the transport equation at $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ velocity.

Setting the problem							
Motivations							
0000	000000000000		00000000	000000000000000000000000000000000000000	0000000000000		
	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		

Consider the following problem: take the transport equation

$$\varepsilon \frac{\partial f_{\varepsilon}}{\partial t} + v \frac{\partial f_{\varepsilon}}{\partial x} = \frac{1}{\varepsilon} \left(\frac{1}{2} \int_{-1}^{1} f_{\varepsilon} dv - f_{\varepsilon} \right)$$

with $(t, x, v) \in [0, T] \times \mathbb{R} \times [-1, 1]$, completed by initial and boundary conditions.

Diffusive limit.

As $\varepsilon \to 0, f_{\varepsilon}$ relaxes to the **heat equation**

$$\frac{\partial \rho}{\partial t} - \frac{1}{3} \frac{\partial^2 \rho}{\partial x^2} = 0.$$

- The heat equation is not *v*-dependent: no microscopic feature.
- The heat equation transport information at infinite velocity, the transport equation at $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ velocity.

			TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		
				000000000000000000000000000000000000000			
Motivations							

Approximations

The P1-approximation

By truncating the Hilbert expansion in ε of f_{ε}

$$f_{\varepsilon} = F_0 + \varepsilon F_1 + \varepsilon^2 F_2 + \dots$$

at first order we obtain the $\mathbb{P}1$ -approximation:

$$f_{\varepsilon} \approx \rho(t, x) - \varepsilon v \frac{\partial \rho}{\partial x}.$$

Drawbacks

- The P1-approximation is not non-negative.
- As well as in heat equation, information is transported at infinite velocity.

э

イロト 不得 トイヨト イヨト

			TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		
				000000000000000000000000000000000000000			
Motivations							

Approximations

The P1-approximation

By truncating the Hilbert expansion in ε of f_{ε}

$$f_{\varepsilon} = F_0 + \varepsilon F_1 + \varepsilon^2 F_2 + \dots$$

at first order we obtain the $\mathbb{P}1$ -approximation:

$$f_{\varepsilon} \approx \rho(t, x) - \varepsilon v \frac{\partial \rho}{\partial x}.$$

Drawbacks

• The $\mathbb{P}1$ -approximation is not non-negative.

• As well as in heat equation, information is transported at infinite velocity.

э

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

	Numerical methods	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
			000000000000000000000000000000000000000	
Motivations				
	•			

Approximations

The P1-approximation

By truncating the Hilbert expansion in ε of f_{ε}

$$f_{\varepsilon} = F_0 + \varepsilon F_1 + \varepsilon^2 F_2 + \dots$$

at first order we obtain the $\mathbb{P}1$ -approximation:

$$f_{\varepsilon} \approx \rho(t, x) - \varepsilon v \frac{\partial \rho}{\partial x}.$$

Drawbacks

- The $\mathbb{P}1$ -approximation is not non-negative.
- As well as in heat equation, information is transported at infinite velocity.

э

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Monortographics							
Motivations							
0000	000000000000		00000000	000000000000000000000000000000000000000	000000000000000		
	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		

Moment equations

Moments

Define the zeroth, first and second moment by

$$\begin{pmatrix} \rho_{\varepsilon} \\ J_{\varepsilon} \\ \mathbb{P}_{\varepsilon} \end{pmatrix} = \frac{1}{2} \int_{-1}^{1} \begin{pmatrix} 1 \\ v/\varepsilon \\ v^{2} \end{pmatrix} f_{\varepsilon} dv.$$

Moment equations

Integrating the kinetic equation, we obtain the moment equations

$$\begin{aligned} \frac{\partial \rho_{\varepsilon}}{\partial t} &+ \frac{\partial J_{\varepsilon}}{\partial x} &= 0\\ \varepsilon^2 \frac{\partial J_{\varepsilon}}{\partial t} &+ \frac{\partial \mathbb{P}_{\varepsilon}}{\partial x} &= -J_{\varepsilon}, \end{aligned}$$

which need some **closure strategy**, the k^{th} -moment equation being dependent on the $(k + 1)^{th}$ -moment.

э

・ロト ・聞ト ・ヨト ・ヨト

Moment equations							
Motivations							
0000	000000000000		00000000	000000000000000000000000000000000000000	000000000000000		
	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		

Moments

Define the zeroth, first and second moment by

$$\begin{pmatrix} \rho_{\varepsilon} \\ J_{\varepsilon} \\ \mathbb{P}_{\varepsilon} \end{pmatrix} = \frac{1}{2} \int_{-1}^{1} \begin{pmatrix} 1 \\ v/\varepsilon \\ v^{2} \end{pmatrix} f_{\varepsilon} dv.$$

Moment equations

Integrating the kinetic equation, we obtain the moment equations

$$\begin{aligned} &\frac{\partial\rho_{\varepsilon}}{\partial t} + \frac{\partial J_{\varepsilon}}{\partial x} &= 0\\ &\varepsilon^2 \frac{\partial J_{\varepsilon}}{\partial t} + \frac{\partial \mathbb{P}_{\varepsilon}}{\partial x} &= -J_{\varepsilon}, \end{aligned}$$

which need some **closure strategy**, the k^{th} -moment equation being dependent on the $(k + 1)^{th}$ -moment.

	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET	
				000000000000000000000000000000000000000	000000000000	
Motivations						
Closures						

Two closures were proposed, one at zero-th order and one at first order.

Zero-th order closure

By truncating the modified Hilbert expansion

$$f_{\varepsilon} = \exp\left(a_0 + \varepsilon a_1 + \varepsilon^2 a_2 + ...\right)$$

at first order, and injecting the obtained approximation

$$\tilde{f}_{\varepsilon}(t,x,v) = \frac{\rho(t,x)}{Z(t,x)}e^{-\varepsilon_V \frac{\partial \rho}{\partial x}(t,x)}$$

into the zero-th moment equation, we obtain the following system:

$$\frac{\partial \rho}{\partial t} - \frac{\partial}{\partial x} \left[\frac{\rho}{\varepsilon} \mathbb{G} \left(\varepsilon \frac{\frac{\partial \rho}{\partial x}}{\rho} \right) \right] = 0$$

where

Z(*t*, *x*) is a normalizing factor for the density *ρ*(*t*, *x*);

•
$$\mathbb{G}(x) = \operatorname{coth}(x) - \frac{1}{x}$$

			TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		
				000000000000000000000000000000000000000	00000000000000		
Motivations							
Closures							

Two closures were proposed, one at zero-th order and one at first order.

Zero-th order closure

By truncating the modified Hilbert expansion

$$f_{\varepsilon} = \exp\left(a_0 + \varepsilon a_1 + \varepsilon^2 a_2 + ...\right)$$

at first order, and injecting the obtained approximation

$$\tilde{f}_{\varepsilon}(t,x,v) = rac{
ho(t,x)}{Z(t,x)} e^{-\varepsilon v rac{\partial
ho}{\partial x}(t,x)}$$

into the zero-th moment equation, we obtain the following system:

$$\frac{\partial \rho}{\partial t} - \frac{\partial}{\partial x} \left[\frac{\rho}{\varepsilon} \mathbb{G} \left(\varepsilon \frac{\frac{\partial \rho}{\partial x}}{\rho} \right) \right] = 0,$$

where

- Z(t, x) is a normalizing factor for the density ρ(t, x);
- $\mathbb{G}(x) = \operatorname{coth}(x) \frac{1}{x}$.

			TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		
				000000000000000000000000000000000000000	000000000000		
Motivations							
Closures							

First order closure

The first order closure comes from an Entropy Minimization Principle; it leads to the following system:

$$\frac{\partial \rho}{\partial t} + \frac{\partial J}{\partial x} = 0$$
$$\varepsilon^2 \frac{\partial J}{\partial t} + \frac{\partial}{\partial x} \left[\rho \psi \left(\frac{\varepsilon J}{\rho} \right) \right] = -J$$

and the microscopic approximation is reconstructed by

$$\tilde{f}_{\varepsilon}(t,x,v) = \rho(t,x) \frac{\exp\left[v \mathbb{G}^{(-1)}\left(\frac{\varepsilon J}{\rho(t,x)}\right)\right]}{\mathbb{F} \circ \mathbb{G}^{(-1)}\left(\frac{\varepsilon J}{\rho(t,x)}\right)},$$

where

•
$$\mathbb{F}(x) = \frac{\sinh(x)}{x};$$

• $\psi(x) = \frac{\mathbb{F}''}{\mathbb{F}} \left(\mathbb{G}^{(-1)}(x) \right)$

0000	000000000000000000000000000000000000000	00000	000000000		000000000000000000000000000000000000000
Asymptotic-	preserving schemes				
Outl	ine				
0	Introduction				
	Introduction				
2	Numerical methods				
	• PWENO interpo	lations			
	 Splitting techniq 	ues			
	 Linear advection 				
3	Benchmark tests				
	Vlasov with con	fining potentia	1		
	Vlasov-Poisson	01			
4	TS-WENO for a B'	ГЕ			
	Overview				
	Numerics				
	Experiments				
5	Intermediate approx	ximations			
•	Motivations				
	Asymptotic-pres	erving scheme	es		
	Experiments	-			
6	The nanoMOSFET				_
	The model				
	Numerical method	ods for the Sch	nrödinger-Poisson	block	
	Experiments			 < □ > < @ > < E > < E 	▶ ≣

Introduction	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
Kinetic	equation				

We propose a splitting scheme for solving the kinetic equation

$$\frac{\partial f_{\varepsilon}}{\partial t} + v \frac{\partial f_{\varepsilon}}{\partial x} = \frac{1}{\varepsilon} \left(\frac{1}{2} \int_{-1}^{1} f_{\varepsilon} dv - f_{\varepsilon} \right)$$

without need of mesh-resolving parameter ε as it tends to zero.

Decomposition

Split f_{ε} into its mean value plus fluctuations:

$$\begin{aligned} \mathbf{f}_{\boldsymbol{\varepsilon}} &= \rho_{\boldsymbol{\varepsilon}} + \boldsymbol{\varepsilon} \boldsymbol{g}_{\boldsymbol{\varepsilon}} \\ &= \frac{1}{2} \int_{-1}^{1} f_{\boldsymbol{\varepsilon}} d\boldsymbol{v} + \boldsymbol{\varepsilon} \boldsymbol{g}_{\boldsymbol{\varepsilon}}. \end{aligned}$$

Splitting

Step (i)
$$\frac{\partial f_{\varepsilon}}{\partial t} = \frac{1}{\varepsilon^2} \left(\rho_{\varepsilon} - f_{\varepsilon} \right) - \frac{v}{\varepsilon} \frac{\partial \rho_{\varepsilon}}{\partial x}, \qquad \frac{\partial g_{\varepsilon}}{\partial t} = -\frac{1}{\varepsilon^2} \left(g_{\varepsilon} + v \frac{\partial \rho_{\varepsilon}}{\partial x} \right)$$

Step (ii) $\frac{\partial f_{\varepsilon}}{\partial t} + v \frac{\partial g_{\varepsilon}}{\partial x} = 0, \qquad \frac{\partial g_{\varepsilon}}{\partial t} = 0.$

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		
Asymptotic-preservin	g schemes						
Kinetic equation							

We propose a splitting scheme for solving the kinetic equation

$$\frac{\partial f_{\varepsilon}}{\partial t} + v \frac{\partial f_{\varepsilon}}{\partial x} = \frac{1}{\varepsilon} \left(\frac{1}{2} \int_{-1}^{1} f_{\varepsilon} dv - f_{\varepsilon} \right)$$

without need of mesh-resolving parameter ε as it tends to zero.

Decomposition

Split f_{ε} into its mean value plus fluctuations:

$$\begin{aligned} f_{\varepsilon} &= \rho_{\varepsilon} + \varepsilon g_{\varepsilon} \\ &= \frac{1}{2} \int_{-1}^{1} f_{\varepsilon} dv + \varepsilon g_{\varepsilon}. \end{aligned}$$

Splitting

Step (i)
$$\frac{\partial f_{\varepsilon}}{\partial t} = \frac{1}{\varepsilon^2} \left(\rho_{\varepsilon} - f_{\varepsilon} \right) - \frac{v}{\varepsilon} \frac{\partial \rho_{\varepsilon}}{\partial x}, \qquad \frac{\partial g_{\varepsilon}}{\partial t} = -\frac{1}{\varepsilon^2} \left(g_{\varepsilon} + v \frac{\partial \rho_{\varepsilon}}{\partial x} \right)$$

Step (ii) $\frac{\partial f_{\varepsilon}}{\partial t} + v \frac{\partial g_{\varepsilon}}{\partial x} = 0, \qquad \frac{\partial g_{\varepsilon}}{\partial t} = 0.$

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		
Asymptotic-preserving	g schemes						
Kinetic equation							

We propose a splitting scheme for solving the kinetic equation

$$\frac{\partial f_{\varepsilon}}{\partial t} + v \frac{\partial f_{\varepsilon}}{\partial x} = \frac{1}{\varepsilon} \left(\frac{1}{2} \int_{-1}^{1} f_{\varepsilon} dv - f_{\varepsilon} \right)$$

without need of mesh-resolving parameter ε as it tends to zero.

Decomposition

Split f_{ε} into its mean value plus fluctuations:

$$\begin{aligned} f_{\varepsilon} &= \rho_{\varepsilon} + \varepsilon g_{\varepsilon} \\ &= \frac{1}{2} \int_{-1}^{1} f_{\varepsilon} dv + \varepsilon g_{\varepsilon}. \end{aligned}$$

Splitting

Step (i)
$$\frac{\partial f_{\varepsilon}}{\partial t} = \frac{1}{\varepsilon^2} \left(\rho_{\varepsilon} - f_{\varepsilon} \right) - \frac{v}{\varepsilon} \frac{\partial \rho_{\varepsilon}}{\partial x}, \qquad \frac{\partial g_{\varepsilon}}{\partial t} = -\frac{1}{\varepsilon^2} \left(g_{\varepsilon} + v \frac{\partial \rho_{\varepsilon}}{\partial x} \right)$$

Step (ii) $\frac{\partial f_{\varepsilon}}{\partial t} + v \frac{\partial g_{\varepsilon}}{\partial x} = 0, \qquad \frac{\partial g_{\varepsilon}}{\partial t} = 0.$

Introduction	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
Asymptotic-preservin	g schemes				
Kinetic	equation				

We drop the notation of the ε -dependency and resume the scheme in the following steps: knowing f^n , g^n and ρ^n

Step (i)

• update[Step (i)a] f:

$$f_{i,j}^{n+1/2} = e^{-\frac{\Delta t}{\varepsilon^2}} f_{i,j}^n + \left(1 - e^{-\frac{\Delta t}{\varepsilon^2}}\right) \rho_i^n$$

• update[Step (i)b] g:

$$g_{i,j}^{n+1/2} = e^{-\frac{\Delta t}{\varepsilon^2}}g_{i,j}^n + \left(1 - e^{-\frac{\Delta t}{\varepsilon^2}}\right)\overline{\mathbb{D}}_j\rho_i^n$$

• update[Step (i)c] ρ:

$$\rho_i^{n+1/2} = \rho_i^n$$

UPIB

Kinetic equation								
Asymptotic-preserving	g schemes							
0000	00000000000		00000000	000000000000000000000000000000000000000	00000000000000			
			TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET			

Step (ii)

• update[Step (ii)a] f:

$$f_{i,j}^{n+1} = f_{i,j}^{n+1/2} + \Delta t \mathbb{D}_j g_{i,j}^{n+1/2}$$

• update[Step (ii)b] g:

$$g_{i,j}^{n+1} = g_{i,j}^{n+1/2}$$

• update[**Step** (iii)c] ρ by a right-rectangluar rule:

$$\rho_i^{n+1} = \frac{\Delta v}{2} \sum_{j=0}^{j-2} f_{i,j}^{n+1}$$

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		
Asymptotic-preservir	ig schemes						
Kinetic equation							

Derivatives

The discrete derivatives are defined in alternate direction under the upwinding constraint, for the sake of stability (for rescuing the usual three-point centered scheme of the Laplacian):

$$\begin{bmatrix} \mathbb{D}_{j}\varphi \end{bmatrix}_{i} = \frac{1}{\Delta x} \begin{cases} -v_{j}\left(\varphi_{i}-\varphi_{i-1}\right) & \text{if } v_{j} > 0\\ -v_{j}\left(\varphi_{i+1}-\varphi_{i}\right) & \text{if } v_{j} < 0 \end{cases}$$
$$\begin{bmatrix} \mathbb{D}_{j}\varphi \end{bmatrix}_{i} = \frac{1}{\Delta x} \begin{cases} -v_{j}\left(\varphi_{i+1}-\varphi_{i}\right) & \text{if } v_{j} > 0\\ -v_{j}\left(\varphi_{i}-\varphi_{i-1}\right) & \text{if } v_{j} < 0 \end{cases}$$

Numerics for the first order closure

We recall the first order closure (dropping ε -dependency):

$$\frac{\partial \rho}{\partial t} + \frac{\partial J}{\partial x} = 0$$
$$\varepsilon^2 \frac{\partial J}{\partial t} + \frac{\partial}{\partial x} \left[\rho \psi \left(\frac{\varepsilon J}{\rho} \right) \right] = -J$$

Strategy

We introduce a new unknown z(t, x) and two new parameters λ and α ; the non-linear equation for the first moment is now an advection equation and the non-linearities only appear at a right hand side:

$$\begin{pmatrix} \frac{\partial}{\partial t} & \frac{\partial}{\partial x} & 0\\ 0 & \varepsilon^2 \frac{\partial}{\partial t} & \frac{\partial}{\partial x} \\ 0 & \varepsilon^2 \lambda^2 \frac{\partial}{\partial x} & \frac{\partial}{\partial t} \end{pmatrix} \begin{pmatrix} \rho\\ J\\ z \end{pmatrix} = \begin{pmatrix} 0\\ -J\\ \frac{1}{\alpha} \left(\rho\psi(u) - z\right) \end{pmatrix}$$

with $u = \frac{\varepsilon J}{\rho}$. As $\alpha \to 0$, this system relaxes towards the original system.

Numerics for the first order closure

We recall the first order closure (dropping ε -dependency):

$$\frac{\partial \rho}{\partial t} + \frac{\partial J}{\partial x} = 0$$
$$\varepsilon^2 \frac{\partial J}{\partial t} + \frac{\partial}{\partial x} \left[\rho \psi \left(\frac{\varepsilon J}{\rho} \right) \right] = -J$$

Strategy

We introduce a new unknown z(t, x) and two new parameters λ and α ; the non-linear equation for the first moment is now an advection equation and the non-linearities only appear at a right hand side:

$$\begin{pmatrix} \frac{\partial}{\partial t} & \frac{\partial}{\partial x} & 0\\ 0 & \varepsilon^2 \frac{\partial}{\partial t} & \frac{\partial}{\partial x} \\ 0 & \varepsilon^2 \lambda^2 \frac{\partial}{\partial x} & \frac{\partial}{\partial t} \end{pmatrix} \begin{pmatrix} \rho\\ J\\ z \end{pmatrix} = \begin{pmatrix} 0\\ -J\\ \frac{1}{\alpha} \left(\rho\psi(u) - z\right) \end{pmatrix},$$

with $u = \frac{\varepsilon J}{\rho}$. As $\alpha \to 0$, this system relaxes towards the original system.

(日)

Numerics for the first order closure

We recall the first order closure (dropping ε -dependency):

$$\frac{\partial \rho}{\partial t} + \frac{\partial J}{\partial x} = 0$$
$$\varepsilon^2 \frac{\partial J}{\partial t} + \frac{\partial}{\partial x} \left[\rho \psi \left(\frac{\varepsilon J}{\rho} \right) \right] = -J$$

Strategy

We introduce a new unknown z(t, x) and two new parameters λ and α ; the non-linear equation for the first moment is now an advection equation and the non-linearities only appear at a right hand side:

$$\begin{pmatrix} \frac{\partial}{\partial t} & \frac{\partial}{\partial x} & 0\\ 0 & \varepsilon^2 \frac{\partial}{\partial t} & \frac{\partial}{\partial x} \\ 0 & \varepsilon^2 \lambda^2 \frac{\partial}{\partial x} & \frac{\partial}{\partial t} \end{pmatrix} \begin{pmatrix} \rho\\ J\\ z \end{pmatrix} = \begin{pmatrix} 0\\ -J\\ \frac{1}{\alpha} \left(\rho\psi(u) - z\right) \end{pmatrix}$$

with $u = \frac{\varepsilon J}{\rho}$. As $\alpha \to 0$, this system relaxes towards the original system.

(日)
Numerics for the first order closure

Diagonalization

We diagonalize it by means of a linear transformation of its unknowns ($\mu = \varepsilon \lambda$)

$$\begin{pmatrix} \rho \\ J \\ z \end{pmatrix} = \begin{pmatrix} \frac{1}{\mu^2} & \frac{1}{\mu^2} & \frac{1}{\mu^2} \\ 0 & \frac{1}{\varepsilon\mu} & -\frac{1}{\varepsilon\mu} \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} f_0 \\ f_+ \\ f_- \end{pmatrix},$$

Splitting

then apply splitting technique between the α -relaxations and the ε -relaxations:

$$\begin{pmatrix} \frac{\partial}{\partial t} & 0 & 0\\ 0 & \frac{\partial}{\partial t} + \frac{\mu}{\varepsilon} \frac{\partial}{\partial x} & 0\\ 0 & 0 & \frac{\partial}{\partial t} - \frac{\mu}{\varepsilon} \frac{\partial}{\partial x} \end{pmatrix} \begin{pmatrix} f_0\\ f_+\\ f_- \end{pmatrix} = \begin{pmatrix} -\frac{1}{\alpha} \left(\rho\psi(u) - z\right)\\ -\frac{f_+}{\varepsilon^2} + \frac{z}{2\varepsilon^2} + \frac{1}{2\alpha} \left(\rho\psi(u) - z\right)\\ -\frac{f_-}{\varepsilon^2} + \frac{z}{2\varepsilon^2} + \frac{1}{2\alpha} \left(\rho\psi(u) - z\right) \end{pmatrix}$$

Numerics for the first order closure

Diagonalization

We diagonalize it by means of a linear transformation of its unknowns ($\mu = \varepsilon \lambda$)

$$\begin{pmatrix} \rho \\ J \\ z \end{pmatrix} = \begin{pmatrix} \frac{1}{\mu^2} & \frac{1}{\mu^2} & \frac{1}{\mu^2} \\ 0 & \frac{1}{\varepsilon\mu} & -\frac{1}{\varepsilon\mu} \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} f_0 \\ f_+ \\ f_- \end{pmatrix},$$

Splitting

then apply splitting technique between the α -relaxations and the ε -relaxations:

$$\begin{pmatrix} \frac{\partial}{\partial t} & 0 & 0\\ 0 & \frac{\partial}{\partial t} + \frac{\mu}{\varepsilon} \frac{\partial}{\partial x} & 0\\ 0 & 0 & \frac{\partial}{\partial t} - \frac{\mu}{\varepsilon} \frac{\partial}{\partial x} \end{pmatrix} \begin{pmatrix} f_0\\ f_+\\ f_- \end{pmatrix} = \begin{pmatrix} -\frac{1}{\alpha} \left(\rho\psi(u) - z\right)\\ -\frac{f_+}{\varepsilon^2} + \frac{z}{2\varepsilon^2} + \frac{1}{2\alpha} \left(\rho\psi(u) - z\right)\\ -\frac{f_+}{\varepsilon^2} + \frac{z}{2\varepsilon^2} + \frac{1}{2\alpha} \left(\rho\psi(u) - z\right) \end{pmatrix}$$

Numerics for the first order closure

Stiffness in Step 1.

Step 1 is again stiff as $\varepsilon \to 0$:

$$\frac{\partial f_{\pm}}{\partial t} \pm \frac{\mu}{\varepsilon} \frac{\partial f_{\pm}}{\partial x} = -\frac{1}{\varepsilon^2} \left[f_{\pm} - \frac{z}{2} \right],$$

which means that f_{\pm} is relaxed towards $\frac{z}{2}$, so we apply the same strategy as before and split f_{\pm} into the following sum:

$$f_{\pm} = \frac{z}{2} + \varepsilon g_{\pm}$$

and follow the same calculations as before.

Numerics for the first order closure

Solving Step 1.

Developping all the computations and rewriting the system in the original variables we get:

$$\begin{split} z^{n+1/2} &= z^n + \frac{\varepsilon(1-e^{-\Delta t/\varepsilon^2})}{2} \left(\bar{\mathbb{D}}_+(z^n) + \bar{\mathbb{D}}_-(z^n) \right) + \Delta t \left[\mathbb{D}_+ \left(e^{-\Delta t/\varepsilon^2} \frac{\mu J^n}{2} \right. \\ &+ \left(1 - e^{-\Delta t/\varepsilon^2} \right) \frac{\bar{\mathbb{D}}_+(z^n)}{2} \right) + \mathbb{D}_- \left(e^{-\Delta t/\varepsilon^2} \frac{(-\mu J^n)}{2} + \left(1 - e^{-\Delta t/\varepsilon^2} \right) \frac{\bar{\mathbb{D}}_-(z^n)}{2} \right) \right] \\ J^{n+1/2} &= e^{-\Delta t/\varepsilon^2} J^n + \frac{1 - e^{-\Delta t/\varepsilon^2}}{2\mu} \left(\bar{\mathbb{D}}_+(z^n) - \bar{\mathbb{D}}_-(z^n) \right) + \frac{\Delta t}{\varepsilon\mu} \left[\mathbb{D}_+ \left(e^{-\Delta t/\varepsilon^2} \frac{\mu J^n}{2} \right) \right] \\ &+ \left(1 - e^{-\Delta t/\varepsilon^2} \right) \frac{\bar{\mathbb{D}}_+(z^n)}{2} \right) - \mathbb{D}_- \left(e^{-\Delta t/\varepsilon^2} \frac{(-\mu J^n)}{2} + \left(1 - e^{-\Delta t/\varepsilon^2} \right) \frac{\bar{\mathbb{D}}_-(z^n)}{2} \right) \right] \\ &\rho^{n+1/2} &= \rho^n + \frac{\Delta t}{\mu^2} \left(\mathbb{D}_+ \left(e^{-\Delta t/\varepsilon^2} \frac{\mu J^n}{2} + \left(1 - e^{-\Delta t/\varepsilon^2} \right) \frac{\bar{\mathbb{D}}_+(z^n)}{2} \right) \\ &+ \mathbb{D}_- \left(e^{-\Delta t/\varepsilon^2} \frac{(-\mu J^n)}{2} + \left(1 - e^{-\Delta t/\varepsilon^2} \right) \frac{\bar{\mathbb{D}}_-(z^n)}{2} \right) \right). \end{split}$$

Numerics for the first order closure

Solving Step 2.

Step 2 just involves relaxations, and no more details are given; after reconstructing the original variables we obtain

$$z^{n+1} = e^{-\Delta t/\alpha} z^{n+1/2} + (1 - e^{-\Delta t/\alpha}) \rho^{n+1/2} \psi^{n+1/2}$$

$$J^{n+1} = J^{n+1/2}$$

$$z^{n+1} = z^{n+1/2}.$$

Numerics for the first order closure

Derivatives

Discretized derivatives are subjected to upwinding and are taken in alternate directions, in order to rescue the classical three-points centered scheme for the Laplacian of the heat equation in the $(\alpha \rightarrow 0, \varepsilon \rightarrow 0)$ -scheme:

$$\begin{split} \left(\bar{\mathbb{D}}_{+}(\varphi)\right)_{i} &= -\frac{\mu}{\Delta x}\left(\varphi_{i+1}-\varphi_{i}\right) \\ \left(\mathbb{D}_{+}(\varphi)\right)_{i} &= -\frac{\mu}{\Delta x}\left(\varphi_{i}-\varphi_{i-1}\right) \\ \left(\bar{\mathbb{D}}_{-}(\varphi)\right)_{i} &= \frac{\mu}{\Delta x}\left(\varphi_{i}-\varphi_{i-1}\right) \\ \left(\mathbb{D}_{-}(\varphi)\right)_{i} &= -\frac{\mu}{\Delta x}\left(\varphi_{i+1}-\varphi_{i}\right). \end{split}$$

э

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET OOOOOOOOOOOOO
Experiments					
Outli	ine				
	Introduction				
	Introduction				
2	Numerical methods				
	• PWENO interpo	lations			
	Splitting technia	ues			
	 Linear advection 				
3	Benchmark tests				
	Vlasov with conf	ining potentia	1		
	Vlasov-Poisson	01			
4	TS-WENO for a B	ГЕ			
	Overview				
	Numerics				
	Experiments				
5	Intermediate approx	ximations			
-	Motivations				
	Asymptotic-pres	erving scheme	S		
	 Experiments 				
6	The nanoMOSFET				_
	The model				
	Numerical method	ods for the Sch	nrödinger-Poisson	block	
	• Experiments			< □ > < @ > < ≧ > < ≧	:▶ ≣ ��@

Comparison between closures

We plot here the $L^2_{t,x,v}$ -difference between the $f_{\varepsilon}(t, x, v)$ given by the kinetic scheme and the $\tilde{f}_{\varepsilon}(t, x, v)$ reconstructed from heat equation or closure schemes. As initial datum we choose a symmetric f_0 and an asymmetric f_0 :

Figure: Left: symmetric initial datum. Right: asymmetric initial datum.

A B > A B > A B >

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE 000000000	Intermediate approximations	The nanoMOSFET
Outli	ne				
0 2 3 4	Introduction Introduction Numerical methods PWENO interpo Splitting techniq Linear advection Benchmark tests Vlasov with cont Vlasov-Poisson TS-WENO for a B' Overview Numerics	i lations ues fining potentia TE	1		
6	 Experiments Intermediate approx Motivations Asymptotic-press Experiments The nanoMOSFET The model Numerical method Experiments 	ximations erving scheme ods for the Sch	es nrödinger-Poisson	block ∢□≻∢ᇋ≻∢≅≻∢	2 2 2 0 Q (*

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
The model					
The mo	del				

We afford now the simulation of a nanoscaled MOSFET.

Hybridity

x-dimension is longer than z-dimension, therefore we adopt a different description:

- along *x*-dimension electrons behave like particles, their movement being described by the Boltzmann Transport Equation;
- along *z*-dimension electrons behave like waves, moreover they are supposed to be at equilibrium, therefore their state is given by the stationary-state Schrödinger equation.

э

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE 000000000	Intermediate approximations	The nanoMOSFET
The model					
The m	odel				

Subband decomposition

Electrons in different energy levels, also called *subbands*, which corresponding to eigenvalues of the Schrödinger equation describing their state along the *z*-dimension, have to be considered independent populations, so that we have to transport them for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of the electrostatic field in the expression of the total density.

Coupling between subbands

Subbands are coupled also in the scattering operator, depending on whether we allow inter-band scattering or not.

		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
				000000000000000000000000000000000000000
The model				
The m	odel			

BTE

The Boltzmann Transport Equation (one for each band) reads

$$\frac{\partial f_p}{\partial t} + \frac{1}{\hbar} \nabla_k \epsilon_p^{kin} \cdot \nabla_k f_p - \frac{1}{\hbar} \nabla_x \epsilon_p^{pot} \cdot \nabla_k f_p = \mathcal{Q}_p f_p, \qquad f_p(t=0,x,k) = f_0(x,k).$$

Schrödinger-Poisson

The Schrödinger-Poisson block reads

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_*}\frac{d\chi_p}{dz}\right] - q\left(V + V_c\right)\chi_p = \epsilon_p^{pot}\chi_p$$

$$\{\chi_p\}_p \subseteq H_o^1(0, l_z) \text{ orthonormal basis}$$

$$-\text{div}\left[\varepsilon_R\nabla V\right] = \frac{q}{\varepsilon_0}\left(N[V] - N_D\right)$$
where here does not drive out drives

plus boundary conditions.

These two equations cannot be decoupled because we need the eigenfunctions to compute the potential (in the expression of the total density), and we need the potential to compute the eigenfunctions.

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
The model					
The mo	odel				

The collision operator

For the scope of this work, we are just using a linear relaxation-time inter-band operator; a more detailed description has not been tested yet:

$$\mathcal{Q}_{p}f_{p}(t,x,k) = \frac{1}{\tau} \left[\frac{\sum_{q} \rho_{q}(t,x)}{\sum_{r} e^{-\frac{\epsilon_{r}(t,x)}{k_{B}T_{L}}}} \mathcal{M}(k) e^{-\frac{\epsilon_{p}(t,x)}{k_{B}T_{L}}} - f_{p}(t,x,k) \right],$$

where $\mathcal{M} = \frac{\hbar^2}{2\pi k_B T_L m_*} \exp\left(\frac{\hbar^2 |k|^2}{2k_B T_L m_*}\right)$ is the Maxwellian and the relaxation time comes from the mobility μ from formula $\tau = \frac{\mu m_*}{q}$.

Band structure

The kinetic contribution to the energy-band function is taken in the parabolic approximation, therefore it does not depend on the band nor on position, which makes computations quite easier:

$$\epsilon^{kin}(k) = \frac{\hbar^2 |k|^2}{2m_* k_B T_L}.$$

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE 000000000	Intermediate approximations	The nanoMOSFET
Numerical me	thods for the Schrödinger-Poisson blo	ck			
Outli	ne				
	Textus duration				
	• Introduction				
2	Numerical methods				
	PWENO interpola	ations			
	• Splitting techniqu	es			
	Linear advection				
3	Benchmark tests				
	 Vlasov with config 	ning potentia			
	Vlasov-Poisson				
4	TS-WENO for a BT				
	Overview				
	Numerics				
	Experiments				
5	Intermediate approxi				
	Motivations				
	Asymptotic-prese	rving scheme	S		
-	Experiments				
6	The nanoMOSFET				-
	The model				
	 Numerical method 	ds for the Sch	rödinger-Poisson l	block	
	Experiments			▲□▶▲舂▶▲≧▶▲喜	▶ Ξ

			TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
					00000000000000
Numerical methods	for the Schrödinger-Poisson bl	ock			
Numer	ical metho	ds			

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_*}\frac{d\chi_p}{dz}\right] - q\left(V + V_c\right)\chi_p = \epsilon_p\chi_p$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve 1D and 2D equation like

$$-\operatorname{div}\left[\varepsilon_{R}\nabla V\right]+\int_{0}^{l_{z}}\mathcal{A}(z,\zeta)V(\zeta)d\zeta=\mathcal{B}(z).$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system is solved by means of a LAPACK routine called DGESV.

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
Numerical methods for	or the Schrödinger-Poisson bloo	:k			
Numeri	cal method	s			

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_*}\frac{d\chi_p}{dz}\right] - q\left(V + V_c\right)\chi_p = \epsilon_p\chi_p$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve 1D and 2D equation like

$$-\operatorname{div}\left[\varepsilon_{R}\nabla V\right]+\int_{0}^{l_{z}}\mathcal{A}(z,\zeta)V(\zeta)d\zeta=\mathcal{B}(z).$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system is solved by means of a LAPACK routine called DGESV.

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
Numerical methods for	or the Schrödinger-Poisson bloo	:k			
Numeri	cal method	s			

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_*}\frac{d\chi_p}{dz}\right] - q\left(V + V_c\right)\chi_p = \epsilon_p\chi_p$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve 1D and 2D equation like

$$-\operatorname{div}\left[\varepsilon_{R}\nabla V\right]+\int_{0}^{l_{z}}\mathcal{A}(z,\zeta)V(\zeta)d\zeta=\mathcal{B}(z).$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system is solved by means of a LAPACK routine called DGESV.

			TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
					000000000000000
Numerical methods f	or the Schrödinger-Poisson bl	ock			
Overvie	ew				

The Newton scheme

We seek to find the minimum of the functional P[V] leading to the Poisson equation

$$-\operatorname{div}\left(\varepsilon_{R}\nabla V\right)+\frac{q}{\varepsilon_{0}}\left(N[V]-N_{D}\right)=0$$

by means of a Newton scheme

$$dP(V^{old}, V^{new} - V^{old}) = -P[V^{old}].$$

After computing the Gâteaux-derivative of the density and developping calculations, we are led to a Poisson-like equation

$$\begin{aligned} -\operatorname{div}\left(\varepsilon_{R}\nabla V^{new}\right) &+ \frac{q}{\varepsilon_{0}}\int_{0}^{l_{z}}\mathcal{A}[V^{old}](z,\zeta)V^{new}(\zeta)d\zeta \\ &= -\frac{q}{\varepsilon_{0}}\left(N[V]-N_{D}\right) + \frac{q}{\varepsilon_{0}}\int_{0}^{l_{z}}\mathcal{A}[V^{old}](z,\zeta)V^{new}(\zeta)d\zeta. \end{aligned}$$

э

Numerical methods for the Schrödinger-Poisson block

Introduction

Discretization for the transport

Benchmark tests

Once we have developped the method for updating the band-potential energies, we can focus the attention on solving the transport. Two discretization are proposed.

Runge-Kutta

FDWENO evaluates via dimension-by-dimension approximation the derivatives $\frac{\partial p_p}{\partial x}$ and $\frac{\partial f_p}{\partial k_1}$ and is coupled with the TVD (Total Variation Diminishing) **Runge-Kutta-3** for the time discretization.

Time- & dimensional-splitting

The BTE is split into the solution of the transport and the collisions, then inside the transport we split dimensions and solve linear advection problems:

$$\frac{\partial f_p}{\partial t} + \frac{1}{\hbar} \frac{\partial \epsilon^{kin}}{\partial k_1} \frac{\partial f_p}{\partial x} - \frac{1}{\hbar} \frac{\partial \epsilon_p^{pot}}{\partial x} \frac{\partial f_p}{\partial k_1} = 0$$
$$\frac{\partial f_p}{\partial t} = Q_p f_p$$

The nanoMOSFET

Numerical methods for the Schrödinger-Poisson block

Numerical methods

Introduction

Discretization for the transport

Benchmark tests

Once we have developped the method for updating the band-potential energies, we can focus the attention on solving the transport. Two discretization are proposed.

TS-WENO for a BTE

Runge-Kutta

FDWENO evaluates via dimension-by-dimension approximation the derivatives $\frac{\partial f_p}{\partial x}$ and $\frac{\partial f_p}{\partial k_1}$ and is coupled with the TVD (Total Variation Diminishing) **Runge-Kutta-3** for the time discretization.

Time- & dimensional-splitting

The BTE is split into the solution of the transport and the collisions, then inside the transport we split dimensions and solve linear advection problems:

$$\frac{\partial f_p}{\partial t} + \frac{1}{\hbar} \frac{\partial \epsilon^{kin}}{\partial k_1} \frac{\partial f_p}{\partial x} - \frac{1}{\hbar} \frac{\partial \epsilon_p^{pot}}{\partial x} \frac{\partial f_p}{\partial k_1} = 0$$
$$\frac{\partial f_p}{\partial t} = Q_p f_p$$

The nanoMOSFET

ヘロト ヘ戸ト ヘヨト ヘヨト

Numerical methods for the Schrödinger-Poisson block

Numerical methods

Introduction

Discretization for the transport

Benchmark tests

Once we have developped the method for updating the band-potential energies, we can focus the attention on solving the transport. Two discretization are proposed.

TS-WENO for a BTE

Runge-Kutta

FDWENO evaluates via dimension-by-dimension approximation the derivatives $\frac{\partial f_p}{\partial x}$ and $\frac{\partial f_p}{\partial k_1}$ and is coupled with the TVD (Total Variation Diminishing) **Runge-Kutta-3** for the time discretization.

Time- & dimensional-splitting

The BTE is split into the solution of the transport and the collisions, then inside the transport we split dimensions and solve linear advection problems:

$$\frac{\partial f_p}{\partial t} + \frac{1}{\hbar} \frac{\partial \epsilon^{kin}}{\partial k_1} \frac{\partial f_p}{\partial x} - \frac{1}{\hbar} \frac{\partial \epsilon_p^{pot}}{\partial x} \frac{\partial f_p}{\partial k_1} = 0$$
$$\frac{\partial f_p}{\partial t} = \mathcal{Q}_p f_p$$

The nanoMOSFET

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
Outl	ine				
	Introduction				
	 Introduction 				
2	Numerical methods	S 1			
	 PWENO interpo Splitting toohnig 	lations			
	• Spitting techniq	ues			
	Bonchmark tests				
	Vlasov with con	fining potentia	1		
	Vlasov-Poisson	nning potentia	1		
	TS-WENO for a B'	TE			
	 Overview 				
	• Numerics				
	Experiments				
5	Intermediate appro-				
	Motivations				
	• Asymptotic-pres	erving scheme	S		
-	Experiments				
6	The nanoMOSFET				
	The model				UFB Distance of Bandward
	Numerical method	ods for the Sch	rödinger-Poisson	block	
	Experiments			▲日と▲圖と▲語と▲語	ト 目 のへで

Introduction 0000	Numerical methods	Benchmark tests	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET		
Experiments							
Border potential							

First of all we have to compute the border potential respecting the electrical neutrality, to use it for the border values in 1D-Schrödinger-2D-Poisson equations.

Introduction	Numerical methods	TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET
				000000000000000000000000000000000000000
Experiments				

0.3

0.28

0.26

0.24

0.22

0.2

0.18

0.16

0.14

0.12

Thermodynamical equilibrium

Potential at equilibrium

ъ

1.6e+24 1.4e+24 1.2e+24 1e+24 8e+23 6e+23 4e+23 2e+23 0

	Numerical methods		TS-WENO for a BTE	Intermediate approximations	The nanoMOSFET			
					000000000000000000000000000000000000000			
Experiments								
Long-time behavior								

We propose now some results relative to the long-time behavior of the system.

