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Introduction

Objects of the simulations

The goal of this work is a contribution to the numerical simulation of kinetic models
for electronic engineering and plasma physics.

Plasmasare ionized gases: positive, negative and neutral charges dissociate.

Electronic devicesare physical solid state devices, like semiconductors, which
exploit the electronic properties of semiconductor materials (e. g. silicon)by
manipulating their conductivity via thedoping.
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Introduction

Aspects of the modelling

Transport.

The Boltzmann Transport Equation (BTE) describes, at microscopic level, how the
charge carriers move inside the object of study:

∂f
∂t

+ v · ∇xf +
F(t, x)

m
· ∇vf = Q[f ].

Force field.

Apart from the free motion, the charge carriers may be driven by the effect of a force
field, usually of three categories:

self-consistent Poisson equation, in semiconductors;

coupled Schrödinger-Poisson equation, in nanostructures;

Lorentz force (Maxwell equations), in plasmas.

Collisions.

The charge carriers may have collisions with other carriers, with the fixedlattice or
with phonons (pseudo-particles describing the vibration of the lattice).



Introduction Numerical methods Benchmark tests TS-WENO for a BTE Intermediate approximations The nanoMOSFET

Introduction

Aspects of the modelling

Transport.

The Boltzmann Transport Equation (BTE) describes, at microscopic level, how the
charge carriers move inside the object of study:

∂f
∂t

+ v · ∇xf +
F(t, x)

m
· ∇vf = Q[f ].

Force field.

Apart from the free motion, the charge carriers may be driven by the effect of a force
field, usually of three categories:

self-consistent Poisson equation, in semiconductors;

coupled Schrödinger-Poisson equation, in nanostructures;

Lorentz force (Maxwell equations), in plasmas.

Collisions.

The charge carriers may have collisions with other carriers, with the fixedlattice or
with phonons (pseudo-particles describing the vibration of the lattice).



Introduction Numerical methods Benchmark tests TS-WENO for a BTE Intermediate approximations The nanoMOSFET

Introduction

Aspects of the modelling

Transport.

The Boltzmann Transport Equation (BTE) describes, at microscopic level, how the
charge carriers move inside the object of study:

∂f
∂t

+ v · ∇xf +
F(t, x)

m
· ∇vf = Q[f ].

Force field.

Apart from the free motion, the charge carriers may be driven by the effect of a force
field, usually of three categories:

self-consistent Poisson equation, in semiconductors;

coupled Schrödinger-Poisson equation, in nanostructures;

Lorentz force (Maxwell equations), in plasmas.

Collisions.

The charge carriers may have collisions with other carriers, with the fixedlattice or
with phonons (pseudo-particles describing the vibration of the lattice).



Introduction Numerical methods Benchmark tests TS-WENO for a BTE Intermediate approximations The nanoMOSFET

Introduction

Transport

Two categories of transport equations are used.

Microscopic models.

At kinetic level the motion is described by a probabilistic magnitudef defined in the
phase space(x, v), (x, p) or (x, k): the choice of the problem may make more suitable
the use of the velocityv instead of the impulsionp or the wave vectork.

Macroscopic models.

The system does not depend onv or p or k; the magnitude describing the evolution
just depends on time and position. Starting from the BTE, hydrodynamics or
diffusion limits give Euler, Navier-Stokes, Spherical Harmonics Expansion,
Energy-Transport or Drift-Diffusion systems.
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PWENO interpolations

Motivation

We need aPointwise interpolation method which does not add spurious oscillations
when high gradients appear, e.g. when a jump has to be transported.

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

WENO-6,4

-1.5

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

Lagrange-6

Figure:Left: PWENO interpolation. Right: Lagrange interpolation.
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PWENO interpolations

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of
Lagrange polynomial reconstructions.
We describe the case of PWENO-6,4: we take a stencil of six points and divide it into
three substencils of four points:

��
��
��
��
��
��
��
��

��
��
��
��
��
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��
��

��

S0S1
S2

S

Lagrange polynomial interpolation
is performed on the three 
substencils made of four 
points each.

The smoothness of the Lagrange
polynomials is measured along 
this segment, between the
two central points.

We want to reconstruct
the value at this point: we
take the reconstruction
of the three Lagrange 
polynomials and compute a
sensible average of them, based 
on how smooth is each.

x x x xxxx i i+1 i+2 i+3i−1i−2i−3

PWENO−6,4
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PWENO interpolations

The average

If we notepr(x) the Lagrange polynomials, PWENO reconstruction reads

pPWENO(x) = ω0(x)p0(x) + ω1(x)p1(x) + ω2(x)p2(x).

Convex combination.

The convex combination{ωr(x)}r must penalize the substencilsSr in which the
pr(x) have high derivatives.

Smoothness indicators

In order to decide which substencilsSr are “regular” and which ones are not, we have
to introduce the smoothness indicators: we use a weighted sum of theL2-norms of the
Lagrange polynomialspr(x) to measure their regularity close to the reconstruction
point x. The following smoothness indicators have been proposed by Jiang andShu:

βr = ∆x

‚

‚

‚

‚

dpr

dx

‚

‚

‚

‚

L2
(xi,xi+1)

+ ∆x3

‚

‚

‚

‚

d2pr

dx2

‚

‚

‚

‚

L2
(xi,xi+1)

+ ∆x5

‚

‚

‚

‚

d3pr

dx3

‚

‚

‚

‚

L2
(xi,xi+1)

.
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PWENO interpolations

High order reconstruction

Admit for now that the convex combination is given by the normalization
ωr(x) = ω̃r(x)

P2
s=0 ω̃s(x)

of the protoweights̃ωr(x) defined this way:

ω̃r(x) =
dr(x)

(ǫ + βr)2
.

Regular reconstruction

Suppose that all theβr are equal; then we have

ωr(x) = dr(x).

The optimal order is achieved by Lagrange reconstructionpLagrange(x) in the whole
stencilS, so if we definedr(x) to be the polynomials such that

pLagrange(x) = d0(x)p0(x) + d1(x)p1(x) + d2(x)p2(x),

then we have achieved the optimal order becausepPWENO(x) = pLagrange(x).
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PWENO interpolations

High order reconstruction

Admit for now that the convex combination is given by the normalization
ωr(x) = ω̃r(x)

P2
s=0 ω̃s(x)

of the protoweights̃ωr(x) defined this way:

ω̃r(x) =
dr(x)

(ǫ + βr)2
.

High gradients

Otherwise, suppose for instance thatβ0 is high order than the other ones: in this case
S0 is penalized and most of the reconstruction is carried by the other more “regular”
substencils.
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Splitting techniques

Motivation

In this work, splitting techniques are used at different levels, namely:

to split the Boltzmann Transport Equation into the solution of thetransport part
and thecollisional partfor separate, i.e. theTime Splitting :

∂f
∂t

+ v · ∇xf + F · ∇vf = Q[f ]

splits into

∂f
∂t

+ v · ∇xf + F · ∇vf = 0,
∂f
∂t

= Q[f ];

to split the(x, v)-phase space in a collisionless context (Dimensional
Splitting ):

∂f
∂t

+ v · ∇xf + F · ∇vf = 0

splits into

∂f
∂t

+ v · ∇xf = 0,
∂f
∂t

+ F · ∇vf = 0.
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Splitting techniques

General framework

The (formal) exact solution of the linear PDE

∂f
∂t

= Lf , f (t = 0) = f 0

is

f (t) = eLtf 0.

If we can write the linear operatorL as the sum of two linear operators,

L = L1 + L2,

then we may approximate the exact solution by solving for separate

∂f
∂t

= L1f and
∂f
∂t

= L2f .

Several schemes are proposed for reconstructing the solution of the original PDE
from the solution of either blocks; a first order (in time) scheme is given by

f̃ (t + ∆t) = eL2∆teL1∆tf (t),

while a second order (in time) scheme is given by

f̃ (t + ∆t) = eL1
∆t
2 eL2∆teL1

∆t
2 f (t).
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while a second order (in time) scheme is given by

f̃ (t + ∆t) = eL1
∆t
2 eL2∆teL1

∆t
2 f (t).
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Linear advection

Linear advection

We propose two schemes for solving the linear advection

∂f
∂t

+ v
∂f
∂x

= 0 :

Semi-Lagrangian:

Directly integrate backward in the characteristic

tn+1

t n

x i−1
x i+1

x i+1x i−1

x i

x i

n n+1X(t    ;t      ,x   )i
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Linear advection

Linear advection

Flux Balance Method:

Total mass conservation is forced. It is based on the idea of following backward the
characteristics, but integral values are taken instead of point values:

tn+1

t n

x i−1
x i+1x i

i−1/2x i+1/2x

the average along the purple segment
plus the average along the blue segment

minus the average along the green segment

x x

the characteristics backward.

FLUX BALANCE METHOD means evualuating
the flux at time t       from a balance ofn+1

fluxes at previous time t   : n

The averages along the red segments
are the same, because we have followed
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Vlasov with confining potential

The system

We solve a Vlasov equation withgiven potentialand alinear relaxation-time operator
as collision operator by time (linear) splitting to decouple the Vlasov part and the
Boltzmann part, and recursively dimensional splitting to divide thex-advection from
thev-advection:

∂f
∂t

+ v
∂f
∂x

−
d
“

x2

2

”

dx
∂f
∂v

=
1
τ

»

1
π

e−
v2
2 ρ − f

–

, f (0, x) = f0(x).

We expect the solution to rotate (due to the Vlasov part and the potential) and to
converge to anequilibrium(due to collisions) given by

fs =
mass(f )

π2
exp

„

− x2 + v2

2

«

.
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Vlasov with confining potential

Setting up initial conditions

We perform tests with three initial conditions, more or less close to the equilibrium;
the relaxation time is setτ = 3.5:

f (1)
0 = Z1 sin2

“ x
2

”

e−
x2+v2

2

f (2)
0 = Z2 sin2

“ x
2

”

sin2
“ v

2

”

e−
x2+v2

2

f (3)
0 = Z3

h

1 + 0.05 sin2
“ x

2

”i

e−
x2+v2

2 .

Entropies

Theglobalandlocal relative entropies are defined this way:

H[f ; fs] =

Z

R

Z

R

|f − fs|2
fs

dvdx

H̃[f ; ρM1] =

Z

R

Z

R

|f − ρM1|2
fs

dvdx.
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Vlasov-Poisson

Two-stream instability

The problem

We set the problem in a collisionless context. Theforce fieldis self-consistently
computed through aPoisson equation. Equations are normalized, periodic boundary
conditions are taken for both the transport and the potential.

∂f
∂t

+ v
∂f
∂x

−∂Φ

∂x
∂f
∂v

= 0

∂2Φ

∂x2
= 1−

Z

R

fdv

f (t = 0, x, v) = feq(v)

»

1 + 0.01

„

cos(2kx) + cos(3kx)
1.2

+ cos(kx)

«–

.

As initial condition, we perturb the equilibrium-state given by

feq(v) = K(1 + v2)e−
v2
2 ,

K being a normalization factor.
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Overview

The model

We describe via the Boltzmann Transport Equation the transport/collision in an
electronic device

∂f
∂t

+
1
~
∇kε · ∇xf − q

~
E · ∇kf = Q[f ]

∆Φ =
q
ǫ0

[ρ[f ] − ND] , E = −∇xΦ

f0(x, k) = ND(x)M(k),

where the band structure is given in the parabolic approximation

ε(k) =
~

2|k|2
2m∗

,

m∗ being the Silicon effective mass.
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Overview

The collision operator

The collision operator takes into account the scattering of the carriers withacoustic
phonons, in the elastic approximation, and withoptical phonons, with a single
frequencyω. Therefore the operator reads, in the low-density approximation:

Q[f ] =

Z

R3

ˆ

S(k′, k)f (t, x, k′) − S(k, k′)f (t, x, k)
˜

dk′,

where the scattering rate is given by

S(k, k′) = K
ˆ

(nq + 1)δ(ǫ(k′) − ǫ(k) + ~ω) + nqδ(ǫ(k′) − ǫ(k) − ~ω)
˜

+ K0δ(ǫ(k′) − ǫ(k)).
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Numerics

Adimensionalization

The system is reduced to dimensionless magnitudes in order to improve numerical
results by making the computer perform calculations on numbers of order 1. Then
splitting schemes are applied to solve for separate transport and collision,and
dimensional splitting is applied to separatex-dimension fromk1-dimension.

adim. parameter 400 nm device 50 nm device

k̃ = k∗k k∗ =
√

2m∗kBTL
~

4.65974× 108m−1 4.65974× 108m−1

x̃ = l∗x l∗ = device length 1 µm 250nm
t̃ = t∗t t∗ = typical time 1 ps = 10−12s 1 ps = 10−12s
Ṽ(x̃) = V∗V(x) V∗ = typical Vbias 1V 1V
Ẽ(x̃) = E∗E(x) E∗ = 1

10
V∗

l∗ 100000Vm−1 400000Vm−1

ε̃(k̃) = ε∗ε(k) ǫ∗ = ~
2k∗2

2m∗ 4.14195e − 21 4.14195e − 21

ρ̃(x̃) = ρ∗ρ(x) ρ∗ =
“

2m∗kBTL
~

”3/2
1.01178× 1026 1.01178× 1026

j̃(x̃) = j∗j(x) j∗ = 1
l∗2t∗

1024 1.6× 1025

ũ(x̃) = u∗u(x) u∗ = l∗

t∗ 106 250000
W̃(x̃) = W∗W(x) W∗ = (l∗/t∗)2 1012 6.25× 1010

.
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Numerics

Collision integraion

The solution of the collisions is achieved when we are able to solve the following
integrals (in dimensionless units):

Q+[f ] = c0π

Z

√
γ0(k)

−
√

γ0(k)
f

„

k′1,
q

γ0(k) − k′21

«

dk′1

+ c+π

Z

√
γ+(k)

−
√

γ+(k)
f

„

k′1,
q

γ+(k) − k′21

«

dk′1

+ χ{γ−(k)>0}c−π

Z

√
γ−(k)

−
√

γ−(k)
f

„

k′1,
q

γ−(k) − k′21

«

dk′1

with γ0(k) = ε(k), γ+(k) = ε(k) +
hω

ε∗
, γ−(k) = ε(k) − ~ω

ε∗
, and

Q−[f ] = c02π
p

γ0(k)f (k) + χ{γ−(k)>0}c+2π
p

γ−(k)f (k) + c−2π
p

γ+(k)f (k).
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Numerics

Collision integraion

For integrating along the[−√
γ,

√
γ]-segment following a semicircle in the

“

k1,
p

k2
2 + k2

3

”

-plane, we have adopted as strategy a plain linear interpolation using

the values of the two nearest points along the vertical lines. Other more sofisticated
strategies have not significantly improved the results.

k1 k1

k23
k23

m+1

m+2

m

m−1

lfifi−1 fi+1 fi+2

SS

S

S

0

0

1

1

U

L R

D

l

m

m+1

fi fi+1
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Experiments

Multifrequency phonons

We present the results relative to a device where phonons are not single-frequency:
the structure of the solver allows an easy implementation of such model.
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Motivations

Setting the problem

Kinetic equation.

Consider the following problem: take thetransport equation

ε
∂fε
∂t

+ v
∂fε
∂x

=
1
ε

„

1
2

Z 1

−1
fεdv − fε

«

with (t, x, v) ∈ [0, T] × R × [−1, 1], completed by initial and boundary conditions.

Diffusive limit.

As ε → 0, fε relaxes to theheat equation

∂ρ

∂t
− 1

3
∂2ρ

∂x2
= 0.

Drawbacks.

The heat equation is notv-dependent: no microscopic feature.

The heat equation transport information at infinite velocity, the transport
equation atO

`

1
ε

´

velocity.
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Motivations

Approximations

TheP1-approximation

By truncating the Hilbert expansion inε of fε

fε = F0 + εF1 + ε2F2 + ...

at first order we obtain theP1-approximation:

fε ≈ ρ(t, x) − εv
∂ρ

∂x
.

Drawbacks

TheP1-approximation is not non-negative.

As well as in heat equation, information is transported at infinite velocity.
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Motivations

Moment equations

Moments

Define the zeroth, first and second moment by
0

@

ρε

Jε

Pε

1

A =
1
2

Z 1

−1

0

@

1
v/ε
v2

1

A fεdv.

Moment equations

Integrating the kinetic equation, we obtain the moment equations

∂ρε

∂t
+

∂Jε

∂x
= 0

ε2 ∂Jε

∂t
+

∂Pε

∂x
= −Jε,

which need someclosure strategy, thekth-moment equation being dependent on the
(k + 1)th-moment.
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Motivations

Closures

Two closures were proposed, one at zero-th order and one at firstorder.

Zero-th order closure

By truncating the modified Hilbert expansion

fε = exp
“

a0 + εa1 + ε2a2 + ...
”

at first order, and injecting the obtained approximation

f̃ε(t, x, v) =
ρ(t, x)
Z(t, x)

e−εv
∂ρ
∂x
ρ

(t,x)

into the zero-th moment equation, we obtain the following system:

∂ρ

∂t
− ∂

∂x

"

ρ

ε
G

 

ε
∂ρ
∂x

ρ

!#

= 0,

where

Z(t, x) is a normalizing factor for the densityρ(t, x);

G(x) = coth(x) − 1
x .
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Motivations

Closures

First order closure

The first order closure comes from an Entropy Minimization Principle; it leads to the
following system:

∂ρ

∂t
+

∂J
∂x

= 0

ε2 ∂J
∂t

+
∂

∂x

»

ρψ

„

εJ
ρ

«–

= −J

and the microscopic approximation is reconstructed by

f̃ε(t, x, v) = ρ(t, x)
exp
h

vG
(−1)

“

εJ
ρ(t,x)

”i

F ◦ G(−1)
“

εJ
ρ(t,x)

” ,

where

F(x) = sinh(x)
x ;

ψ(x) = F
′′

F

“

G
(−1)(x)

”

.
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Asymptotic-preserving schemes

Kinetic equation

We propose a splitting scheme for solving the kinetic equation

∂fε
∂t

+ v
∂fε
∂x

=
1
ε

„

1
2

Z 1

−1
fεdv − fε

«

without need of mesh-resolving parameterε as it tends to zero.

Decomposition

Split fε into itsmean valueplusfluctuations:

fε = ρε + εgε

=
1
2

Z 1

−1
fεdv + εgε.

Splitting

Step (i)
∂fε
∂t

=
1
ε2

(ρε − fε) −
v
ε

∂ρε

∂x
,

∂gε

∂t
= − 1

ε2

„

gε + v
∂ρε

∂x

«

Step (ii)
∂fε
∂t

+ v
∂gε

∂x
= 0,

∂gε

∂t
= 0.
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Splitting

Step (i)
∂fε
∂t

=
1
ε2

(ρε − fε) −
v
ε

∂ρε

∂x
,

∂gε

∂t
= − 1

ε2

„

gε + v
∂ρε

∂x

«

Step (ii)
∂fε
∂t

+ v
∂gε

∂x
= 0,

∂gε

∂t
= 0.
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Asymptotic-preserving schemes

Kinetic equation

We drop the notation of theε-dependency and resume the scheme in the following
steps: knowingf n, gn andρn

Step (i)

update[Step (i)a] f :

f n+1/2
i,j = e−

∆t
ε2 f n

i,j +
“

1− e−
∆t
ε2

”

ρn
i

update[Step (i)b] g:

gn+1/2
i,j = e−

∆t
ε2 gn

i,j +
“

1− e−
∆t
ε2

”

D̄jρ
n
i

update[Step (i)c] ρ:

ρ
n+1/2
i = ρn

i



Introduction Numerical methods Benchmark tests TS-WENO for a BTE Intermediate approximations The nanoMOSFET

Asymptotic-preserving schemes

Kinetic equation

Step (ii)

update[Step (ii)a] f :

f n+1
i,j = f n+1/2

i,j + ∆tDjg
n+1/2
i,j

update[Step (ii)b] g:

gn+1
i,j = gn+1/2

i,j

update[Step (iii)c] ρ by a right-rectangluar rule:

ρn+1
i =

∆v
2

j−2
X

j=0

f n+1
i,j
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Asymptotic-preserving schemes

Kinetic equation

Derivatives

The discrete derivatives are defined in alternate direction under the upwinding
constraint, for the sake of stability (for rescuing the usual three-point centered
scheme of the Laplacian):

[Djϕ]i =
1

∆x



−vj (ϕi − ϕi−1) if vj > 0
−vj (ϕi+1 − ϕi) if vj < 0

ˆ

D̄jϕ
˜

i
=

1
∆x



−vj (ϕi+1 − ϕi) if vj > 0
−vj (ϕi − ϕi−1) if vj < 0
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Asymptotic-preserving schemes

Numerics for the first order closure

We recall the first order closure (droppingε-dependency):

∂ρ

∂t
+

∂J
∂x

= 0

ε2 ∂J
∂t

+
∂

∂x

»

ρψ

„

εJ
ρ

«–

= −J

Strategy

We introduce a new unknownz(t, x) and two new parametersλ andα; the non-linear
equation for the first moment is now an advection equation and the non-linearities
only appear at a right hand side:

0

@

∂
∂t

∂
∂x 0

0 ε2 ∂
∂t

∂
∂x

0 ε2λ2 ∂
∂x

∂
∂t

1

A

0

@

ρ
J
z

1

A =

0

@

0
−J

1
α

(ρψ(u) − z)

1

A ,

with u = εJ
ρ

. As α → 0, this system relaxes towards the original system.
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Asymptotic-preserving schemes

Numerics for the first order closure

Diagonalization

We diagonalize it by means of a linear transformation of its unknowns (µ = ελ)

0

@

ρ
J
z

1

A =

0

@

1
µ2

1
µ2

1
µ2

0 1
εµ

− 1
εµ

0 1 1

1

A

0

@

f0
f+
f−

1

A ,

Splitting

then apply splitting technique between theα-relaxations and theε-relaxations:

0

@

∂
∂t 0 0
0 ∂

∂t + µ
ε

∂
∂x 0

0 0 ∂
∂t −

µ
ε

∂
∂x

1

A

0

@

f0
f+
f−

1

A =

0

@

− 1
α

(ρψ(u) − z)
− f+

ε2 + z
2ε2 + 1

2α
(ρψ(u) − z)

− f−
ε2 + z

2ε2 + 1
2α

(ρψ(u) − z)

1

A .
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Asymptotic-preserving schemes

Numerics for the first order closure

Diagonalization

We diagonalize it by means of a linear transformation of its unknowns (µ = ελ)

0

@

ρ
J
z

1

A =

0

@

1
µ2

1
µ2

1
µ2

0 1
εµ

− 1
εµ

0 1 1

1

A

0

@

f0
f+
f−

1

A ,

Splitting

then apply splitting technique between theα-relaxations and theε-relaxations:

0

@

∂
∂t 0 0
0 ∂

∂t + µ
ε

∂
∂x 0

0 0 ∂
∂t −

µ
ε

∂
∂x

1

A

0

@

f0
f+
f−

1

A =

0

@

− 1
α

(ρψ(u) − z)
− f+

ε2 + z
2ε2 + 1

2α
(ρψ(u) − z)

− f−
ε2 + z

2ε2 + 1
2α

(ρψ(u) − z)

1

A .
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Asymptotic-preserving schemes

Numerics for the first order closure

Stiffness inStep 1.

Step 1is again stiff asε → 0:

∂f±
∂t

± µ

ε

∂f±
∂x

= − 1
ε2

h

f± − z
2

i

,

which means thatf± is relaxed towardsz2 , so we apply the same strategy as before
and splitf± into the following sum:

f± =
z
2

+ εg±

and follow the same calculations as before.
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Asymptotic-preserving schemes

Numerics for the first order closure

SolvingStep 1.

Developping all the computations and rewriting the system in the original variables
we get:

zn+1/2 = zn + ε(1−e−∆t/ε2
)

2

`

D̄+(zn) + D̄−(zn)
´

+ ∆t
h

D+

“

e−∆t/ε2 µJn

2

+(1− e−∆t/ε2
)

D̄+(zn)

2

”

+ D−
“

e−∆t/ε2 (−µJn)
2 + (1− e−∆t/ε2

)
D̄−(zn)

2

”i

Jn+1/2 = e−∆t/ε2
Jn + 1−e−∆t/ε2

2µ

`

D̄+(zn) − D̄−(zn)
´

+ ∆t
εµ

h

D+

“

e−∆t/ε2 µJn

2

+(1− e−∆t/ε2
)

D̄+(zn)

2

”

− D−
“

e−∆t/ε2 (−µJn)
2 + (1− e−∆t/ε2

)
D̄−(zn)

2

”i

ρn+1/2 = ρn + ∆t
µ2

“

D+

“

e−∆t/ε2 µJn

2 + (1− e−∆t/ε2
)

D̄+(zn)

2

”

+ D−
“

e−∆t/ε2 (−µJn)
2 + (1− e−∆t/ε2

)
D̄−(zn)

2

””

.
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Asymptotic-preserving schemes

Numerics for the first order closure

SolvingStep 2.

Step 2just involves relaxations, and no more details are given; after reconstructing
the original variables we obtain

zn+1 = e−∆t/αzn+1/2 + (1− e−∆t/α)ρn+1/2ψn+1/2

Jn+1 = Jn+1/2

zn+1 = zn+1/2.
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Asymptotic-preserving schemes

Numerics for the first order closure

Derivatives

Discretized derivatives are subjected to upwinding and are taken in alternate
directions, in order to rescue the classical three-points centered scheme for the
Laplacian of the heat equation in the(α → 0, ε → 0)-scheme:

`

D̄+(ϕ)
´

i
= − µ

∆x
(ϕi+1 − ϕi)

(D+(ϕ))i = − µ

∆x
(ϕi − ϕi−1)

`

D̄−(ϕ)
´

i
=

µ

∆x
(ϕi − ϕi−1)

(D−(ϕ))i =
µ

∆x
(ϕi+1 − ϕi) .
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Experiments

Comparison between closures

We plot here theL2
t,x,v-difference between thefε(t, x, v) given by the kinetic scheme

and thẽfε(t, x, v) reconstructed from heat equation or closure schemes. As initial
datum we choose a symmetricf0 and an asymmetricf0:

f0(x, v) =

8

<

:

2 −0.5 ≤ x ≤ 0.5 and − 0.75≤ v ≤ 0.25 for the asymmetric i. d.
2 −0.5 ≤ x ≤ 0.5 and − 0.5 ≤ v ≤ 0.5 for the symmetric i. d.
1 otherwise

Figure:Left: symmetric initial datum. Right: asymmetric initial datum.
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The model

The model

We afford now the simulation of a nanoscaled MOSFET.
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 drainsource

gate

gate

channel

SiO   layers2

Hybridity

x-dimension is longer thanz-dimension, therefore we adopt a different description:

alongx-dimensionelectrons behave likeparticles, their movement being
described by the Boltzmann Transport Equation;

alongz-dimensionelectrons behave likewaves, moreover they are supposed to
be at equilibrium, therefore their state is given by the stationary-state
Schrödinger equation.
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The model

The model

Subband decomposition

Electrons in different energy levels, also calledsubbands, which corresponding to
eigenvalues of the Schrödinger equationdescribing their state along thez-dimension,
have to be considered independent populations, so that we have to transport them for
separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of
the electrostatic field in the expression of the total density.

Coupling between subbands

Subbands are coupled also in the scattering operator, depending on whether we allow
inter-band scattering or not.
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The model

The model

BTE

The Boltzmann Transport Equation (one for each band) reads

∂fp

∂t
+

1
~
∇kǫ

kin
p · ∇kfp −

1
~
∇xǫ

pot
p · ∇kfp = Qpfp, fp(t = 0, x, k) = f0(x, k).

Schrödinger-Poisson

TheSchrödinger-Poisson blockreads

−~
2

2
d
dz

»

1
m∗

dχp

dz

–

− q (V + Vc) χp = ǫpot
p χp

{χp}p ⊆ H1
o(0, lz) orthonormal basis

−div [εR∇V] =
q
ε0

(N[V] − ND)

plus boundary conditions.

These two equations cannot be decoupled because we need the eigenfunctions to
compute the potential (in the expression of the total density), and we need the
potential to compute the eigenfunctions.
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The model

The model

The collision operator

For the scope of this work, we are just using a linear relaxation-time inter-band
operator; a more detailed description has not been tested yet:

Qpfp(t, x, k) =
1
τ

2

4

P

q ρq(t, x)
P

r e
− ǫr(t,x)

kBTL

M(k)e
− ǫp(t,x)

kBTL − fp(t, x, k)

3

5 ,

whereM = ~
2

2πkBTLm∗

exp
“

~
2|k|2

2kBTLm∗

”

is the Maxwellian and the relaxation time

comes from the mobilityµ from formulaτ = µm∗

q .

Band structure

The kinetic contribution to the energy-band function is taken in the parabolic
approximation, therefore it does not depend on the band nor on position, which
makes computations quite easier:

ǫkin(k) =
~

2|k|2
2m∗kBTL

.
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Numerical methods for the Schrödinger-Poisson block

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

−~
2

2
d
dz

»

1
m∗

dχp

dz

–

− q (V + Vc) χp = ǫpχp

is discretized by alternate finite differences for the derivatives then the symmetric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve 1D and 2D equation like

−div [εR∇V] +

Z lz

0
A(z, ζ)V(ζ)dζ = B(z).

The derivatives are discretized by finite differences in alternate directions, the
integral is computed via trapezoid rule and the linear system is solved by means of a
LAPACK routine called DGESV.
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Numerical methods for the Schrödinger-Poisson block

Overview

The Newton scheme

We seek to find the minimum of the functionalP[V] leading to the Poisson equation

−div (εR∇V) +
q
ε0

(N[V] − ND) = 0

by means of a Newton scheme

dP(Vold, Vnew − Vold) = −P[Vold].

After computing the Gâteaux-derivative of the density and developping calculations,
we are led to a Poisson-like equation

−div (εR∇Vnew) +
q
ε0

Z lz

0
A[Vold](z, ζ)Vnew(ζ)dζ

= − q
ε0

(N[V] − ND) +
q
ε0

Z lz

0
A[Vold](z, ζ)Vnew(ζ)dζ.
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Numerical methods for the Schrödinger-Poisson block

Discretization for the transport

Once we have developped the method for updating the band-potential energies, we
can focus the attention on solving the transport. Two discretization are proposed.

Runge-Kutta

FDWENO evaluates via dimension-by-dimension approximation the derivatives ∂fp
∂x

and ∂fp
∂k1

and is coupled with the TVD (Total Variation Diminishing)Runge-Kutta-3
for the time discretization.

Time- & dimensional-splitting

The BTE is split into the solution of the transport and the collisions, then inside the
transport we split dimensions and solve linear advection problems:

∂fp

∂t
+

1
~

∂ǫkin

∂k1

∂fp

∂x
− 1

~

∂ǫpot
p

∂x
∂fp

∂k1
= 0

∂fp

∂t
= Qpfp.



Introduction Numerical methods Benchmark tests TS-WENO for a BTE Intermediate approximations The nanoMOSFET

Numerical methods for the Schrödinger-Poisson block

Discretization for the transport

Once we have developped the method for updating the band-potential energies, we
can focus the attention on solving the transport. Two discretization are proposed.

Runge-Kutta

FDWENO evaluates via dimension-by-dimension approximation the derivatives ∂fp
∂x

and ∂fp
∂k1

and is coupled with the TVD (Total Variation Diminishing)Runge-Kutta-3
for the time discretization.

Time- & dimensional-splitting

The BTE is split into the solution of the transport and the collisions, then inside the
transport we split dimensions and solve linear advection problems:

∂fp

∂t
+

1
~

∂ǫkin

∂k1

∂fp

∂x
− 1

~

∂ǫpot
p

∂x
∂fp

∂k1
= 0

∂fp

∂t
= Qpfp.



Introduction Numerical methods Benchmark tests TS-WENO for a BTE Intermediate approximations The nanoMOSFET

Numerical methods for the Schrödinger-Poisson block

Discretization for the transport

Once we have developped the method for updating the band-potential energies, we
can focus the attention on solving the transport. Two discretization are proposed.

Runge-Kutta

FDWENO evaluates via dimension-by-dimension approximation the derivatives ∂fp
∂x

and ∂fp
∂k1

and is coupled with the TVD (Total Variation Diminishing)Runge-Kutta-3
for the time discretization.

Time- & dimensional-splitting

The BTE is split into the solution of the transport and the collisions, then inside the
transport we split dimensions and solve linear advection problems:

∂fp

∂t
+

1
~

∂ǫkin

∂k1

∂fp

∂x
− 1

~

∂ǫpot
p

∂x
∂fp

∂k1
= 0

∂fp

∂t
= Qpfp.



Introduction Numerical methods Benchmark tests TS-WENO for a BTE Intermediate approximations The nanoMOSFET

Experiments

Outline
1 Introduction

Introduction
2 Numerical methods

PWENO interpolations
Splitting techniques
Linear advection

3 Benchmark tests
Vlasov with confining potential
Vlasov-Poisson

4 TS-WENO for a BTE
Overview
Numerics
Experiments

5 Intermediate approximations
Motivations
Asymptotic-preserving schemes
Experiments

6 The nanoMOSFET
The model
Numerical methods for the Schrödinger-Poisson block
Experiments



Introduction Numerical methods Benchmark tests TS-WENO for a BTE Intermediate approximations The nanoMOSFET

Experiments

Border potential

First of all we have to compute the border potential respecting the electrical
neutrality, to use it for the border values in 1D-Schrödinger-2D-Poisson equations.
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Long-time behavior

We propose now some results relative to the long-time behavior of the system.
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