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Introduction

The goal of this work is to devise new numerical schemes to simulate two
kinds of objects:

• An electronic device is a physical solid state device. It has a fixed
electronic lattice, where impurities are injected in order to modify its
electric properties. A standard semiconductor is made of Silicon, which
is a tetravalent atom and might be doped by injecting Phosphoros (P )
or Arsenic (As) to obtain a negative doping (there is an excess of free
electrons), or by injecting Boron (B), which is electron-deficient (it
possesses a vacant p-orbital), to obtain a positive doping: a sort of
excess of positive charges is produced, which is in fact an excess of
electron holes. To give an idea of the dimensions of the doping phe-
nomenon, in 1 cm3 of Silicon there are order 1024 atoms; a low doping
means injecting 1013 atoms per cm3, while a high doping 1020 atoms
per cm3.
Commercial electronic devices such as MOSFETs, MESFETs, pn-
junctions and diodes are based on several semiconductors: Silicon (Si),
Galium Arsenide (GaAs), Silicon Carbide (SiC),...; with different dop-
ings. The doping of semiconductors is essential in order to create a
potential barrier high enough to induce an electron current.

• A plasma is a ionized gas, where the electrons of the most external
orbits are separated from the atom. Plasma is the fourth state of
matter after gas, and is obtained by warming it 106 − 108 Celsius
degrees: a dissociation between positive, negative and neutral charges
happens. 99% of the matter is made of plasmas. They are commonly
used in fluorescent lamps and neon signs, and are a central point of
research in fusion energy.

The numerical schemes and simulations have four main aspects to model
and combine:

• Vlasov ’s operator, for the kinetic description of the motion of the car-
riers under the effects of a positional force field F and the free motion.
As a huge number of particles is involved, a dynamical description is
unrealizable and must be replaced by a probabilistic description.

v
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• Poisson’s equation, for the computation of both the auto-consistent
and the external electric potential.

• Boltzmann’s operator, for the description of collisional models: we
suppose the particles to have interactions, called collisions, with the
other particles or with the fixed lattice.

• Maxwell ’s equations, for the electro-magnetic coupling and the com-
putation of magnetic fields.

The main properties of these equations are reviewed in Chapter 1.
A central instrument for both solving the advection part (i.e. perform-

ing a time step in Vlasov’s equation) and for the coupling of Vlasov’s and
Boltzmann’s equations is Strang’s splitting scheme, which was originally in-
troduced in 1976 by Cheng and G. Knorr

timesplitting
[7] based on a Strang’s article

appeared in 1968: the performance of a time step in a 2-dimensional system
is reduced to the solution in either direction (at intermediate steps) and to
a suitable recombination of the results. For instance, the advection step is
obtained by performing a ∆t

2 -time step in x-direction, then a ∆t-time step
in v-direction, and finally a ∆t

2 -time step in x-direction. These issues will
be dealt within Chapters 3 and 4 in detail.

Several problems might appear during the numerical computation. One
of them is called filamentation of the phase space: this word means the for-
mation of strong gradients and oscillations (see Figure

fi
where an example

is shown) in the (x, v)-space. This is a physical phenomenon, essential in
the evolution of Vlasov-based models, and must be treated using numerical
methods which take it into account in the ”cleanest” way.
The numerical scheme must not add spurious oscillations, numerical, non-
physical phenomena. Lagrange interpolation polynomials do not behave
in a proper way: even if they provide a very accurate reconstruction for
smooth functions, when high gradients appear (which is the case of al-
most all the simulations of Vlasov-Maxwell models) they produce noise in
a non-acceptable quantity. We propose to replace Lagrange interpolation
by WENO (Weighted Essentially Non Oscillatory) interpolation methods,
developed to control the total variation of the interpolation. This interpo-
lation procedure is introduced, developed and adapted to our purposes in
Chapter 2.

We should also be careful about the conservation or monotone evolution

of magnitudes like the Lp norms, the total energy and the entropy. In this
sense, we shall expose advantages and disadvantages of Semi-Lagrangian
methods with respect to Flux Balance methods. Both methods are proposed
for advection equations and thus, by splitting, for Vlasov’s like models in
Chapter 3.

The main tests we consider are the relaxation to equilibrium in a linear
Vlasov-Boltzmann equation, the 1D-Landau damping and a laser-plasma
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interaction. This is the objective of the final Chapter 5.
The first test is used to check that the numerical scheme give the ex-

pected known results about the speed of convergence towards equilibrium
in simple linear collisional models in charge particle transport subjected to
external forces.

The second one is a Vlasov-Poisson system where wild gradients occur
due to the filamentation: we shall check whether the method takes it into
account and is able to properly treat it without creating numerical oscilla-
tions. Moreover, we expect from the theory that the electric energy has an
initial exponential decay followed by a stationary regime, and that the total
energy is conserved, as well as the L1 and L2 norms.

The third test is a simplified quasi-relativistic Vlasov-Maxwell system,
where violent oscillations appear: the method shall not add spurious oscil-
lations and conserve the total energy (given by kinetic and potential part of
both the electrostatic and the magnetic fields).
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Figure 1: The filamentation of the phase space in Landau damping.



Chapter 1

Kinetic equations in charged

particles transport

The fundamental instrument used to describe the motion of charged particles
in an electronic device or a plasma is Vlasov’s equation. In this chapter, we
shall introduce this kinetic equation and the other operators and equations
we need to compute electric potentials (Poisson’s equation), to describe col-
lisional models (Boltzmann’s operator) and to couple and compute electric
and magnetic phenomena (Maxwell’s equations). Thereafter, we shall re-
view the state of the art regarding the existence and uniqueness of solutions
for Vlasov’s like systems and their main qualitative properties. To conclude,
we shall introduce some models we are going to focus on in next chapters.

1.1 Vlasov’s and Poisson’s equations

1.1.1 Vlasov’s equation

The Vlasov equation











∂f

∂t
+ v · ∇xf + F · ∇vf = 0

f(0, x, v) = f0(x, v)

(1.1) liouv

is a probabilistic description of the the flow of charged particles which, sub-
jected to a force field per unit mass F (t, x) and given the initial distribution
f0(x, v), satisfy the fundamental laws of classical Newton mechanics















dx

dt
= v

d2x

dt2
= F (t, x).

(1.2) classmech

1
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x

x

We impose f to be
constant along the

curves.

(x,v)

(X(t;s,x),V(t;s,v))

time t

time s

characteristic

Figure 1.1: Vlasov’s equation comes from imposing this condition of f . fconstchar

The function f(t, x, v) describes the number density of particles at posi-
tion x ∈ Ω ⊂ R

N with velocity v ∈ R
N at time t ≥ 0. In some cases,

the velocity variable v will be replaced by another parameter identifying
the state of the particles, like the momentum p or the wave vector k. For
instance, wave vector variables are more adapted when talking about inter-
actions that are modelled through quantum mechanics, they are related by
De Broglie’s identity p = mv = hk in simplified models of the energy-band
for semiconductors.

Derivation of Vlasov’s equation

Vlasov’s equation (
liouv
1.1), also called Liouville’s equation, comes from impos-

ing that the probability function f(t, x, v) is constant along the characteristic
curves of the system







































d

dt
X (t; s, x) = v

d

dt
V(t; s, v) = F

X (s; s, x) = x

V(s; s, v) = v,

i.e. by imposing for any arbitrary time s, position x and velocity v, that

d

dt
f [t,X (t; s, x),V(t; s, v)] = 0,

as we see in Figure
fconstchar
1.1.
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1.1.2 Poisson’s equation

In order to compute both the self-consistent and the external potential,
Poisson’s equation is used: given the density

ρ(x) =

∫

RN

f(t, x, v) dv

and, if the case, an external density next(x) which might be a stabilizing
term (background ion density in a plasma) or the doping profile (impurities
added to a semiconductor material), Poisson’s equation returns the electric
potential inside our object given by

ǫ0∆xΦ = e
[

next − ρ
]

, x ∈ Ω

where ǫ0 is the electric permittivity of the material and e the elementary
charge. The electric field E is obtained from the potential, E = −∇xΦ.

Poisson’s equation has to be equipped with boundary conditions. Pe-
riodic boundary conditions for the potential and the electric field on a N -
dimensional cube, Ω = [0, L]N , are standard in plasmas since they imply
neutrality of the charged particles ensemble, i.e.,

∫

Ω
next(x) dx =

∫

Ω
ρ(t, x) dx,

for all times. In semiconductors, the electron current is produced due to
a potential drop applied to the device, and thus we should solve Poisson’s
equation with fixed potential values at the contacts and homogeneous Neu-
mann conditions on the insulating boundaries.

In case we do not consider any other force acting on particles, the force
field on Vlasov’s equation will be obtained for the self-consistent electric
field E from Poisson’s equation and an eventual external potential Φext(x)
acting on the system, and thus F (t, x) = e

m

[

E(t, x) −∇xΦext
]

.

1.1.3 Existence of solutions for Vlasov-Poisson system

Vlasov-Poisson systems are used to describe the flow of particles under the
effect of a force field F (t, x) (attractive or repulsive depending on the charge
of the electric carriers). The kinetic aspect is given by Vlasov’s equation,
while the force field is computed by Poisson’s equation.

Classical solutions

We shall call classical a solution for which the derivatives hold in the classical
sense. The first result of existence of solutions for Vlasov-Poisson system
was given in 1961 by S. V. Iordanskii

iordanskii
[22], where he proved local existence

of classical solutions, but they were not proved to be global in time nor
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were they shown to be unique. S. Ukai and T. Okabe
ukaiokabe
[38] in 1978 proved

the existence and uniqueness of global in time classical solutions in R
2, and

locally in time in R
3. In 1981 E. Horst

horst
[19] gave necessary conditions for

global existence in R
3 and examples of global non-existence in dimension

N ≥ 4. In 1985 P. Degond and C. Bardos
degondbardos
[8] proved the existence of

global in time solutions for small initial data. Finally the problem in R
3

was solved by Pfaffelmoser
41
[31], who obtained the long-sought result about

the existence of global solutions for arbitrary initial data. J. Schaeffer
schaeffer
[34]

gave few years later a clear short proof of existence and uniqueness of global
classical solutions in R

3. Here, we report Schaeffer’s main result:

Theorem 1.1.1. If f0 : R
3×R

3 −→ [0,∞[ is a smooth nonnegative function

of compact support, then the problem possesses a global solution which is C∞.

Moreover, for p > 33
17 , there exists a constant Cp such that

1 + sup {|v| : ∃(x, s) ∈ Ω × [0, t] s.t. f(s, x, v) 6= 0} = Q(t) ≤ Cp(1 + t)p,

for all times t ≥ 0.

Weak solutions

We shall call weak a solution which holds in the distributional sense, be-
cause f0 is not regular enough to provide the application of the classical
characteristics methods. We refer for a detailed definition of weak solutions
to

bouchut,mjcaceres
[3, 4]. The first result about the existence of weak solutions was obtained

by A. A. Arsen’ev in 1973
arsenev
[1]. In 1984, E. Hörst and R. Hunze

34
[21] extended

the set of initial functions and proved the existence of global weak solutions
in R

3. In 1988 R. J. DiPerna and P. L. Lions
diperna
[10] gave results of global

existence of weak solutions in arbitrary dimension, and in 1991 F. Bouchut
bouchut1991
[2] proved the global existence of weak solutions for a system with two kinds
of charged particles.

1.1.4 Qualitative properties of the Vlasov-Poisson system

Maximum principle

The maximum principle asserts that whenever

0 ≤ f0(x, v) ≤ M =⇒ 0 ≤ f(t, x, v) ≤ M.

In the particular case in which f is normalized as a probability density, the
maximum principle is interpreted as Pauli’s principle which asserts that two
electrons cannot have the same state (x, v) at the same time t. We refer
to

markowich
[29] for the proof in the case of classical solutions. For weak solutions it

is a simple consequence of lower weak-* semicontinuity of the L∞-norm for
bounded functions.
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Mass conservation

Both classical and weak solutions of the Vlasov-Poisson system have the
property of being mass conservative whenever posed in the whole space or
in a N -dimensional cube with periodic boundary conditions:

d

dt

∫

Ω

∫

RN

f(t, x, v) dvdx = 0.

Total energy conservation

Classical solutions of the Vlasov-Poisson system posed in the whole space
or with periodic boundary conditions have the property of conserving the
total energy, which is given by the sum of the kinetic energy

KE(t) =

∫

Ω

∫

RN

|v|2
2

f(t, x, v) dvdx

and the potential energy

PE(t) =
1

2

∫

Ω
ρΦself dx +

∫

Ω
ρΦext dx, (1.3) totalenergyvlasovpoisson

where Φself is computed from Poisson’s equation. Here, we are assuming
that next = 0 and we take into account external effects through Φext. The
total conservation of energy

d

dt
[KE(t) + PE(t)] = 0.

reflects the Hamiltonian character of this equation. Weak solutions only
achieve an energy inequality, for 0 ≤ s ≤ t,

KE(t) + PE(t) ≤ KE(s) + PE(s).

Entropy conservation

Classical solutions of the Vlasov-Poisson system preserves the physical en-
tropy of the system, that is,

d

dt

∫

Ω

∫

RN

f(t, x, v) log[f(t, x, v)] dvdx = 0

while weak solutions only verify an inequality, for 0 ≤ s ≤ t,

∫

Ω

∫

RN

f(t, x, v) log[f(t, x, v)] dvdx ≤
∫

Ω

∫

RN

f(s, x, v) log[f(s, x, v)] dvdx.
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Conservation of Lp norms

Classical solutions of Vlasov-Poisson systems have the property of conserving
the Lp norms:

d

dt
‖f(t, x, v)‖Lp(Ω×RN ) = 0

for 1 ≤ p ≤ ∞, while weak solutions have non-increasing Lp norms.

General conservation

If β : [0,∞) → R is convex, and β(f0) ∈ L1(Ω×R
N ), then classical solutions

of the Vlasov-Poisson system conserves

∫

Ω

∫

RN

β(f(t, x, v)) dvdx.

For weak solutions the inequality

∫

Ω

∫

RN

β(f(t, x, v)) dvdx ≤
∫

Ω

∫

RN

β(f(s, x, v)) dvdx

holds for 0 ≤ s ≤ t.

1.2 Collisions

We may assume that particles undergo “collisions”, between themselves or
with the fixed atomic lattice. This word does not mean that physical shocks
happen; it means that the carriers, passing close to another carrier, are
deviated due to short-range interaction forces, in contrast with long-range
interaction forces as the Coulomb interaction, and this phenomenon seems
like if a ball hit another ball and both were pushed to other directions
following laws of conservation of energies and momenta. The description of
this kind of interactions is modelled through Boltzmann’s operators Q[f ] as
the right hand side of Vlasov’s equation:

∂f

∂t
+ v · ∇xf + F · ∇vf = Q[f ].

The collision rate will be influenced by the lattice temperature θ0 (the higher
it is the more probable the collisions are), by the particle density ρ (where
there are more particles there will be more collisions), and by a typical
relaxation time τ , which depends on the material and even on the state of
the particle.
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1.2.1 Introduction to the collision operator

Boltzmann’s collision operator describes how carrier particles are deviated
by the interaction with other particles or with the environment. Therefore,
we consider in this probabilistic description how many particles pass from
one state (x, k) to another state (x, k′), where x is the position and k is
the wave vector; that basically means that at a certain time a particle at
position x changes its direction of motion: wave vector is oriented as the
velocity. Boltzmann’s operator has the following form:

Q[f ](x, k, t) =

∫

RN

[

s(x, k′, k)f(k′)(1 − f(k)) − s(x, k, k′)f(k)(1 − f(k′))
]

dk′

where s(x, k, k′) is called the collision rate and represents the probability of
passing from state (x, k) to state (x, k′). Its integral

λ(x, k) =

∫

RN

s(x, k, k′)dk′

is called collision frequency, because it represents the collision mean fre-
quency for a particle having state (x, k). Its reciprocal

τ(x, k) =
1

λ(x, k)

is called relaxation time: it represents the mean time passing from one col-
lision and the successive one for a particle with state (x, k). The collision
operator should typically model the process of relaxation towards thermo-
dynamical equilibrium in the absence of external forces and under homoge-
neous densities, being the thermodynamic equilibria given by the kernel of
the Boltzmann operator Q[f ].

1.2.2 Linear Boltzmann’s operator

Boltzmann’s operator can describe different kinds of interactions by choosing
in a convenient way the collision rate. We have neglected collisions between
the particles, just taking into account collisions with the fixed lattice. Let
us simplify its form by assuming a low-density regime (

markowich
[29, page 33]). Since

f is very small in many real devices, we are going to ignore the quadratic
terms in operator Q[f ] to obtain

Q[f ](x, k, t) =

∫

RN

[

s(x, k′, k)f(k′) − s(x, k, k′)f(k)
]

dk′.

Assuming the simple relation mv = hk, writing the collision operator in
terms of the velocity variable v and choosing the following collision rate:

s =
1

τ
Mθ0

(v),
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where Mθ0
is the normalized Maxwellian distribution

Mθ0
(v) =

(

1

2πθ0

)N
2

e
− |v|2

2θ0 ,

and τ is an averaged relaxation time, we obtain the so-called relaxation time
operator:

Q[f ](t, x, v) =
1

τ
[ρ(t, x)Mθ0

(v) − f(t, x, v)] .

The thermodynamic equilibrium is obviously given by the normalized Max-
wellian distribution Mθ0

(v).

1.3 Vlasov-Poisson-Boltzmann systems

Vlasov-Poisson-Boltzmann systems























∂f

∂t
+ v · ∇xf + F · ∇vf = Q[f ]

ǫ0∆Φ = e(next − ρ)

E = −∇xΦ

describe interactions and transport of charged particles in a semiconductor
device or plasma where the force field is given by the self-consistent poten-
tial, computed by Poisson’s equation and an external one equivalent to the
present of the external background density next(x).

1.3.1 Properties of Vlasov-Poisson-Boltzmann systems

The collision operator verifies

∫

RN

Q[f ] dv = 0

and thus, these systems are mass-conservative. On the other hand, they are
dissipative, i.e., multiplying the operator by the derivative of any convex
function β(f), we get

∫

RN

β′(f)Q[f ] dv ≤ 0,

in particular, for the relevant case of the physical entropy β(f)) = f log f .
This property means that these quantities are dissipated for homogeneous
initial data.
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1.4 Vlasov-Maxwell system

When describing plasmas, particles have typically to be considered rela-
tivistic, and thus it is easier to consider f as a function of position x and
of momentum p. In Vlasov equation the force field will be given by both
electric and magnetic fields:

F = e(E + v ∧ B).

Electric and magnetic fields are related by a set of equations, called Maxwell’s
equations. They are, in its differential form:

1. Ampere’s law. It describes the line integral of the magnetic field:

∂E

∂t
= c2∇∧ B. (1.4) ampere

2. Faraday’s law of induction. It describes the line integral of the electric
field being proportional to the rate of change of the magnetic flux
through the surface enclosed by the line:

∂B

∂t
= −∇ ∧ E. (1.5) faraday

3. Gauss’s law for electricity. It describes the area integral of the electric
flux through a closed surface:

∇ · E =
e

ǫ0

[

next − n
]

. (1.6) gausselec

4. Gauss’s law for magnetism. It describes the area integral of the mag-
netic flux through a closed surface:

∇ · B = 0. (1.7) gaussmagn

Relativistic particles means that we distinguish between their velocity and
momentum:

v =
p

m

√

1 + |p|2
m2c2

.

As the magnetic field admits a vector potential A because of (
gaussmagn
1.7), if we call

Φ the electrostatic potential, then

1.
B = ∇∧ A. (1.8) magnetic

2.

E = −∂A

∂t
−∇Φ. (1.9) electric
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We shall use these equations to simulate the action of a laser wave (called
pump wave) penetrating into a plasma. In this case, the electromagnetic
fields to consider are the self-consistent electric field due to the electrons
(given by Poisson’s equation), the electromagnetic field due to the laser
wave and the electrostatic field due to the ions in the plasma (given by
Poisson’s equation).

1.4.1 Existence of solutions of Vlasov-Maxwell systems

Studies about the existence of solutions for Vlasov-Maxwell equations are
more recent than for Vlasov-Poisson. In 1986 R. Glassey and W. Strauss
glassey1
[16] gave results about the existence and uniqueness of global classical solu-
tions for the relativistic case, for the system with a mixture of several types
of particles and local existence for the non-relativistic case with smooth
compactly supported initial data. In 1989

glassey2
[15] they extended their previous

proof for initial distributions with certain decay conditions. In 1996 Glassey
glassey3
[14] extended the study to the research of weak solutions. In 1997 Glassey
and his former student Schaeffer published

glassey4
[17] results about the existence

of classical solutions for the relativistic case. Here we report the main result
about the existence of classical solutions exposed in

glassey1
[16]:

Theorem 1.4.1. Let f0 ∈ C1(R3×R
3) a compactly supported positive func-

tion, let the electromagnetic fields E0(x) ∈ C2(R3) and B0(x) ∈ C2(R3). If

there exists a continuous function α(t) such that f(t, x, v) = 0 for |v| >

α(t), then the Vlasov-Maxwell system admits a unique solution in the space

C1([0,∞) × R
3 × R

3), and both E(t) and B(t) belong to C1([0,∞) × R
3).

Here we report the result achieved in 1989 by R. DiPerna and P. L. Lions
dipernamaxwell
[9] about the existence of weak solutions:

Theorem 1.4.2. Let f0 ∈ L1 ∩ L∞(R3 × R
3) a positive function such that

∫

R3×R3

f0|v|2dxdv +
1

2

∫

R

|E0|2 + |B0|2dx ≤ ∞.

Then there exists a weak solution of Vlasov-Maxwell system in the space

C([0,∞), L∞(R3×R
3)−w∗), and both E and B belong to C([0,∞), L2(R3)−

w).

1.4.2 Simplifying assumptions

We shall make some simplifying assumptions in order to get an easier equa-
tion and to preserve the characteristics of these phenomena. In order to
simplify the problem, we shall assume without loss of generality that the
pump wave is linearly polarized in y-direction, that is,

Ax = Az = 0.
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We shall also neglect the effects of the laser wave in y and z directions in
the plasma, because the heating effect is much slower than in the direction
of propagation (x). Equations (

magnetic
1.8) and (

electric
1.9) become































































Bx = 0

By =
∂Ay

∂x

Bz = 0

Ex = −∂Φ

∂x

Ey = −∂Ay

∂t
Ez = 0

Putting these assumptions into Vlasov’s equation, in (
ampere
1.4)-(

gaussmagn
1.7) and in Pois-

son’s equation, we get:























































∂f

∂t
+

px

mγ

∂f

∂x
− e

(

Ex +
eAy

mγ

∂Ay

∂x

)

∂f

∂px
= 0

∂2Ay

∂t2
− c2 ∂2Ay

∂x2
= − e

mǫ0

∫

R

1

γ
fdpx

∂Ex

∂t
=

e

ǫ0

∫

R

px

mγ
fdpx

∂Ex

∂x
=

e

ǫ0

(

next −
∫

R

fdpx

)

where the factor

γ =

√

1 +
p2

x

m2c2
+

e2A2
y

m2c2

and

{n, nγ , jx} =

∫

R

{

1,
1

γ
,

px

mγ

}

fdpx.

We shall consider this system posed either in the whole space x ∈ R or in
x ∈ [0, L] with periodic boundary conditions.

1.4.3 Quasi-relativistic model

Quasi-relativistic model consists in approximating γ by
√

1 + p2

m2c2
in the

terms px

mγ
∂f
∂x

and in jx and approximating γ by 1 in the other cases. Scaling
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the set of equations by















































































x = Lx̃

t = L
c
t̃

p = (mc)p̃

E =
√

mc2n̄
ǫ0

Ẽ

A =
(

mc
e

)

Ã

f =
(

n̄
mc

)

f̃

Φ =
(

c2m
e

)

Φ̃

η = x̄
L

= 1
L

c
e

√

mǫ0
n̄

where L and n̄ are the typical length and density respectively, and then
dropping the tildes to simply the notation, we obtain the dimensionless
quasi-relativistic Vlasov-Maxwell model:

∂f

∂t
+

p
√

1 + p2

∂f

∂x
−

(

η−1E + A
∂A

∂x

)

∂f

∂p
= 0. (1.10) QRVM

The electrostatic potential Φ is the solution of Poisson’s equation

Φxx = η−2
[

next − ρ
]

,

where next is an external density used to get a neutral electric field. The
vector magnetic potential A satisfies the following wave-like equation

∂2A

∂t2
− ∂2A

∂x2
= −η−2ρA.

To simplify the notation we will denote by E the x-component of the elec-
trostatic field given by Poisson’s equation, E = −Φx, E the y-componenent
of the electric field and B the y-componenent of the magnetic field that due
to Maxwell’s equation verify



































E = −∂A

∂t

∂E
∂x

= −∂B

∂t

−∂B

∂x
= −η−2A

∫

R

fdp +
∂E
∂t

.

Global existence and uniqueness of classical solutions for this system has
recently been obtained in

laserplasma
[6].



1.4. VLASOV-MAXWELL SYSTEM 13

1.4.4 Total energy conservation

The total energy present in this model naturally split into two parts: the
transversal energy WT and the longitudinal energy WL, both composed of
a kinetic and a potential part.















WT (t) =
1

2

∫ 1

0
ρA2 dx +

1

2
η2

∫ 1

0

[

E2 + B2
]

dx

WL(t) =

∫ 1

0

∫

R

√

1 + p2f dpdx +
1

2
η2

∫ 1

0
E2 dx.

In
laserplasma
[6] it is proven that the total energy WT (t) + WL(t) is constant

d

dt
[WT (t) + WL(t)] = 0

for classical solutions.



14 CHAPTER 1. KINETIC EQUATIONS AND TRANSPORT



Chapter 2

WENO interpolations

In this chapter, we are going to describe the PWENO (Pointwise Weighted
Essentially Non Oscillatory) and FDWENO (Finite Differences Weighted
Essentially Non Oscillatory) interpolation methods: they are developed to
avoid Lagrange interpolation oscillations where high derivatives appear, and
they are based on making a suitable average of Lagrange interpolations. The
difference between these two methods is that while the first one respects the
values of the function fi on the grid points xi (the purpose is to compute
a direct interpolation), the second one respects the averages of the function
f̄i in the intervals [xi− 1

2

, xi+ 1

2

] (the purpose is not to make a direct inter-

polation but to use the reconstructed values to give high order accurate
approximations of derivatives).

2.1 Introduction

We have an interval [xL, xR], a division into a grid of N points

xL = x0 < x1 < ... < xN−1 = xR

and the values of a function f in these points:

{fi = f(xi)}i=0,...,N−1.

Our goal is to reconstruct the function in the whole interval in a “non-
oscillatory” way near the points where the function has high gradients or
discontinuities.

In the numerical solution of conservation laws, hyperbolic and transport
equations, the sharp shape of the solutions (shocks in conservation laws)
and the total variation of the function have to be controlled.

15
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Lagrange-6

Figure 2.1: Comparison between an oscillating and a non-oscillating inter-
polation method comparison

4 5 6 7 8 9 10

S
Figure 2.2: The main stencil S Essegrande

2.2 Description of the method

We have an interval [xL, xR] divided into a grid of N points

xL = x0 < x1 < x2 < ... < xN−1 = xR

{fi = f(xi)}i=0,...,N−1.

We choose a stencil of ntot points (see Figure
Essegrande
2.2)

S = {xfirst, ..., xlast} = {xfirst, ..., xfirst+ntot−1}

and nlp substencils (see Figure
Essegrander
2.3)

Sr = {xlast−lpo+1−r, ..., xlast−r} = {xi−r, ..., xlast−r}
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4 5 6 7 8 9 10... ...

S

S

S

S
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1

2

3

S

Figure 2.3: The substencils Sr Essegrander

7 8 9 10 11 12 13 14 15

S

S0

i
i is the index of the first point
of the first stencil

Figure 2.4: The parameter i I

for r = 0, ..., nlp − 1, where lpo := ntot − nlp + 1 (see Figure
lpo
2.8) and

i := last − lpo + 1 (see Figure
I
2.4).

The reconstructed value at points x will be a convex combination of the
values given by the Lagrange polynomials in the stencils Sr:

nlp−1
∑

r=0

ωr(x)pr(x)

with pr the Lagrange polynomials of degree lpo− 1 interpolating the stencil
Sr

pr(x) = plpo
r (x) =

lpo−1
∑

j=0

fi−r+jcr,j(x) (2.1) lp
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-0.5

0

0.5

1

1.5

5 6 7 8 9 10 11 12 13 14 15

Figure 2.5: This figure shows how PWENO works with ntot = 6 and lpo = 4:
it takes the (three, in this case) reconstructions given by the (three) Lagrange
polynomials and then it will make an average between them Boh

where

cr,j(x) =

lpo−1
∏

l=0,l 6=j

x − xi−r+l

xi−r+j − xi−r+l
.

ωr(x) are weights which give more or less relevance to the stencils where
the pr(x) are more or less “regular”. Both the words “non-oscillatory” and
“regular” will be rigorously defined in the next section.

The meaning of the parameters

1. cardinality of the main stencil S (ntot).

2. number of Lagrange polynomials (nlp).

3. Lagrange polynomial order (lpo), i.e. the number of points each poly-
nomial interpolates.

2.3 The weights ωr(x)

WENO interpolation is given by

nlp−1
∑

r=0

ωr(x)pr(x)



2.3. THE WEIGHTS ωR(X) 19

7 8 9 10 11 12 13 14 15

S

ntot=# of interpolation points= 13−9+1=5

Figure 2.6: The parameter ntot ntot
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Figure 2.8: The parameter lpo lpo
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where pr(x) is defined in (
lp
2.1).

We need now to define the coefficients ωr. First of all we need a mea-
surement of the regularity of the Lagrange polynomials near x.

2.3.1 The smoothness indicators βr

We shall call smoothness of the polynomial pr(x) a measure of its derivatives
in the interval:

E = [EL, ER] =











[

xfirst+[ntot
2 ]− 1

2

, xfirst+[ntot
2 ]+ 1

2

]

if ntot is odd
[

xfirst+[ntot
2 ]−1, xfirst+[ntot

2 ]

]

if ntot is even
(2.2) centerint

where the dependencies of EL and ER will be omitted and [x] means the
integer part of x. Using the notation

i∗ = first +

[

ntot

2

]

we can also write

[EL, ER] =







[

xi∗− 1

2

, xi∗+ 1

2

]

if ntot is odd

[xi∗−1, xi∗ ] if ntot is even

If the derivatives are large, the smoothness indicator is wanted to be large,
and viceversa. The following measurement is proposed by Jiang and Shu in
smooth
[23, page 207]:

βr =

lpo−1
∑

l=1

∫ ER

EL

∆x2l−1
(

Dlpr

)2
dx

This is a weighted sum of L2-norms of the derivatives, which we can see also
as a weighted Sobolev norm of Dpr in the interval [EL, ER]

βr =

lpo−1
∑

l=1

∆x2l−1
∥

∥

∥
Dlpr

∥

∥

∥

2

L2(EL,ER)

The weights ∆x2l−1 are needed to make the terms of the sum independent
of ∆x, i.e., to make them all be of the same order. This will be clarified
below. Other measurements would be possible, but we shall omit discussing
this point.

2.3.2 Protoweights ω̃r(x)

Once we have computed the smoothness indicators, we define the ω̃r(x) as

ω̃r(x) =
dr(x)

(ǫ + βr)p
(2.3) omgtld
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where dr(x) are some weights we need to optimize the order of the method
(we shall discuss it later), and ǫ is a constant to avoid the denominator to
be zero (in the code ǫ = 10−6 is used). The choice of 1 ≤ p < ∞ has no
influence on the order of the method. In all the tests we have set p = 2.
If we chose a greater p we would decide to give less weight to the stencils
where the reconstruction is more irregular, and viceversa.

2.3.3 Weights ωr(x)

To get the weights ωr(x) we just have to normalize the ω̃r(x) given by (
omgtld
2.3).

ωr(x) =
ω̃r(x)

∑nlp−1
j=0 ω̃j(x)

. (2.4) omg

Still we have to find weights dr(x) to get the highest order method.

2.3.4 The weights dr(x)

In order to get a high order method (if the function is smooth enough), we
need coefficients dr(x) such that:

p(x) =

nlp−1
∑

r=0

dr(x)pr(x) (2.5) dr

where p(x) is the ntot − 1-degree Lagrange polynomial interpolating the
whole stencil S

p(x) =
ntot−1
∑

j=0

ffirst+j

ntot−1
∏

l=0,j 6=j

x − xfirst+j

xfirst+j − xfirst+l
. (2.6) p

Lagrange interpolation gives a ntot-order method; by mean of these coef-
ficients we want PWENO-ntot,lpo interpolation to approach a ntot-order
method non oscillatory for homogeneously regular functions, i.e., whenever
all the weights βr have the same order of magnitude.

Proposition 2.3.1 (Existence and uniqueness of the weights dr(x)). Let

I = [xL, xR] ⊂ R be an interval, and let

xL = x0 < x1 < ... < xN−1 = xR

be the grid. If x is not a point of the grid, then the weights dr(x) defined by

(
dr
2.5) are unique.

Proof. The ntot-order Lagrange interpolation is exact on P
ntot−1, i.e.,

f ∈ P
ntot−1 → p[f ](x) = f(x)
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where p[f ] is the Lagrange polynomial which interpolates f in ntot points.
If B = {bi}ntot−1

i=0 is a basis of P
ntot−1, f(x) =

∑ntot−1
i=0 fibi(x) and cr,j(x) are

given by (
crj
2.2),

p [f ] (x) = p
[

∑

fibi

]

(x) =
∑

j

∑

i

fibi(xj)cr,j(x) (2.7)

=
∑

i

fi

∑

j

bi(xj)cr,j(x) =
∑

i

fip [bi] (x), (2.8)

so we only need to impose condition (
dr
2.5) on the elements of a basis. Take

as a basis of P
ntot−1

B={b0, b1, ..., bntot−1}=

{

1,

m
∏

l=0

(x − xfirst+l), m∈{0, ..., ntot − 2}
}

.

For deg ≤ lpo−1, condition (
dr
2.5) gives bdeg(x) =

∑nlp−1
r=0 dr(x)bdeg(x) which

means
nlp−1
∑

r=0

dr(x) = 1.

For lpo ≤ deg ≤ ntot − 1, condition (
dr
2.5) gives

bdeg(x) =

nlp−1
∑

r=0

dr(x)pr,deg(x)

where pr,deg(x) is the Lagrange polynomial interpolating polynomial bdeg(x)
at points {xi−r, ..., xi−r+lpo−1}, i.e.,

pr,deg(x) =

lpo−1
∑

j=0

bdeg(xi−r+j)cr,j(x).

We get the following linear system

L =













1 1 ... 1 1
p0,lpo(x) p1,lpo(x) ... pnlp−1,lpo(x) blpo(x)
p0,lpo+1(x) p1,lpo+1(x) ... pnlp−1,lpo+1(x) blpo+1(x)
...

...
...

...
...

p0,ntot−1(x) p1,ntot−1(x) ... pnlp−1,ntot−1(x) bntot−1













.

Note that bdeg(xi−r+j) = 0 for i − r + j ≤ deg − 1, which implies that the
matrix has the following appearance

L =













1 1 1 ... 1 1
p0,lpo(x) p1,lpo(x) ... pnlp−2,lpo(x) 0 blpo(x)
p0,lpo+1(x) p1,lpo+1(x) ... 0 0 blpo+1(x)
...

...
...

...
...

p0,ntot−1(x) 0 0 ... 0 bntot−1(x)













.
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Call L = (L1|L2). The computation of the determinant of L1 is straightfor-
ward

det(L1) =

nlp−2
∏

s=0

ps,(ntot−1)−s(x) 6= 0

which is non-zero because none of the terms can be zero. Since

ps,(ntot−1)−s(x) =

lpo−1
∑

j=0

b(ntot−1)−s(xi−s+j)cs,j(x)

and b(ntot−1)−s(xi−s+j) = 0, for j = 0, ..., lpo − 2, then

ps,(ntot−1)−s(x) = b(ntot−1)−s(xi−s+lpo−1)cs,lpo−1(x) 6= 0

because b(ntot−1)−s(xi−s+lpo−1) 6= 0; if not, we should get a contradiction:
a non-zero polynomial of degree (ntot − 1) − s would have ntot − 1 zeros.
cs,lpo−1(x) 6= 0 because x does not belong to the points of the grid. In this
way, the existence and uniqueness of the dr(x) has been proven.

Remark. If x is a grid point, the uniqueness would not be needed, because
in fact any linear combination of the Lagrange polynomials interpolating
that point would be suitable.

2.3.5 Code implementation of the weights dr(x)

Imposing the definition of Lagrange polynomials (
lp
2.1) in (

dr
2.5), we get

ntot−1
∑

j=0

fi−r∗+jc
ntot
r∗,j (x) =

nlp−1
∑

r=0

dr(x)

lpo−1
∑

j=0

fi−r+jc
nlp
r,j (x)

where r∗ is defined in Figure
rstar
2.9. As the dr(x) do not depend on the values

of f , we have to impose for every 0 ≤ s ≤ ntot− 1 the coefficients of fi−r∗+s

to be equal:

cntot
r∗,s(x) =

∑

r,j s.t. −r+j=s

dr(x)ck
r,j(x).

So, the linear system to be solved is represented by the following ntot ×
(nlp + 1)ntot matrix:

(ls)i,j =







c
lpo

j,i+j−(nlp−1)(x) if nlp − 1 ≤ i + j ≤ lpo − 1 + nlp − 1

0 else
,

with the known terms

(ls)i,nlp = cntot
r∗,i .
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7 8 9 10 11 12 13 14 15

S

S0

i

r* = i−first =

r* is the difference between the first point of the substencil S   and the 
first point of the main stencil S

0

first   (= ord−lpo =)
          = 4

Figure 2.9: The parameter r∗ rstar

Take now its submatrix LS ∈ Mnlp×nlp+1:

(LS)i,j =







c
lpo

j,i+j−(nlp−1)(x) if nlp − 1 ≤ i + j ≤ lpo − 1 + nlp − 1

0 else

.

Here we have nlp conditions for nlp unknowns, and the linear system is
represented by an upper triangular matrix, which can be solved directly by
a recursive procedure starting from the first line (i = 0).

2.3.6 A way for calculating explicitly the weights dr(x) as

polynomials

We are able to get an explicit formula for the polynomials dr(x) by an
iterative method. Assume the interpolation points are {x0, x1, ..., xn}. Sup-
pose we have two polynomials: p(x) interpolates a function f at the points
x0, x1, ..., xn−1, and q(x) interpolates at the points x1, x2, ..., xn. A simple
exactness argument (Aitken-Neville method, see

calculonumerico1
[30, page 56]) allows to

check that the polynomial interpolating f at the points x0, x1, ..., xn is given
by

r(x) =
p(x)(x − xn) − q(x)(x − x0)

x0 − xn
.
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Figure 2.10: Explicit construction of the polynomials d̃r(x) by recursion dierre

An explicit recursion procedure based on the previous formula gives us the
explicit value of d̃r(x). In the case of three points (n = 2) we get:



























d̃0(x) = (x−xi−1)(x−xi−2)
(xi−1−xi+2)(xi−2−xi+2)

d̃1(x) = −
[

(x−xi+2)(x−xi−2)
(xi−1−xi+2)(xi−2−xi+2) + (x−xi−2)(x−xi+2)

(xi−2−xi+1)(xi−2−xi+2)

]

d̃2(x) = (x−xi+1)(x−xi+2)
(xi−2−xi+1)(xi−2−xi+2)

Proposition 2.3.2 (Uniqueness of the weights dr(x)). Let I = [xL, xR] ⊂ R

be an interval, and let

xL = x0 < x1 < ... < xN−1 = xR

be the grid. The weights dr(x), recursively constructed as polynomials like

in Figure
dierre
2.10, are unique in P

ntot−lpo.

Proof. Polynomials d̃r(x) are explicitly constructed by the recursive
method shown in Figure

dierre
2.10, so they exist (no denominator can be zero

because i 6= j ⇒ xi 6= xj), are unique and their degree is (ntot− 1)− (lpo−
1) = ntot − lpo. Moreover, ∀x ∈ R \ {xi}i=0,...,N−1,

d̃r(x) = dr(x)
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for construction (they must verify the same property), then the weights
dr(x), constructed as polynomials in P

ntot−lpo, are unique ∀x ∈ R.

2.3.7 The choice of dr(x)

mainprop Proposition 2.3.3. If the weights dr(x) satisfty

nlp−1
∑

r=0

dr(x) = 1 (2.9) qwert

and

ωr(x) − dr(x) = O(∆xn),

then PWENO-ntot,lpo gives a (lpo + n)-order reconstruction.

The proof is developed in the following section.

The choice we have made for the weights dr(x) satisfy property
qwert
2.9, but

it was also meant to approach the best order and the best accuracy. On
one hand, if f is a homogeneous regular function (which means that all
the βr are of the same order), by this choice the ωr(x) approach the dr(x),
i.e. pPWENO(x) approaches p(x) (defined in (

p
2.6)). Even if PWENO is not

ntot-order, we force it to behave like Lagrange, which is of highest order, in
case of regular functions.

On the other hand, if the function is not regular, then the weights ωr(x)
are very different from the weights dr(x), like it had to be, because we want
PWENO to behave differently from Lagrange near high-gradients.

2.4 The order of the method

First of all we recall a standard result about the error committed by La-
grange interpolation (see

cheney
[24, page 291]):

standardlagrange Proposition 2.4.1. Let I = [xL, xR] ⊂ R be an interval. If f ∈ Cn+1[xL, xR]
and p ∈ P

n is the polynomial interpolating f in n + 1 different points

{x0, x1, ..., xn} in [xL, xR]. Then, ∀x ∈ [xL, xR] there is a ξx ∈]xL, xR[
such that

f(x) − p(x) =
1

(n + 1)!
f (n+1)(ξx)

n
∏

i=0

(x − xi).

In the case of a regular grid this means that

p(x) = f(x) + O(∆xn+1).

We shall now introduce a simple lemma.
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omegamenodr Lemma 2.4.2. If

βr = A(1 + O(∆xn)) (2.10) order

where A is a non-zero quantity independent of r, then

ωr(x) − dr(x) = O(∆xn).

Proof of lemma
omegamenodr
2.4.2. By straighforward calculations,

1

βr
p =

1

Dp
+ O(∆xn)

and

ω̃r =
dr

βr
p = dr

[

1

Dp
+ O(∆xn)

]

=
1

Dp
dr + O(∆xn)

with
∑

j

ω̃j =
1

Dp
dr + O(∆xn).

Finally,

ωr =
ω̃r

∑

j ω̃j
=

1
Dp dr + O(∆xn)

1
Dp + O(∆xn)

= dr + O(∆xn).

2.4.1 Proof of proposition
mainprop

2.3.3

Since

pW (x) − f(x) = pW (x) − pL(x) + pL(x) − f(x) =

=
∑

ωr(x)pr(x) −
∑

dr(x)pr(x) +
∑

dr(x)pr(x) − f(x)

=
∑

ωr(x)pr(x) −
∑

dr(x)pr(x) + O(∆xntot),

we already know that the method cannot be more than ntot-order, and we
need to calculate

I =

nlp−1
∑

r=0

ωr(x)pr(x) −
nlp−1
∑

r=0

dr(x)pr(x)

to check which is the order. By simple manipulations

I =

nlp−1
∑

r=0

ωr(x)pr(x) −
nlp−1
∑

r=0

dr(x)pr(x)

=

nlp−1
∑

r=0

[ωr(x) − dr(x)] pr(x)

=

nlp−1
∑

r=0

[ωr(x) − dr(x)] [pr(x) − f(x)] .
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Due to (
qwert
2.9), we get

I =

nlp−1
∑

r=0

[ωr(x) − dr(x)] [pr(x) − f(x)]

=

nlp−1
∑

r=0

[ωr(x) − dr(x)] O(∆xlpo)

and because of proposition
standardlagrange
2.4.1 and lemma

order
2.10, we finally deduce

I =

nlp−1
∑

r=0

[ωr(x) − dr(x)] O(∆xlpo)

=

nlp−1
∑

r=0

O(∆xn)O(∆xlpo).

2.4.2 Manipulation on the βr

Our problem is now translated to the Taylor expansion of the smoothness
indicators βr. Once we have been able to compute n in (

order
2.10), then the

method will be order lpo + n. The weights can be expressed as

βr =

lpo−1
∑

l=1

∫

E
∆x2l−1

[

Dlpr(x)
]2

dx

=
∑

l

∆x2l−1

∫

E



Dl

nlp−1
∑

j=0

c
lpo
r,j (x)fi−r+j





2

dx

=
∑

l

∆x2l−1

∫

E





∑

j

fi−r+jD
lcr,j(x)





2

dx

=
∑

l

∆x2l−1

∫

E

lpo−1
∑

j,k=0

fi−r+jfi−r+kD
lcr,j(x)Dlcr,k(x)dx

=
∑

l

∆x2l−1
∑

j,k

fi−r+jfi−r+k

∫

E
Dlcr,j(x)Dlcr,k(x)dx

=
∑

j,k

fi−r+jfi−r+k

lpo−1
∑

l=1

∫

E
∆x2l−1Dlcr,j(x)Dlcr,k(x)dx

=
∑

j,k

fi−r+jfi−r+kK
r
j,k
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where Kr is a symmetric matrix defined as

Kr
j,k =

lpo−1
∑

l=1

∫

E
∆x2l−1Dlcr,jD

lcr,kdx.

We can now expand f(x) around the point xi:

f(x) =
∑

n

1

n!
f (n)(xi)(x − xi)

n

so that

fi−r+j =
∑

n

1

n!
f (n)(xi)(∆x(i − r + j − i))n (2.11)

=
∑

n

1

n!
f (n)(xi)(j − r)n∆xn. (2.12)

Therefore,

βr =
∑

j,k

Kr
j,k

∑

n,m

1

n!m!
f (n)(xi)f

(m)(xi)(j − r)n(k − r)m∆xn+mK

=
∑

n,m

∆xn+mf (n)(xi)f
(m)(xi)

1

n!m!

∑

j,k

Kr
j,k(j − r)n(k − r)m

=
∑

n,m

∆xn+mf (n)f (m)Dr
n,m

where Dr is a symmetric matrix defined as

Dr
n,m =

1

n!m!

lpo−1
∑

j,k=0

Kr
j,k(j − r)n(k − r)m.

Numerical computation of Dr for method WENO-6,4 are given in (
d064
2.13)-

(
d264
2.15) in the appendix of this chapter. These computations show that

∀0 ≤ r ≤ 2, Dr
1,1 = 1,Dr

2,2 =
4

3

and therefore, if f ′ 6= 0 then

βr = (f ′(xi)∆x)2(1 + O(∆x))

(where A = (f ′(xi)∆x)2, n = 1 in (
order
2.10)), and if f ′(xi) = 0 then

βr =
4

3
(f

′′
(xi)∆x2)2(1 + O(∆x))
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(A = 4
3(f

′′
(xi)∆x2)2, n = 1 in (

order
2.10)), i.e. that the method is lpo + 1 =

4 + 1 = 5 order.
As for WENO-5,3, we see from (

d053
2.16)-(

d253
2.18) that if f ′(xi) 6= 0 then

βr = (f ′(xi)∆x)2(1 + O(∆x2))

(where A = (f ′(xi)∆x)2, n = 2 in (
order
2.10)). This implies that WENO-5,3 is

lpo + 2 = 3 + 2 = 5 order.

Numerical example

Take u0(x) = exp(x) in [−1; 1], reconstruct the value at x = 0 (if the number
of points is even it will never belong to the grid) by PWENO-6,4 method
and compute the difference | exp(0) − num.val.|:

















points L∞ − error L∞ − order

20 6.88 × 10−9

40 8.95 × 10−11 6.263432
80 1.28 × 10−12 6.119669
160 1.93 × 10−14 6.059640
320 2.22 × 10−16 6.442943

















While at least 5 was expected, we see that we get 6, due to the homogeneous
regularity of the function.

2.5 WENO for Finite Differences

The main difference between PWENO and FDWENO is that while the
first one is a direct interpolation method (i.e. it reconstructs the values
of the function), the second one is used to compute derivatives: what it
reconstructs are not the values of the function f but the flux f̂ . The goal is
to therefore compute (with an appropriate upwinding of the interpolations
that we do not develop here)

∂f

∂x
(xi) ≃

f̂i+ 1

2

− f̂i− 1

2

∆x
.

2.5.1 Introduction

FDWENO is a generalization of the method of Shu
chiwangshu
[35], with the only dif-

ference of allowing a free choice of the stencil S (see Figure
Essegrande
2.2) and the

substencils Sr (see Figure
Essegrander
2.3) instead of only admitting k substencils of k

points each.
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As for the construction, while PWENO respects the values f(xi), FD-
WENO respects the averages of f on the intervals [xi− 1

2

, xi+ 1

2

], i.e. while in

the first case we impose

pPWENO(xi) = f(xi),

in the second case we want
∫ x

i+1
2

x
i− 1

2

pFDWENO(x)dx =

∫ x
i+1

2

x
i− 1

2

f(x)dx.

2.5.2 Procedure

Once we have chosen a stencil S (see Figure
Essegrande
2.2) and into how many subs-

tencils to divide it (i.e. we have chosen nlp), we can proceed.

1. We construct a primitive of the function f ,

F (x) =

∫ x

xL

f(ξ)dξ

2. We interpolate F by Lagrange polynomials

Pr(x) =

lpo
∑

j=0

Fi− 1

2
−r+jCr,j(x)

for r = 0, ..., nlp − 1, where

Cr,j(x) =

lpo
∏

l=0,l 6=j

x − xi− 1

2
−r+j

xi− 1

2
−r+j − xi− 1

2
−r+l

3. We differentiate polynomials Pr(x)

pr(x) =
d

dx
Pr(x)

Polynomials pr(x) satisfy
∫ x

i+1
2
−r+j

x
i− 1

2
−r+j

pr(x) = Fi+ 1

2
−r+j − Fi− 1

2
−r+j

4. We compute smoothness indicators

βr =

lpo−1
∑

l=0

∫

E
∆x

(

Dlpr(x)
)2

dx

where E is defined in (
centerint
2.2).
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5. We compute coefficients dr(x) defined in the same way as (
dr
2.5).

6. We compute weights ωr(x) like in (
omgtld
2.3) and (

omg
2.4).

7. We reconstruct

f̂(x) =

nlp−1
∑

r=0

ωr(x)pr(x)

2.6 Appendix

2.6.1 Results for matrix D
For WENO-6,4 (the values are given in absolute values):

D0 =





















0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.500 0.166 0.041 0.008 0.001 0.000
0.000 0.500 1.333 0.625 0.159 0.402 0.312 0.167
0.000 0.166 0.625 1.383 1.543 1.154 0.657 0.305
0.000 0.041 0.159 1.543 2.472 2.101 1.272 0.610
0.000 0.008 0.402 1.154 2.101 1.847 1.134 0.548
0.000 0.001 0.312 0.657 1.272 1.134 0.700 0.339
0.000 0.000 0.166 0.305 0.610 0.548 0.339 0.165





















, (2.13) d064

D1 =





















0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.500 0.166 0.041 0.008 0.001 0.000
0.000 0.500 1.333 0.625 0.381 0.139 0.048 0.013
0.000 0.166 0.625 1.383 0.729 0.340 0.114 0.033
0.000 0.041 0.381 0.729 0.393 0.181 0.061 0.018
0.000 0.008 0.139 0.340 0.181 0.084 0.028 0.008
0.000 0.001 0.048 0.114 0.061 0.028 0.009 0.002
0.000 0.000 0.013 0.033 0.018 0.008 0.002 0.000





















, (2.14) d164

D2 =





















0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.500 0.166 0.041 0.008 0.001 0.000
0.000 0.500 1.333 0.625 0.159 0.139 0.041 0.013
0.000 0.166 0.625 1.383 0.625 0.340 0.111 0.033
0.000 0.041 0.159 0.625 0.300 0.157 0.052 0.015
0.000 0.008 0.139 0.340 0.157 0.084 0.027 0.008
0.000 0.001 0.041 0.111 0.052 0.027 0.009 0.002
0.000 0.000 0.013 0.033 0.015 0.008 0.002 0.000





















. (2.15) d264

For WENO-5,3:

D0 =





















0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.333 0.250 0.116 0.041 0.012
0.000 0.000 1.083 1.083 0.631 0.270 0.093 0.027
0.000 0.333 1.083 1.194 0.715 0.309 0.107 0.031
0.000 0.250 0.631 0.715 0.431 0.187 0.064 0.018
0.000 0.116 0.270 0.309 0.187 0.081 0.028 0.008
0.000 0.041 0.093 0.107 0.064 0.028 0.009 0.002
0.000 0.012 0.027 0.031 0.018 0.008 0.002 0.000





















, (2.16) d053
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D1 =





















0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.166 0.000 0.008 0.000 0.000
0.000 0.000 1.083 0.000 0.090 0.000 0.003 0.000
0.000 0.166 0.000 0.027 0.000 0.001 0.000 0.000
0.000 0.000 0.090 0.000 0.007 0.000 0.000 0.000
0.000 0.008 0.000 0.001 0.000 0.000 0.000 0.000
0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000





















, (2.17) d153

D2 =





















0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 1.000 0.000 0.333 0.250 0.116 0.041 0.012
0.000 0.000 1.083 1.083 0.631 0.270 0.093 0.027
0.000 0.333 1.083 1.194 0.715 0.309 0.107 0.031
0.000 0.250 0.631 0.715 0.431 0.187 0.064 0.018
0.000 0.116 0.270 0.309 0.187 0.081 0.028 0.008
0.000 0.041 0.093 0.107 0.064 0.028 0.009 0.002
0.000 0.012 0.027 0.031 0.018 0.008 0.002 0.000





















. (2.18) d253
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Chapter 3

Linear advection and tests

In this chapter, the resolution of the fundamental instrument, the step in
linear advection, is explained and comparisons between several methods are
performed, in order to remark advantages and disadvantages of each one.

3.1 Time step in linear advection

In this section, we are presenting three algorithms for performing a time
step in linear advection:







∂f

∂t
+ a

∂f

∂x
= 0

f(t0, x) = f0(x)

Given f(tn, x) we want to compute f(tn+1, x).
The first and the second methods are based in different methods following

the characteristics while the third one is based on the method of lines by
direct approximation of the spatial derivatives and Runge-Kutta methods
for solving in time.

In order to present the first two methods, a mathematical introduction
is needed.

3.1.1 Transport equation

The transport (or advection) equation is:






∂f

∂t
+ a(t, x) · ∇xf = 0, (t, x) ∈ [0, T ] × R

N

f(0, x) = f0(x)

where a : [0, T ] × R
N −→ R

N .
We want to give results about existence and uniqueness of the solutions

for such an equation. In order to do this, first of all we need to introduce
the definition of characteristics.

35
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uniqchar Proposition 3.1.1 (Uniqueness of characteristic X ). If

a ∈ C1([0, T ] × R
N ), (3.1) aisdiff

for all T > 0, and there exists k > 0 such that

|a(t, x)| ≤ k(1 + |x|), ∀(t, x) ∈ R≥0 × R
N , (3.2) agrowslin

then there exists a unique solution,

X (s; t, x) ∈ C1([0, T ] × [0, T ] × R
N ),

for all T > 0, of the Cauchy problem







dX
dt

= a(t,X (t; s, x))

X (s; s, x) = x

The proof can be found in any standard analysis book for ODE’s systems
and in this particular case in

bouchut
[3].

Going back to problem (
adv
3.1.1) the following theorem can be stated:

Theorem 3.1.2 (Existence and uniqueness of strong solutions). Given the

advection field a(t, x) satisfying (
aisdiff
3.1) and (

agrowslin
3.2), and the initial data f0 ∈

C1(RN ), then there exists a unique solution of the Cauchy problem (
adv
3.1.1),

given by

f(t, x) = f(s,X (s; t, x)).

so, in particular,

f(t, x) = f0(X (0; t, x)).

Proof. By hypotheses (
aisdiff
3.1) and (

agrowslin
3.2) Proposition

uniqchar
3.1.1 applies, so char-

acteristics X (s; t, x) exist globally and are unique. We define

f(t, x) = f0(X (0; t, x)).

This f(t, x) is a solution because of the semigroup property of X (s), and
uniqueness comes from proving that if f(t, x) is a solution, then f(t, x) is
constant over characteristics, that is,

d

ds
f(s,X (s; t, x)) = 0

and thus, it must be of the form we have written (see
bouchut
[3] for details).
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x x

xx
X(t;0,x)

x
time=0

time=t
x

X(0;t,x)

The values of f(t,x) are conserved along the
characteristics courves, in one direction
and in the other one.

Figure 3.1: This is why this equation is called transport equation: the values
of f(t, x) are transported along the characteristics. sindes

3.1.2 Linear advection

The computation of characteristics in case a(t, x) is a real constant is straigh-
forward:







dX
ds

= a

X (t) = x

gives

X (s; t, x) = x + a(s − t)

so that the solution of the initial value problem







∂f

∂t
+ a

∂f

∂x
= 0

f(t0, x) = f0(x)

is

f(t, x) = f0(x − a(t − t0))

This is the only result that we need to implement in all the routines concern-
ing advection: the different reconstructions of f0 will give different proper-
ties, like mass conservation or total variation control.

Mass conservation

It is trivial to remark that linear advection is mass-conservative:
∫

R

f(t, x)dx =

∫

R

f0(x − at)dx =

∫

R

f0(x)dx = M

That is why we would like numerical methods to preserve this property.
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3.1.3 Linear advection via Semi Lagrangian Method

Knowing f(tn, xi), we want to compute f(tn+1, xi). Following the charac-
teristics, we know that

f(tn+1, xi) = f(tn, xi − a∆t)

which means that we have to reconstruct the values of f(tn, ·) (of which we
do not dispose). In our case, this will be made by

• Lagrange interpolation

• PWENO interpolation

This method has an advantage, which is its easiness of implementation, but
has also an important disadvantage: it is not conservative.

The α parameter

The parameter

α = a
∆t

∆x

describes how close to the grid points we are interpolating: from f(tn+1, xi) =
f(tn, xi − a∆t),

xi − a∆t = xi − α∆x

which means that the nearer is α to an integer number, the better is hoped
the interpolation to be.

3.1.4 Linear advection via Flux Balance Method

FBM (Flux Balance Method) is used in
filbet
[13] to construct a conservative

method. We already know that

f(t + ∆t, x) = f(t, x − a∆t).

Now, let us integrate over an interval [b1, b2], to get

∫ b2

b1

f(t + ∆t, ξ)dξ =

∫ b2

b1

f(t, ξ − v∆t)dξ

=

∫ b2−a∆t

b1−a∆t

f(t, ξ)dξ

=

∫ b1

b1−a∆t

f(t, ξ)dξ +

∫ b2

b1

f(t, ξ)dξ −
∫ b2

b2−a∆t

f(t, ξ)dξ.

If we use as notation

Φ(t, x) =

∫ x

x−a∆t

f(t, ξ)dξ,
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we get

∫ b2

b1

f(t + ∆t, ξ)dξ =

∫ b2

b1

f(t, ξ)dξ + Φ(t, b1) − Φ(t, b2),

and dividing by ∆ = b2 − b1

∫ b2
b1

f(t + ∆t, ξ)dξ

∆
=

∫ b2
b1

f(t, ξ)dξ

∆
+

Φ(t, b1) − Φ(t, b2)

∆
,

which means

f̄(b1,b2)(t + ∆t) = f̄(b1,b2)(t) +
Φ(t, b1) − Φ(t, b2)

∆
.

This is the local description of mass conservation.
Call F (t, ·) the primitive of f(t, ·), the numerical method we get is the fol-
lowing:

fn+1
i = fn

i +
Φn(xi− 1

2

) − Φn(xi+ 1

2

)

∆x
,

where

Φn(xi− 1

2

) =

∫ x
i− 1

2

x
i− 1

2

−a∆t

f(tn, ξ)dξ = F (xi− 1

2

) − F (xi− 1

2

− a∆t).

Now we need some method to reconstruct what we do not have: either
directly Φn(xi− 1

2

) or F (i− 1

2

−a∆t) (if we can compute F (xi− 1

2

)).

Reconstruction of F (t, ·)

We can compute F (t, xi+ 1

2

) by putting F (t, xi+ 1

2

) =
∑i

j=0 f(t, xi)∆x and

reconstruct the values F (t, xi− 1

2

− a∆t) and F (t, xi+ 1

2

− a∆t) by using

• Lagrange interpolation

• PWENO interpolation

The problems we could find by using these methods is that the positivity
is not guaranteed and the oscillations could be uncontrolled, especially by
using Lagrange method.

PFC-3 method

In order to assure the positivity and the control of the oscillations in the
reconstruction, this method has been introduced in

filbet
[13, page 70-72]. It is

a third order method, and the flux Φi+ 1

2

is directly computed: if the wind

propagation velocity is positive, let j be the index of the cell which contains
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xi+ 1

2

− a∆t, let αi = xj+ 1

2

− (xi+ 1

2

− a∆t), compute slope correctors ǫ+i and

ǫ−i , then

Φi+ 1

2

= ∆x

i
∑

k=j+1

fk + αi

[

fj +
ǫ+i
6

(

1 − αi

∆x

) (

2 − αi

∆x

)

(fj+1 − fj)

+
ǫ−i
6

(

1 − αi

∆x

(

1 +
αi

∆x

)

(fj − fj−1

)

]

.

Otherwise, if the wind propagation velocity is negative, let αi = xj− 1

2

−
(xi+ 1

2

− a∆t), then

Φi+ 1

2

= ∆x

j−1
∑

k=i+1

fk + αi

[

fj −
ǫ+i
6

(

1 − αi

∆x

) (

1 +
αi

∆x

)

(fj+1 − fj)

− ǫ−i
6

(2 +
αi

∆x
(1 +

αi

∆x
)(fj − fj−1)

]

.

Correctors ǫ+i and ǫ−i are defined

ǫ+i =







min
(

1; 2 fi

fi+1−fi

)

fi+1 > fi

min
(

1;−2 f∞−fi

fi+1−fi

)

fi+1 < fi

ǫ−i =







min
(

1; 2 f∞−fi

fi−fi−1

)

fi > fi−1

min
(

1;−2 fi

fi−fi−1

)

fi < fi−1

where f∞ = supN−1
i=0 fi.

3.1.5 Linear Advection via Flux Reconstruction

Finally, we want to apply the procedure in
chiwangshu
[35, page 357] for the equation







∂f

∂t
+

∂

∂x
[af ] = 0

f(0, x) = f0(x)

where a is the wind propagation velocity.
Our strategy in this method will be to approximate ∂fi

∂t
and then perform a

Runge-Kutta step in time. This will be the procedure we follow:

1. Upwinding. The approximation of derivative ∂f
∂x

(xi) must take into
account the direction of propagation. We have two choices, like in
Figure

wind
3.2. The direction of propagation is given by the sign of a.

When the wind a is positive, the information run from the left to the
right, and viceversa, so that if a > 0 we shall choose S+ and if a < 0
we shall choose S− (like in Figure

wind
3.2).
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We want to reconstruct the value
in this point. Using classical WENO−5
we have two choices: either taking
three points on the left and one on the
right or viceversa.

S

S

+

−

Figure 3.2: The procedure of choosing the correct stencil S+ or S− is called
upwinding. This must be done for the sake od stability of the method. wind

2. Flux reconstruction. Denote by g the flux function, i.e.,

gi = afi

and then compute

f̂i+ 1

2

=

{

g+
i+ 1

2

a < 0

g−
i+ 1

2

a ≥ 0

where g+
i+ 1

2

and g−
i+ 1

2

are FDWENO reconstructions of g.

3. Runge-Kutta step. Form scheme

dfi

dt
= − 1

∆x

[

f̂i+ 1

2

− f̂i− 1

2

]

and perform a Runge-Kutta step in time to get f(t + ∆t, xi).

Runge-Kutta methods

Runge-Kutta methods are well-known multi-stage algorithms used to solve
initial value problems for ordinary differential equations.







du

dt
= f(t, u)

u(t0) = u0
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The classical fourth order Runge-Kutta requires four evaluations of f :

k1 = ∆tf(t0, u0), k2 = ∆tf(t0 +
1

2
∆t, u0 +

1

2
k1),

k3 = ∆tf(t0 +
1

2
∆t, u0 +

1

2
k2), k4 = ∆tf(t0 + ∆t, u0 + k3),

with u(t0 + ∆t) = u0 + 1
6 [k1 + 2k2 + 2k3 + k4] (see

lambert
[26] for details).

It is also useful to have implemented Runge-Kutta-3 algorithm: it has
the advantage of being of decreasing total variation 1, say it is TVD, i.e.

TV [f(t)] ≤ TV [f0]

which means that it does not create oscillations. Refer to
shu-osher
[32] for details.

The classical Runge-Kutta-4 does not give certainty of that.

Runge-Kutta-3

1. First stage: compute
k1 = ∆tf(t0, u)

2. Second stage: compute

k2 = ∆tf(t0 +
1

2
∆t, u0 +

1

2
k1)

3. Third stage: compute

k3 = ∆tf(t0 + ∆t, u0 − k1 + 2k2)

4. compute

u(t0 + ∆t) = u(t0) +
1

6
[k1 + 4k2 + k3]

3.2 Tests

In this chapter, the attention will be focused on the difference between the
results given by different interpolation methods. The Cauchy problem







∂f

∂t
+

∂f

∂x
= 0

f(0, x) = f0(x)

has as exact solution
f(t, x) = f0(x − t).

1Discrete total variation is defined

TV [f ] =

N−2
X

i=0

|fi+1 − fi|

.
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3.2.1 Accuracy

In the following test we have computed the L∞ error after time tmax = 10
(∆t = 0.05) of the numerical solution with respect to the exact solution.
Initial function is set to f0(x) = sin2(x). SL-WENO-6,4 works as a 6th-order
method, and its accuracy grows as the number of points grows, analogously
for the FBM-WENO-6,4 method. FBM-PFC-3 is very low order and has an
irregular behaviour; anyway its main property is the control of oscillations,
and not the accuracy.





pts SL − Lagr−6 SL − WENO−6,4

40 4.543e − 05 − − − 1.594e − 04 − − −
80 6.660e − 07 6.091 2.330e − 06 6.095

160 1.005e − 08 6.050 3.336e − 08 6.126

320 1.542e − 10 6.026 3.248e − 10 6.682

640 2.391e − 12 6.011 2.674e − 12 6.924









pts FBM − Lagr−6 FBM − WENO−6,4 FBM − PFC−3

40 4.543e − 05 − − − 1.179e − 04 − − − 7.724e − 01 − − −
80 6.660e − 07 6.091 1.281e − 06 6.523 7.494e − 03 6.687

160 1.005e − 08 6.050 1.124e − 08 6.832 1.866e − 03 2.005

320 1.543e − 10 6.025 1.543e − 10 6.187 4.650e − 04 2.005

640 3.687e − 12 5.386 3.006e − 12 5.682 3.247e − 04 0.518





3.2.2 Total variation control

The Discrete Total Variation is defined as

N−2
∑

i=0

‖fn
i − fn

i+1‖

We have compared the results given by several methods for two initial func-
tions: a step and a peak,

fstep(x) =

{

0 if x < 0
1 if x ≥ 0

fpeak(x) =

{

1 + αx − 1
α
≤ x ≤ 0

1 − αx 0 ≤ x ≤ 1
α

As the solution of linear advection at time t is just a translation of initial
solution, theoretically the total variation is constant.

In the evolution of the step, Lagrange interpolation never conserves or
controls the total variation, and strong oscillations are produced, like in
Figure

totv
3.3. SL-WENO-6,4 conserves the total variation, while FBM-WENO-

6,4 does not.

In the evolution of the peak, we see in Figure
ahiahiahi
3.4 that PWENO, in both

semi-lagrangian and FB methods, conserves the total variation better than
PFC-3 method, for which it decreases strongly. From this point of view,
FBM-PWENO-6,4 is a bit better than SL-WENO-6,4.
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Figure 3.3: The evolution of Discrete Total Variation against time. In this
test, N = 100, x ∈ [−π, π], ∆t = 0.1, tmax = 10, f0(x) = fstep(x). totv
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Figure 3.4: The evolution of Discrete Total Variation against time. In this
test, N = 100, x ∈ [−π, π], ∆t = 0.1, tmax = 20, f0(x) = fpeak(x). ahiahiahi
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Figure 3.5: The evolution of L1-norm error against the time for N = 100,
x ∈ [−π, π], ∆t = 0.1, tmax = 30, f0(x) = fshock(x). dsfgf

3.2.3 Avoiding disphasement errors

We want to focus now the attention on how important is the choice of the
substencils. In Figure

dsfgf
3.5, we see that WENO-6,4 produces less error than

WENO-5,3 both in semi-lagrangian method and in flux balance methods.
This difference is due to the fact that in WENO-5,3 not all the substencils
“feel” that there is a jump point, like in Figure

jump53
3.6. Suppose we are

interpolating close to xi, and suppose the jump point is situated between
xi and xi+1. If there is a substencil which does not contain the irregularity,
WENO method will give weights 0 to all of them but this one. This means
that the jump has parcourred the distance ∆x in the time ∆t (see Figure
dtjump53
3.7), i.e., it runs with wrong speed ∆x

∆t
with an error with respect to the real

speed of

∆ = a − ∆x

∆t
= α

∆x

∆t
− ∆x

∆t

=
∆x

∆t
[α − 1]

which, after time T gives a phase error of

∆Φ =
∆x

∆t
[α − 1] × T.

This induces to think that it is essential to use a WENO method such that
every substencil contains the discontinuity, like WENO-6,4. In general, it
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S

S

S

0

1

2

The discontinuity lies here

This stencil does not "see" the discontinuity:
it will have weight almost 1.

These stencils see the discontinuity: they will have
weight almost 0.

Figure 3.6: In WENO-5,3 problems are caused by not all the substencils
feeling that high derivatives occur: this makes the weights neglect the sub-
stencils where the discontinuity is produced. jump53
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The discontinuity lies here

x x x x

x x x

Figure 3.7: At next time step this is the distance parcoured by the jump:
in time ∆t the displacement in ∆x. dtjump53
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must be

lpo ≥
[

ntot + 1

2

]

+ 1.

3.2.4 Amplification factor and disphasement error

We want to perform a test on the harmonics of the solution, using a Discrete
Fourier Transform (DFT). The expansion is defined this way

fn
j =

N−1
∑

k=0

f̂n
k exp(ikxj),

where

f̂n
k =

1

N

N−1
∑

j=0

fn
j exp(−ikxj)

where the values fn
j represents the numerical solution of the problem at time

tn and spatial grid point xj .
The exact solution for a single mode K in advection equation can be

easily computed. Imposing that

f(t, x) =
N−1
∑

k=0

f̂k(t) exp(ikx)

must satisfy the advection equation ∂f
∂t

+ a∂f
∂x

= 0, we get

N−1
∑

k=0

d

dt
f̂k(t) exp(ikx) + a

N−1
∑

k=0

f̂k(t)ik exp(ikx) = 0.

Multiplying by exp(iKx) and then integrating over [−π, π] in dx, we deduce

d

dt
f̂K(t) exp(iKx) + iKaf̂K(t) exp(iKx) = 0.

Simplifying,
d

dt
f̂K(t) + iKaf̂K(t) = 0,

and thus,
d

dt
f̂K(t) = −iKaf̂K(t),

so
f̂K(t) = f̂K(0) exp(−iKx).

The test will be the following one:

1. Choose
(f̂0

0 , f̂0
1 , f̂0

2 , ..., f̂0
N−1) ∈ C

N .
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2. Construct as initial function

f0(x) =
N−1
∑

k=0

f̂0
k exp(ikx).

3. Consider separately the evolution via characteristics method of ℜ(f0)
and ℑ(f0). Adding them, we get f(tn, xj).

4. Fix one mode K to study.

5. Consider the exact solution for that mode

f̂n
K = f̂0

K exp(−iKatn).

6. Consider the numerical solution for that mode

f̃n
K =

1

N

N−1
∑

j=0

fn
j exp(−iKxj).

7. Compute the amplification error

a.e. =
‖f̂n

K‖
C

‖f̃n
K‖

C

.

8. Compute the disphasement error

ph.e. = arg(f̂n
K) − arg(f̃n

K).

3.2.5 Dispersion and diffusion

Both the amplitude and the disphasement error are computed as a function
of the parameter α which measures how good the interpolation is going to
be for the linear advection equation. We shall show both errors for the case
of f0(x) = eiKx as initial data.

The amplitude error measures the numerical diffusion error, that is, how
much the harmonics decrease in the evolution of the numerical solution. As
wave number k gets smaller, the error increases, like we can see in Figures
ampli_1
3.8-

ampli_8
3.11.
The phase error measures the dispersion error, i.e. how much the har-

monics run with a wrong velocity. As wave number k gets larger, the error
increases, like we can see in Figures

phase_1
3.12-

phase_8
3.15.

For this number of points, Lagrange reconstructions are better, both
in semi-lagrangian and in FB methods. PWENO behaves better in semi-
lagrangian method than in FBM, where it is more dispersive.



3.2. TESTS 49

1
1
1
1
1
1
1
1
1
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1-SL-6,4
1-SL-lagr6

1
1
1
1
1
1
1
1
1
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1-FBM-6,4
1-FBM-lagr6

Figure 3.8: Amplitude error for mode K = 1, N = 100, ∆t = 0.05, tmax = 1 ampli_1
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Figure 3.9: Amplitude error for mode K = 2, N = 100, ∆t = 0.05, tmax = 1 ampli_2
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Figure 3.10: Amplitude error for mode K = 4, N = 100, ∆t = 0.05, tmax = 1 ampli_4
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Figure 3.11: Amplitude error for mode K = 8, N = 100, ∆t = 0.05, tmax = 1 ampli_8
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Figure 3.12: Phase error for mode K = 1, N = 100, ∆t = 0.05, tmax = 1 phase_1
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Figure 3.13: Phase error for mode K = 2, N = 100, ∆t = 0.05, tmax = 1 phase_2
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Figure 3.14: Phase error for mode K = 4, N = 100, ∆t = 0.05, tmax = 1 phase_4
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Figure 3.15: Phase error for mode K = 8, N = 100, ∆t = 0.05, tmax = 1 phase_8



Chapter 4

Solving Vlasov’s systems

In this section, the techniques for solving several kinds of Vlasov-Poisson-
Boltzmann equations are explained. The fundamental instruments are the
time-splitting procedures.

4.1 Strang’s splittings

Take the equation
∂Ψ

∂t
= LΨ

where L is a linear operator generator of a C0-semigroup. Its formal solution
is

Ψ(t) = exp(tL)Ψ(0).

We split the operator L into two parts:

L = L1 + L2

and we take them as the infinitesimal generators of the C0-semigroups

Fi(t) = exp (tLi) .

Note that L1 + L2 is also the infinitesimal generator of a C0-semigroup be-
cause of Trotter’s product theorem. Strang’s splitting consists in taking

F(∆t) = F1

(

∆t

2

)

F2 (∆t)F1

(

∆t

2

)

.

This can be proven to be a second order scheme in the sense that

F (∆t) = exp (∆tL) + O
(

∆t3
)

.

Consider now two cases of Strang’s splittings, the two we are going to use.

53
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4.1.1 Strang’s time splitting between Vlasov and Boltzmann

Given equation
∂f

∂t
+ v · ∇xf + F · ∇vf = Q[f ]

where the force field F (t, x) and the Boltzmann operator Q[f ] are known, we
advance a step in time by advancing separately in Vlasov and in Boltzmann
parts, i.e., given

f(tn, xi, vj)

we proceed in this way:

1. Perform a ∆t
2 time step in Vlasov part, i.e., solving

∂f

∂t
+ v · ∇xf + F · ∇vf = 0

to get

f∗(tn, xi, vj).

2. Perform a ∆t time step in Boltzmann part, i.e., solving

∂f

∂t
= Q[f ]

to get

f∗∗(tn, xi, vj).

3. Perform a ∆t
2 time step in Vlasov part, i.e., solving

∂f

∂t
+ v · ∇xf + F · ∇vf = 0

to get

f(tn+1, xi, vj).

like in Figure
firsttimesplitting
4.1.

Remark. In our previous notation, we split the operator

L = −v · ∇x − F · ∇v + Q

into
{

L1 = −v · ∇x − F · ∇v

L2 = Q
.
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Figure 4.1: Time splitting between Vlasov and Boltzmann parts. firsttimesplitting

4.1.2 Strang’s splitting between x and v

Our purpose is now to solve

∂f

∂t
+ v · ∇xf + F · ∇vf = 0

given the force field F (t, x). The procedure (which was originally introduced
by Cheng and Knorr

timesplitting
[7]) is to split the Vlasov equation into either phases

x and v, in this way: given f (tn, x, v),

1. Consider v fixed, and take the free transport equation

∂f

∂t
+ v

∂f

∂x
= 0

and perform a ∆t
2 time step in the x-direction to get

f∗ (tn, x, v) = f

(

tn, x − v
∆t

2
, v

)

by one of the advection algorithms previously described.

2. Compute the force field F (f∗ (tn, x, v)).

3. Consider x fixed, and take equation

∂f∗

∂t
+ F

∂f∗

∂v
= 0

and perform a ∆t time step in the v-direction to obtain

f∗∗ (tn, x, v) = f∗ (tn, x, v − F∆t) .
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Figure 4.2: Time splitting between phases x and v in R
N . 2ts

4. Consider v fixed, and take the free transport equation

∂f∗∗

∂t
+ v

∂f∗∗

∂x
= 0

and perform a ∆t
2 time step in the x-direction to obtain

f
(

tn+1, x, v
)

= f∗∗
(

tn, x − v
∆t

2
, v

)

.

This scheme is second order in time.

Remark. In our former terms, we split the operator

L = −v · ∇x − F · ∇v

into
{

L1 = −v · ∇x

L2 = −F · ∇v

.

A similar scheme is used to solve the relativistic Vlasov equation (see chapter
1):

∂f

∂t
+

p

(1 + p2)
1

2

∂f

∂x
−

(

η−1E + A
∂A

∂x

)

∂f

∂p
= 0

assuming both E and A are given functions just by substituting v by the
relativistic velocity

p

(1 + p2)
1

2

and the force field by F (t, x) = η−1E + A∂A
∂x

.
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4.2 Computing the force field

The force field can be of different kinds; in our cases it will be the solution
of Poisson’s equation (electrostatic field) or a combination of Poisson’s and
Maxwell’s equations (coupling electrostatic and magnetic fields).

4.2.1 Resolution of 1D Poisson equation

1D-Poisson equation is straightforward computed, for instance by numerical
integration. Given

∂2Φ

∂x2
= Ψ,

we solve it by

Φ(x) =

∫ η=x

η=0

∫ ξ=η

ξ=0
Ψ(ξ)dξdη + Ax + B

where A and B are constants we shall define in order to satisfy some proper-
ties, like periodicity, boundary conditions or the global neutrality of electric
field.

4.2.2 1D Maxwell’s equations

In this section, we shall explain the instruments we are going to use to com-
pute the force field for the quasi-relativistic Vlasov-Maxwell model (

QRVM
1.10).

Let us summarize here the magnitudes we need to evolve the vector
potential A for Maxwell’s equation:

1. The y-component of the electric field E (see chapter 1):

E = −∂A

∂t
(4.1) ele

2. The y-component of the magnetic field B (see chapter 1):

∂E
∂x

= −∂B

∂t
(4.2) Bi

3. The final equation for the vector potential A substituting the values
of the E and B:

−∂B

∂x
= −η−2A

∫

fdp +
∂E
∂t

. (4.3) last

There is no problem in the computation of the x-component of the electro-
static field E given by 1D Poisson’s equation since the advection step in
p-direction does not modify the density (see Figure

nomodifydensity
4.3) and therefore, the

force field is constant in time E[f∗] during the advection step in p-direction.
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We shall compute A, E and B here

rather than here

to get a second−order approximation.

Figure 4.4: We have to take care where we compute the magnitudes, because
we can gain one order in time. here
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Figure 4.6: ∂E
∂x

is approximated in the marked points to define B at xi+ 1

2

and tn+ 1

2 . B

In order to get a second-order in time approximation in p-direction ad-
vection, we shall compute A and ∂A

∂t
at time marked in Figure

here
4.4. We

want to compute A(tn+ 1

2 , xi), like in figure
AmE
4.5. All the other magnitudes

shall be centered in order to achieve this goal. Therefore, we discretize (
ele
4.1)

this way

A
n+ 1

2

i − A
n− 1

2

i

∆t
= −En

i .

En
i is defined like in figure

AmE
4.5. Then, we discretize (

Bi
4.2) as

−En
i+1 − En

i

∆x
=

B
n+ 1

2

i+ 1

2

− B
n− 1

2

i+ 1

2

∆t
.

We want now to define B like in Figure
B
4.6. Discretization of last condition

(
last
4.3) gives

En+1
i − En

i

∆t
= η−2A

n+ 1

2

i ρ∗i −
B

n+ 1

2

i+ 1

2

− B
n+ 1

2

i− 1

2

∆x
.
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Resumé

The three conditions (
ele
4.1)-(

last
4.3) give

1.

A
n+ 1

2

i = A
n− 1

2

i − En
i ∆t (4.4) eqA

2.

B
n+ 1

2

i+ 1

2

= B
n− 1

2

i+ 1

2

− ∆t

∆x

(

En
i+1 − En

i

)

(4.5) eqB

3.

En+1
i = En

i + η−2A
n+ 1

2

i ρ∗i ∆t − ∆t

∆x

(

B
n+ 1

2

i+ 1

2

− B
n+ 1

2

i− 1

2

)

. (4.6) eqC

Procedure scheme

Knowing fn
i,j , En

i , A
n− 1

2

i and B
n− 1

2

i+ 1

2

we shall perform a time-step:

1. From En
i and A

n− 1

2

i in (
eqA
4.4) we get A

n+ 1

2

i .

2. From En
i and B

n− 1

2

i+ 1

2

in (
eqB
4.5) we get B

n+ 1

2

i+ 1

2

.

3. From En
i , previous steps and (

eqC
4.6) we get En+1

i .

4. Compute

B
n+ 1

2

i =

(

B
n+ 1

2

i− 1

2

+ B
n+ 1

2

i+ 1

2

)

2
.

5. Compute

F ∗
i = η−1E∗

i + A
n+ 1

2

i B
n+ 1

2

i .

4.3 Collision

The linear Boltzmann homogeneous equation

∂f

∂t
=

1

τ
[ρ(t, x)Mθ0

(v) − f(t, x, v)]

is an ODE for f(t) in which (x, v) are parameters. This ODE is of the form
x′ = A − Bx, whose solution is x(t) = e−Btx0 + A

B

(

1 − e−Bt
)

, therefore

f(tn + ∆t, x, v) = e−
1

τ
∆tf(tn, x, v) + ρ(tn, x)Mθ0

(v)
(

1 − e−
1

τ
∆t

)

.



Chapter 5

Performing PWENO method

In this chapter, we apply our numerical method to solve Vlasov-Poisson-
Boltzmann equations in several problems of interest in plasma physics and
charge particle transport in semiconductors.

5.1 1D Vlasov-Boltzmann equation with a confin-

ing potential

We solve the 1D Vlasov-Boltzmann equation with a confining potential
Φ0(x) and the simplest linear collision operator:







∂f

∂t
+ v

∂f

∂x
− ∂Φ0

∂x

∂f

∂v
=

1

τ
[ρM1 − f ]

f(0, x) = f0(x)

From
carrillocaceresgoudon
[5] we know that the solution tends to a global equilibrium given by

fs = M

(∫

R

exp (−Φ0(x)) dx

)−1

exp (−Φ0(x)) M1(v)

in L1 norm, whenever the external potential verifies the confinement condi-
tions:










































•Φ0 ≥ 0, Φ0 ∈ C∞(R),
• exp(−Φ0(x)) ∈ L1(R),
•Φ0 is a bounded perturbation of a uniformly convex potential on R:

Φ0 = Φuc
0 + Φbp

0 such that

there exists λ1 > 0 such that ∂2

∂2x
Φuc

0 (x) ≥ λ1, ∀x ∈ R,

and

there exists a and b such that 0 < a ≤ Φbp
0 (x) ≤ b < ∞, ∀x ∈ R.

The decay rate was proved to be ”almost exponential” (see
carrillocaceresgoudon
[5]), i.e.,

‖f − fs‖2
L1 ≤ H[f ; fs] ≤ C(ǫ, f0)t

− 1

ǫ , (5.1) bound

61
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Figure 5.1: The spectrum of operator (
oper
5.1). oscilla

for all ǫ > 0. Global and local relative entropies are measures of how far is
f from the global equilibrium fs and the local equilibrium ρ(t, x)M1.



















H[f ; fs] =

∫

R

∫

R

|f − fs|2
fs

dvdx

H̃[f ; ρM1]=

∫

R

∫

R

|f − ρM1|2
fs

dvdx

.

Global and local relative entropies satisfy the ODE inequalities system (see
carrillocaceresgoudon
[5]):















− d

dt
H[f ; fs] ≥ KH̃[f ; ρMθ0

]

d2

dx2
H̃[f ; ρMθ0

] ≥ K ′H[f ; fs] − C(f, ǫ)H̃[f ; ρMθ0
]

. (5.2) h-htilda

We will show numerical results in the particular case of Φ0(x) = x2

2 . In
this case, the Vlasov part gives a rotation of the initial function f0(x, v)
while the collision part thermalizes the velocity distribution towards M1(v).
Moreover, an analysis of the spectrum of operator

f 7−→ −v
∂f

∂x
+ x

∂f

∂v
+

1

τ
[ρM1 − f ]

has recently been done in
herau
[18] showing the existence of an spectral gap in a

suitable L2-weighted space and thus, of the exponential convergence in that
space and as a consequence in L1 towards fs.

Both the previous ODEs inequalities (
h-htilda
5.2) and the spectral analysis sug-

gest the appearance of oscillations in the trend of solutions towards global
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Figure 5.2: Test performed with 256 × 256 points, ∆t = 0.1, SL method

with PWENO-6,4, f
(1)
0 (x) = Z1 sin2

(

x2

2

)

e−
x2

+v2

2 . twopeaks

equilibrium. The ODEs inequalities (
h-htilda
5.2) shows that the trend of conver-

gence towards local equilibria is compensated by the transport term that
should push the solution out of the local equilibria manifold whenever the
solution approaches a local equilibria which is not the global equilibrium.
This fact suggests an oscillation both in the local and global relative entropy.
On the other hand, assuming the first non-zero eigenvalues in the spectrum
are given by a pair of conjugate eigenvalues λ1 and λ2 then, we expect oscil-
lations of the L2-weighted norm with a slope decay given by ℜ(λi) < 0 and
oscillation frequency given by the absolute value of ℑ(λi). We refer to

herau
[18]

for details. The spectrum looks like in Figure
oscilla
5.1.

In the upper left graphs of Figures
twopeaks
5.2 and

fourpeaks
5.3 we see, for two different

initial functions normalized to have unit mass, that the L1-convergence of
f towards fs is led by the decay of H[f ; fs], like in (

bound
5.1). The convergence

is clearly exponential as the results of
herau
[18] prove for the L1-norm.

In the lower left graphs we see that L∞-convergence is also expected to
be exponential, although this result has not been proven yet. In the upper
right graphs we see that the oscillations of global and relative entropies
correspond, due to the couplings (

h-htilda
5.2). In the lower right graphs we observe

that the mass seems pretty well conserved.

We shall now perform tests with different domain lengths and different
initial functions: the oscillation rate and the decay slope should not change,
because we are not using periodic conditions. In fact, we are solving the



64 CHAPTER 5. PERFORMING PWENO METHOD

1e-04

0.001

0.01

0.1

1

10

0 5 10 15 20 25 30

L1-conv to fs

H[f ; fs]

1e-04

0.001

0.01

0.1

1

10

0 5 10 15 20 25 30

H[f ; fs]
H̃[f ; M1ρ]

0.001

0.01

0.1

1

0 5 10 15 20 25 30

L∞-conv to fs

0.985

0.99

0.995

1

1.005

1.01

0 5 10 15 20 25 30

L1-norm

Figure 5.3: Test performed with 256 × 256 points, ∆t = 0.1, SL method
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Figure 5.4: From this comparison, it is quite clear that the oscillation rate
is the same for both initial functions, even if the behaviour is different. compH
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Cauchy problem by neglecting the distribution function f outside a suitable
domain chosen in such a way that the values of f near the border are almost
negligible.

In Figure
compH
5.4 we compare the decay of global and relative entropies

for two different initial functions. Even if the amplitude of the oscillation
is different, it seems evident that the oscillation rate and the decay slope
correspond.

The system seems to “hesitate” between states where it is close to a
local equilibrium ρM1 and the convergence to the global equilibrium fs.
In

oscillations
[12] similar oscillations have been reported in the case of the full non-

linear Boltzmann equation for rarefied gases in a box with periodic boundary
conditions. A numerical approximation of the slope γ and the frequency ω

of the decaying oscillations towards global equilibrium gives:

















f0(x) L ω γ

f
(1)
0 (x) 4π 3.15 −0.298368

f
(1)
0 (x) 6π 3.15 −0.298872

f
(2)
0 (x) 4π 3.125 −0.304400

f
(2)
0 (x) 6π 3.125 −0.304858

















A refinement study has been perfomed to check that the oscillation frequency
and the decay slope do not depend on the dimensions of the domain, nor on
the initial datum we choose: they are determined by the system itself.

5.2 1D Landau damping

Landau theory has been developed in order to study the propagation of small
amplitude waves, with wave number k, in a uniform plasma (with no mag-
netic field and no collisions); the positively charged ions are supposed not
to move since they are much heavier than electrons, and the only transport
is due to the electrons. The mathematical study is based on a linearization
of the Vlasov-Poisson equation. The total energy is conserved (according
to the Vlasov-Poisson equation theory), but the interesting phenomenon is
that the Landau theory conjectures an interchange of energy between the
electric field and resonant particles driven by the wave. Resonant particles
are the ones which get trapped by the potential, as in Figure

landau
5.5. The decay

of the electric field is oscillating, with a period similar to the bounce time1

τ = 2π
(

me

ekE0

) 1

2

(E0 is the amplitude of the electric field), where the bounce

time is the time particles spend to be reflected inside the potential well, that
is the time they spend to be bounced from point x1 to point x2 in Figure
landau
5.5. The oscillations are due to the exchange of energy between the particles

1The time for the electron to shift its position relative to the wave.
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Figure 5.5: The phenomenon of particle trapping. landau

(kinetic energy) and the wave (potential energy) during these reflections. In
the particular case of an initial Maxwellian distribution, it has been proven
there is a net transfer of energy from the electric field to the particles, and
the electric energy is almost linearly damped, without oscillations, because
no phenomenon of particle trapping appears.

It is interesting to check how precise is the reconstruction of the electric
energy2 performed by the different methods. It is expected to decay, but
when approaching the recurrence time TR = 2π

k∆v
the reconstructions may be

less accurate and eventually, after this time, it becomes completely wrong.
Remark that this recurrence time is a numerical and non physical effect.

We shall set as initial function

f0(x, v) =
1√
2π

e−
v2

2 [1 + α cos(kx)] (5.3) initlandau

Parameter k shall be chosen in order to get a periodic function, i.e. according
to the length of the device. In our tests, x ∈ [0, 4π] and k = 0.5; in this way
we get 4 periods in x-direction. Parameter α is (of course) most influent on
the results, its meaning is a sort of non-linearity rate in Landau phenomena.
It does not influence the oscillation rate of the decay of the electric field,
but it does influence the amplitude of these oscillations, and, most of all, as
α grows larger, the decay rate of the electric energy is damped. So, to make

2We recall electric energy is defined as

Z

|E(t, x)|2dx
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Figure 5.6: The decay of electric field for different α. compalpha

a resumé (look at Figure
compalpha
5.6): if we set α = 0, the electric energy is linearly

(in logarithmic scale) damped; if we set a small α, like α = 0.01 in our
example, we can observe that the decay of the damping rate is negligible,
and we can observe the phenomenon of particle trapping: the electric energy
decays with oscillations; if we set a large α, like α = 0.5, we can of course
observe the phenomenon of particle trapping in the oscillations (and note
that the oscillation rate is always the same) and we can also observe that
initially the electric energy decays linearly (in log. scale) but after some
time the decay rate is killed and the electric energy starts oscillating around
some equilibrium point.

An interesting point is to observe whether the total energy is conserved
or not. In the case of Vlasov-Poisson equation, the total energy is the sum
of the kinetic and the potential energy as it appears in (

totalenergyvlasovpoisson
1.3).

5.2.1 Linear 1D Landau damping

Let us take α = 0.01 in (
initlandau
5.3), this case is called linear Landau damping

since the behavior is expected to be led by the linearization of the Vlasov-
Poisson equation around the maxwellian distribution. This case does not
really provide problems in numerical computations. No strong oscillations
occur in either phase. Reconstructions given by both methods with any
interpolation method are nearly the same.

If we take the solutions given by Lagrange-19 as exact (there is no dif-
ference in using SL or FBM), here is a table with L∞ and L1 errors of
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Figure 5.7: Evolution of discrete electric energy and the L1 and L2 norms in
linear Landau damping, for Nx = 256, Nv = 256, ∆t = 0.125, tmax = 100,
Lagrange-19 interpolation in SL method. lld_lagr19
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Figure 5.8: Evolution of discrete electric energy and the L1 and L2 norms in
linear Landau damping, for Nx = 256, Nv = 256, ∆t = 0.125, tmax = 100,
Lagrange-19 interpolation in FB method. lld_fbm_lagr19
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Figure 5.9: Evolution of discrete electric energy and the L1 and L2 norms in
linear Landau damping, for Nx = 256, Nv = 256, ∆t = 0.125, tmax = 100,
WENO-6,4 interpolation in SL method. lld_sl_64
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Figure 5.10: Evolution of discrete electric energy and the L1 and L2 norms
in linear Landau damping, for Nx = 256, Nv = 256, ∆t = 0.125, tmax = 100,
WENO-6,4 interpolation in FB method. lld_fbm_64
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the macroscopic density given by the the other methods with respect to
Lagrange-19.

















used method L∞ − error L1 − error

SL-WENO-6,4 0.000044 0.000019
FBM-WENO-6,4 0.000045 0.000019
SL-WENO-7,4 0.000004 0.000003
FBM-WENO-7,4 0.000003 0.000003
FBM-WENO-9,5 0.000002 0.000002

















We can see that most of all the order of the method has influence on the
accuracy of the result since no great oscillations are produced.

5.2.2 Non-linear 1D Landau damping

Set α = 0.5 in (
initlandau
5.3), this case is called non-linear Landau damping since the

behavior obtained from the linearisation is expected not to hold. In non-
linear Landau damping the most problematic phenomenon is the filamenta-
tion. In the macroscopic density (v-integration of distribution function f)
strong oscillations are produced, and the method must be able to control
them properly. Lagrange reconstruction is expected to work poorly due to
the appearance of undesired oscillations. In fact, these strong oscillatory be-
havior is equivalent to the appearance of strong gradients, and numerically
speaking, they produce the same problems as shocks although we deal here
with very smooth functions.

Semilagrangian method coupled with WENO-6,4 does not provide a very
good reconstruction: at a certain time a strong mass loss appears, which
influences the amplitude of the oscillations. If you compare Figures

nlld_sl_6_4
5.15

and
nlld_sl_lagr19
5.11, strong oscillations occur in the macroscopic density, and WENO

tends to control them; as semi-lagrangian method was not developed in
order to converve mass, this regularization is what induces the mass loss. In
FBM, (Figure

nlld_fbm_6_4
5.17) the oscillations are controlled and the system behaves

better because we do not loose mass. This method works very well in this
case.

As for the conservation of the total energy, Flux Balance method works
better than Semi-Lagrangian: in FBM with WENO-6,4 the oscillation is
about 0.04%, while in SL with WENO-6,4 it is about 0.25%.

In this case, Lagrange-19 reconstructions give non reliable results since
the increase of the total variation of the solution is so large that most of
the reported oscillations are spurious. This is even clearer when we take
the solutions given by Lagrange-19 and compute a table with L∞ and L1

differences of the macroscopic density given by the the other methods with
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Figure 5.11: Non-linear Landau damping. Nx = 256, Nv = 256, ∆t =
0.125,Lagrange-19 interpolation in SL method. Upside: evolution of discrete
electric energy, evolution of L1 and L2 norms, evolution of the total energy.
Downside: evolution of v-integrated distribution function. nlld_sl_lagr19
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Figure 5.12: Evolution of level curves in non-linear Landau damping, for
256 × 256 points, ∆t = 0.125, with SL-Lagrange-19 method. Levels are:
0.05, 0.3 and 0.6. sl_lagr19_lc_1
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Figure 5.13: Non-linear Landau damping. Nx = 256, Nv = 256, ∆t =
0.125,Lagrange-19 interpolation in FBM. Upside: evolution of discrete elec-
tric energy, evolution of L1 and L2 norms, evolution of the total energy.
Downside: evolution of v-integrated distribution function. nlld_fbm_lagr19
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Figure 5.14: Evolution of level curves in non-linear Landau damping, for
256 × 256 points, ∆t = 0.125, with FBM-Lagrange-19 method. Levels are:
0.05, 0.3 and 0.6. fbm_lagr19_lc_1
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Figure 5.15: Non linear Landau damping. Nx = 256, Nv = 256, ∆t = 0.125,
WENO-6,4 interpolation in SL. Upside: evolution of discrete electric energy,
evolution of L1 and L2 norms, evolution of the total energy. Downside:
evolution of v-integrated distribution function. nlld_sl_6_4
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Figure 5.16: Evolution of level curves in non-linear Landau damping, for
256×256 points, ∆t = 0.125, with SL-WENO-6,4 method. Levels are: 0.05,
0.3 and 0.6. sl64_lc_1
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Figure 5.17: Non lineal Landau damping. Nx = 256, Nv = 256, ∆t = 0.125,
WENO-6,4 interpolation in FBM. Upside: evolution of discrete electric en-
ergy, evolution of L1 and L2 norms, evolution of the total energy. Downside:
evolution of v-integrated distribution function. nlld_fbm_6_4
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Figure 5.18: Evolution of level curves in non-linear Landau damping, for
256 × 256 points, ∆t = 0.125, with FBM-WENO-6,4 method. Levels are:
0.05, 0.3 and 0.6. fbm64_lc_1
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respect to Lagrange-19.

















used method L∞ − difference L1 − difference

SL-WENO-6,4 0.441668 0.953818
SL-WENO-7,4 0.619164 1.366983
FBM-WENO-6,4 0.481264 0.839781
FBM-WENO-7,4 0.520260 0.837280
FBM-PFC-3 0.493379 1.203918

















In this case, we repeat that Lagrange-19 results are completely wrong while
methods based on PWENO interpolation do control the total variation of
the function. In fact, it is worthy to remark that interpolation methods like
WENO-7,4, which does not control oscillation, is worse than lower order
methods like WENO-6,4 or PFC-3.

5.3 Vlasov-Maxwell

Let us solve the simplified Vlasov-Maxwell system modelling the laser-plasma
interaction. The theoretical derivation of the quasi-relativistic Vlasov-Maxwell
model is explained in chapter 1, and the numerical schemes which we shall
use are explained in chapter 4. We still need to initialize the variables A, E
and B, to be able to start the numerical method, and, of course, we have to
give the initial distribution f0(x, p).

Initialization of A, E and B

We need to initialize A(t, x), E(t, x) and B(t, x). In fact, we just need to
give an initialization for A(t, x), because of relations (

ele
4.1) and (

Bi
4.2). In the

tests it will be set

A(t, x) = A0 cos(ωt − kx).

Then, E(t, x) = −A0ω sin(ωt − kx) and B(t, x) = −A0k sin(ωt − kx). The
proper initializations shall be



























E0
i = A0ω sin(kxi)

A
− 1

2

i = A0 cos
(

kxi + ω∆t
2

)

B
− 1

2

i+ 1

2

= A0k sin
[

ω∆t
2 + k

(

xi + ∆x
2

)]

.

Initial distribution

We shall choose as initial data a two-temperature initial distribution. We
want to define a two-temperatures maxwellian distribution: in our scale we

shall center it around velocities (thermic and hot) vth =
√

15
511 and vhot =
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√

100
511 : the first part will be a classical maxwellian and the second part a

relativistic maxwellian, to take into account the difference between velocity
and momentum p.

G(p) = α
1√

2πvth

e
− p2

2v2
th +

1 − α

z
e
−
√

1+p2−1

kBThot

where z is just a normalizing factor, α gives the ratio of thermic electrons
(we shall set α = 95%), kB is the Boltzmann’s constant in our scale and
Thot is the high temperature for carriers, corresponding to vhot: it is Thot =
100(eV ). Initial function f0 will be set

f0(x, p) = (1 + ǫ cos(kex)) G (p − ǫvth cos(kex)) ,

where ǫ = 0.05.

Results

The computations have been performed for 64 × 64 points, and a time step
of ∆t = 0.001. Simulating up to time t = 20 this way has taken almost one
day.

As you can see from the evolution of level curves and the density in
Figure

vm_sl_lagr19
5.3, Lagrange-19 method produces spurious oscillations, even if the

mass is quite well conserved (varies about 0.4%).
As for WENO-6,4 the results given by Flux Balance method have probably
to be considered as more reliable: the mass is conserved, the total energy
has an oscillation about 6.5%, and, most of all, no spurious oscillations seem
to appear during the simulation.
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Figure 5.19: Vlasov-Maxwell simulation performed with 64 × 64 points,
∆t = 0.001, Semi-Lagrangian method, Lagrange-19. Upside: The evolution
of level curves. Levels are 0.05, 0.4, 0.7, 1. Middle: The evolution of the
macroscopic density. downside: The evolution of the L1-norm and of the
total energy.
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Figure 5.20: Vlasov-Maxwell simulation performed with 64 × 64 points,
∆t = 0.001, Semi-Lagrangian method, WENO-6,4. Upside: The evolution
of level curves. Levels are 0.05, 0.4, 0.7, 1. Middle: The evolution of the
macroscopic density. downside: The evolution of the L1-norm and of the
total energy.
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Figure 5.21: Vlasov-Maxwell simulation performed with 64 × 64 points,
∆t = 0.001, FBM, WENO-6,4. Upside: The evolution of level curves. Levels
are 0.05, 0.4, 0.7, 1. Middle: The evolution of the macroscopic density.
downside: The evolution of the L1-norm and of the total energy.
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Appendix A

Physical constants

Here is the table with all the physical constants:

e = 1.602 × 10−19 C elementary electric charge

me = 9.10938188 × 10−31 Kg electron mass

m∗ = 1.7307825572 × 10−31 Kg = 0.19 × me electron effective mass

ǫ = 1.03594 × 10−10 C2

Jm
Silicon dielectric permittivity

h = 6.626068 × 10−34 m2Kg
s

Planck’s constant

c = 299792458 m
s

light speed
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