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The MOSFET

The MOSFET is a transistor in which the conductivity can
be altered by varying the voltage between the gates and the
source,
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which induces a potential penetrating inside the channel
and making the device be turned off, on, or work as a
resistor.
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The model

x-dimension is 20 nm, therefore we adopt a classical
description, supposing that the carriers behave like ballistic
particles, driven by the effects of the free motion and the
force field, while their collisions are taken into account by
the right hand side (Boltzmann Transport Equation):

∂fp

∂t
+

1

~
∇kǫp · ∇xfp −

1

~
∇xǫp · ∇kfp = Q[f ]p,

plus an initial datum

fp(t = 0, x, k1, k2) = fp,0(x, k1, k2)

and some boundary conditions.
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z-dimension

The z-dimension (6 nm) is confined, therefore the carriers
behave like waves, their energy levels become discretized
and a quantum description is proper. Therefore we use a
steady-state Schrödinger equation to compute their energy
levels and distribution for any position x (which acts only as
parameter), under the effects of the self-consistent electric
field and the confining potential :

−
~

2

2me

d

dz

(

1

m∗(z)

dχp[V ]

dz

)

− q (V + Vc) χp[V ] = ǫp[V ]χp[V ]

{χp[V ]}p ⊆ H1
0 orthonormal basis.
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The coupling

x-dimension and z-dimension are coupled through the
Poisson equation for computing the electrostatic field, which
has the contribution of the free electrons density moving in
the device and the doping profile, i.e. the injected
impurities which form part of the MOSFET:

−divx,z

(

εRgradx,zV
)

= −
q

ε0
(N [V ] − ND),

plus some boundary conditions.
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Numerical schemes

The fundamental numerical techniques are relative to:

splitting methods (Strang’s splitting)

Newton iteration for the Schrödinger-Poisson block.
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Time splitting

The time step ∆t is fixed: the method is implicit and we
hope we can achieve the equilibrium in few steps.
The BTE is solved through a second order time splitting
scheme (Strang’s splitting). Solving the complete
Boltzmann equation

∂fp

∂t
+

1

~

{

ǫtotp , fp

}

= Q[f ]p

reduces to solving for separate the advection problem and
the collision operator and then recombine them.

Boltzmann

∆ t
2

∆ t

∆ t
2

operator
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(x, k1)-advection problem

In order to solve problem

∂fp

∂t
+

1

~

∂ǫkin
p

∂k1

∂fp

∂x
−

1

~

∂ǫ
pot
p

∂x

∂fp

∂k1
= 0

we adopt the same scheme as to split the advection
problem from the collision problem:

∆ t
2

∆ t

∆ t
2

x−advection

k_advection

We are thus led to solving for separate two linear advection
problems.

Wien, 09-14/07/2005 – p. 11



The linear transport problem

The linear transport
{

∂f
∂t + v ∂f

∂x = 0

f(tn, x) = fn(x)

is the building block for the Boltzmann part. Three solvers
are proposed:

direct Semi Lagrangian: following backward the
characteristics we obtain a good control of the total
variation (when applied to the proper PWENO
interpolator), therefore no spurious oscillations appear.
Drawback: it is not conservative.

Wien, 09-14/07/2005 – p. 12



The linear transport problem

Flux Balance Method: conservative method based on a
similar idea as the SL; its drawback is that it does not
control oscillations as good as SL does.

Positive Flux Conservative-3: conservative method,
controls oscillations by means of some slope
correctors; its drawback: it is low order.

Wien, 09-14/07/2005 – p. 13



Collisions

By now, a simple relaxation time operator is used:

∂fp

∂t
=

1

τ

∑

q

[Mρq − fp] ,

whose analytic solution is straightforward. The complete
Boltzmann operator has to be written for a detailed
description: works in progress...
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The Schrödinger-Poisson block

In order to compute the equilibrium states, the potential, the
eigenproperties (potential band-energy, z-charge
distribution, Fermi levels) and the band occupations, we
need to be able to solve three main problems:

1D Newton iteration for the border potential

stationary-state Schrödinger equation

2D Newton iteration for the Schrödinger-Poisson
problem (potential)
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Numerics for the Schrödinger equation

The Schrödinger equation

~
2

2me

d

dz

(

1

m∗(z)

dχp[V ]

dz

)

− q (V + Vc) χp[V ] = ǫp[V ]χp[V ]

{χp[V ]}p ⊆ H1
0 orthonormal basis.

is discretized through finite differences, then the
diagonalization is performed through a LAPACK routine
called DSTEQR.
As a remark, another routine, DSTEGR, had been tried
before, but it did not work properly. Why?
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Newton schemes

The building block for the computation of the potential is the
solution os the 1D and 2D Schrödinger-Poisson problems

−div (εR∇V ) = −
q

ε0
(N [V ] − ND)

completed by the boundary conditions for the potential V

and, most of all, provided with an expression for the density
N [V ]; changing the density, we shall obtain and solve
different problems.
Technical point. In order to perform the Newton iteration, we
must be able to compute the Gâteaux derivative of the
density with respect to V , in direction U : dN(V, U). It is here
that the Schrödinger equation plays a rôle.
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Border potential

It is the 1D Schrödinger-Poisson problem where the density
is defined by

N [Vb] =

∫

ND(0, ζ)dζ
∑

q e
−

ǫp[Vb]

kBTL

∑

p

e
−

ǫq [Vb]

kBTL |χp[Vb](z)|2

and homogeneous Neumann conditions are imposed at
z = 0 and z = lz.
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Equilibrium state

In order to initialize the solver of the kinetic equation, we
need to compute the equilibrium state when no drain-source
voltage is applied. It is the 2D Schrödinger-Poisson
problem where the density is defined by

N [V eq] =

∫

ND(0, ζ)dζ
∑

q e
−

ǫq [Vb]

kBTL

∑

p

e
−

ǫp[V eq ]

kBTL |χp[V
eq](z)|2,

plus the boundary conditions.
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Computation of the potential

We propose two versions for the computation of the
potential:

explicit version: given the band occupations {ρp}p, the
density is just defined as

N [V ] =
∑

p

ρp|χp[V ]|2
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Computation of the potential

semi-implicit version: given the band occupations {ρp}p

and the potential band-energies (i.e. the Schrödinger
eigenvalues) {ǫp} the density is just defined as

N [V ] =
∑

p

eǫpρpe
−ǫp[V ]|χp[V ]|2.

We expect this scheme to be more stable.
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Numerical results

Up to now, we have the results for the border potential and
for the equilibrium state. Still the code does not provide
correct results for the kinetic equation.
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Border potential
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Equilibrium
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Conclusions and perspectives

Some improvements to the code have to be made:

get results fro the dynamics

electrons have six configurations

add one dimension
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