
Hybrid model for 2D quantum transport
N. B A, M. M, C. N, N. V,  F. V

IMT, Université Paul Sabatier, 31062 Toulouse Cedex 09, France

Introduction

Metal Oxide Semiconductor Field Effect Transistors have
reached the scale of some nanometers per dimension.

Subband decomposition

At nanoscopic scale quantumphenomena become relevant
and the energy levels become discrete, therefore the choice
has been made of decomposing the probability density
function into energy subbands.

Goal

The goal of the project is the writing of subband models,
the theoretical study of their well-posedness and their nu-
merical simulation in 3D at both steady and transient states
through microscopic or macroscopic models.
Here

Here a 2D simulation of two hybrid quantum-classical sys-
tems is shown : one is a steady-state macroscopic model
and one is transient-state microscopic.

The device

The geometry of the device which is the object of our nu-
merical study is drawn here :
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The high doping is set 1020 1cm3 while the low doping is set
1015 1cm3. The built-in confining potential due to the SiO2-
layer is 3V.

The model

Hybridity

• x-dimension is classical : electrons behave like ballistic
particles, because 20 nm is large enoughwith respect to the
Debye length
• z-dimension is quantum : particles behave like waves,
because 8 nm is comparable with the Debye length.
Building blocks

Two main blocks are needed :
• the z-dimension uses the Schrödinger-Poisson equation
for the subband decomposition (each eigenvalue and ei-
genfunction corresponds to an energy level) ; dimensions
are coupled through Poisson equation :
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• the x-dimension describes the motion of particles driven
by the force field and subjected to collisions. Two possibi-
lities :
–Drift-Diffusion, therefore an integration on themacrosco-
pic variable Ns(x) representing the surface density
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whereD = µkBTL denotes the diffusion coefficient andUs
is the effective energy
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–Boltzmann Transport Equation, therefore a microscopic
description :

∂ fp

∂t
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pot
p · ∇x fp = Qp[ fp].

For the scope of thiswork,we have used the simplest linear
BGK approximation, a relaxation time operator (only intra-
band scattering, not inter-band) :

Qp[ fp] =
1

τ

[

M(k)ρp − fp(k)
]

,

where τ is the relaxation time (given by the mobility µ
through the relation τ =

m∗µ
q ),Mp(k) is the Maxwellian

Mp(k) =
~2|k|2

2πkBTLm∗
,

~ the reduced Planck constant, kB the Boltzmann constant,
TL the lattice temperature and m∗ the effective mass.

Numerics for the BTE

Time discretization

The time step ∆t is fixed and the BTE is integrate in the
slotboom variable gp(t, x, k) defined by

fp(t, x, k) = gp(t, x, k) exp

(
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)

(instead of the original fp(t, x, k)) through a time splitting

technique, allowing to solve for separate the transport part
and the collision part
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]

and then recombine them
through a second order
scheme which consists of
three steps. The same tech-
nique also applies inside the
transport part.
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Border conditions

For the entering particles we impose inflow/outflow condi-
tions, or Neumann for the outgoing ones : for instance at
source contact we have

f np (−x, k) =
ρ
eq
p (0)

ρnp(0)
f np (0, k) if k1 > 0

f np (−x, k) = f
n
p (0, k) otherwise.

Advection blocks

The advection stages are solved via characteristics, either
using a pure semi-lagrangian scheme or a conservative
scheme.
• Pure semi-lagrangian : just
interpolate

f (tn+1, xi) = f (t
n,X(tn; tn+1, xi)).

This method is quite easy
to implement, has a good
control of spurious oscilla-
tions but the drawback is that
it does not conserve mass.
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• The conservative method is
called Flux Balance Method :? xi+1/2
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Its drawback is that it does
not avoid spurious oscilla-
tions as well as the SL.
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is the same, because we have followed

At time t      it equals, thanks to the integration propertiesn

the characteristics backward.

the average along the blue segment
plus the average along the purple segment
minus the average along the green segment

The average along the red segments

Collision operator

The solution of a relaxation time collision operator is expli-
cit.

Numerics for the SP block

The Schrödinger equation

The Schrödinger equation is approximated via standard
finite differences, then thematrix is diagonalized bymeans
of a LAPACK routine called DSTEQR. The equation being
solved in H1

0
, so χp(z = 0) = χp(z = lz) = 0.

The Poisson equation

We need to solve 1D and 2D Poisson equation like

−div [εR∇V] + C

∫

A(ζ)V(ζ)dζ = B.

The Laplacian is approximated via finite differences, the
integration via trapezoids and the linear system solved by
means of a LAPACK routine called DGESV. At boundaries,
Robin conditions are taken at contacts, Dirichlet at gates
and homogeneous Neumann elsewhere.
The Newton iteration

Newton schemes are used to minimize functionals

P[V] = −div [εR∇V] −
q

ε0
[N[V] −ND] .

• Technical point : the computation of the Gâteaux deriva-

tive of the functional, especially of the density N[V] with
respect to the potential.

Initial conditions : border potential

First of all we solve a 1D Schrödinger-Poisson problem for
the border potential, because we need to compute the bor-
der configuration respecting the electrical neutrality condi-
tions :
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Initial conditions : equilibrium state

In order to initialize the transient-state solver, we have first
of all to compute a thermodynamical equilibrium for the
system, which is already quite a complete problem. This is
realized through solving a 2D Schrd̈inger-Poisson problem
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Long time behavior

We present here the stationary state computed by the drift-
diffusion code.

Here we have the stationary
state for an applied drain-
source voltage of VDS = 0.2V.

Here we have the stationary
state for an applied drain-
source voltage of VDS = 0.5V.
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