The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
0000000		0000000000	000000

A semi-Lagrangian deterministic solver for a hybrid quantum-classical nanoMOSFET

Naoufel Ben Abdallah, María José Cáceres, José Antonio Carrillo, Francesco Vecil

SIMAI minisimposia, 15-19/09/2008

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 000000

Outline

The model

- Geometry
- Mathematical model

2 Numerical methods for the Schrödinger-Poisson block

- Newton schemes
- Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- BTE discretizations
- Linear advection
- PWENO interpolations

- Simplifying assumptions
- Equilibria
- Time-dependent simulations

The model ●0000000	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 000000
Geometry			
Outline			

Geometry

Mathematical model

Numerical methods for the Schrödinger-Poisson block

- Newton schemes
- Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- BTE discretizations
- Linear advection
- PWENO interpolations

- Simplifying assumptions
- Equilibria
- Time-dependent simulations

The model			
0000000	00000	0000000000	000000
Geometry			
The model			

We afford the simulation of a nanoscaled MOSFET.

Dimensional coupling

x-dimension is longer than z-dimension, therefore we adopt a different description:

- along *x*-dimension electrons behave like particles, their movement being described by the Boltzmann Transport Equation;
- along *z*-dimension electrons confined in a potential well behave like waves, moreover they are supposed to be at equilibrium, therefore their state is given by the stationary-state Schrödinger equation.

Geometry	00000	0000000000	000000
The model			

Subband decomposition

Electrons in different energy levels, also called *sub-bands*, another name for the eigenvalues of the Schrödinger equation, have to be considered independent populations, so that we have to transport them for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of the electrostatic field in the expression of the total density.

Coupling between subbands

Subbands are also coupled in the scattering operator, where the carriers are allowed to jump from an energy level to another one.

Geometry		000000000	000000
The mode	1		

Subband decomposition

Electrons in different energy levels, also called *sub-bands*, another name for the eigenvalues of the Schrödinger equation, have to be considered independent populations, so that we have to transport them for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of the electrostatic field in the expression of the total density.

Coupling between subbands

Subbands are also coupled in the scattering operator, where the carriers are allowed to jump from an energy level to another one.

Geometry		000000000	000000
The mode	1		

Subband decomposition

Electrons in different energy levels, also called *sub-bands*, another name for the eigenvalues of the Schrödinger equation, have to be considered independent populations, so that we have to transport them for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of the electrostatic field in the expression of the total density.

Coupling between subbands

Subbands are also coupled in the scattering operator, where the carriers are allowed to jump from an energy level to another one.

Randstrug	rture		
Geometry			
0000000		0000000000	000000
The model	Numerical methods for the Schrödinger-Poisson block		

The three valleys

The Si bandstructure presents six minima in the first Brillouin zone:

The axes of the ellipsoids are disposed along the x, y and z axes of the reciprocal lattice. The three minima have the same value, therefore there is no gap.

Geometry		
Randstructi	1re	

Non-parabolicity

The bandstructure around the three minima can be expanded following the Kane non-parabolic approximation:

$$\epsilon_{\nu}^{kin} = rac{\hbar^2}{1 + \sqrt{1 + 2 ilde{lpha}_{
u}\hbar^2 \left(rac{k_x^2}{m_{
u}^x} + rac{k_y^2}{m_{
u}^y}
ight)}} \left(rac{k_x^2}{m_{
u}^x} + rac{k_y^2}{m_{
u}^y}
ight),$$

where $m_{\nu}^{\{x,y\}}$ are the axes of the ellispoids (called *effective masses*) of the ν^{th} valley along *x* and *y* directions, and the $\tilde{\alpha}_{\nu}$ are known as Kane dispersion factors.

The simplest case: one-valley, parabolic

$$\epsilon^{kin} = \frac{\hbar^2 |k|^2}{2m_*},$$

ヘロト ヘ戸ト ヘヨト ヘヨト

э

with m_* an average value between the effective masses.

Randstruct	ure		
Geometry			
00000000		0000000000	000000
The model	Numerical methods for the Schrödinger-Poisson block		

Non-parabolicity

The bandstructure around the three minima can be expanded following the Kane non-parabolic approximation:

$$\epsilon_{\nu}^{kin} = rac{\hbar^2}{1 + \sqrt{1 + 2 ilde{lpha}_{
u}\hbar^2 \left(rac{k_x^2}{m_{
u}^x} + rac{k_y^2}{m_{
u}^y}
ight)}} \left(rac{k_x^2}{m_{
u}^x} + rac{k_y^2}{m_{
u}^y}
ight),$$

where $m_{\nu}^{\{x,y\}}$ are the axes of the ellispoids (called *effective masses*) of the ν^{th} valley along *x* and *y* directions, and the $\tilde{\alpha}_{\nu}$ are known as Kane dispersion factors.

The simplest case: one-valley, parabolic

$$\epsilon^{kin} = \frac{\hbar^2 |k|^2}{2m_*},$$

with m_* an average value between the effective masses.

0000000 Mathematical model	00000	0000000000	000000
Outline			

- Geometry
- Mathematical model

Numerical methods for the Schrödinger-Poisson block

- Newton schemes
- Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- BTE discretizations
- Linear advection
- PWENO interpolations

- Simplifying assumptions
- Equilibria
- Time-dependent simulations

The model	Numerical methods for the Schrödinger-Poisson block	Experiments
00000000		
Mathematical model		
The mode	1	

BTE

The Boltzmann Transport Equation (one for each band and for each valley) reads

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{1}{\hbar} \nabla_k \epsilon_{\nu}^{kin} \cdot \nabla_x f_{\nu,p} - \frac{1}{\hbar} \nabla_x \epsilon_{\nu,p}^{pot} \cdot \nabla_k f_{\nu,p} = \mathcal{Q}_{\nu,p}[f], \qquad f_{\nu,p}(t=0) = \rho_{\nu,p}^{eq} M.$$

Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{\nu}}\frac{d\chi_{\nu,p}[V]}{dz}\right] - q\left(V + V_c\right)\chi_{\nu,p}[V] = \epsilon_{\nu,p}^{pot}[V]\chi_{\nu,p}[V]$$
$$\{\chi_{\nu,p}\}_p \subseteq H_o^1(0, l_z) \text{ orthonormal basis}$$
$$-\operatorname{div}\left[\varepsilon_R \nabla V\right] = -\frac{q}{\varepsilon_0}\left(\sum_{\nu,p} \rho_{\nu,p} |\chi_{\nu,p}[V]|^2 - N_D\right)$$

plus boundary conditions.

These equations cannot be decoupled because we need the eigenfunctions to compute the potential (in the expression of the total density), and we need the potential to compute the eigenfunctions.

The model	Numerical methods for the Schrödinger-Poisson block	Experiments
00000000		
Mathematical model		
The mode	1	

BTE

The Boltzmann Transport Equation (one for each band and for each valley) reads

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{1}{\hbar} \nabla_k \epsilon_{\nu}^{kin} \cdot \nabla_x f_{\nu,p} - \frac{1}{\hbar} \nabla_x \epsilon_{\nu,p}^{pot} \cdot \nabla_k f_{\nu,p} = \mathcal{Q}_{\nu,p}[f], \qquad f_{\nu,p}(t=0) = \rho_{\nu,p}^{eq} M.$$

Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{\nu}}\frac{d\chi_{\nu,p}[V]}{dz}\right] - q\left(V + V_c\right)\chi_{\nu,p}[V] = \epsilon_{\nu,p}^{pot}[V]\chi_{\nu,p}[V]$$
$$\{\chi_{\nu,p}\}_p \subseteq H_o^1(0, l_z) \text{ orthonormal basis}$$
$$-\operatorname{div}\left[\varepsilon_R \nabla V\right] = -\frac{q}{\varepsilon_0}\left(\sum_{\nu,p} \rho_{\nu,p} |\chi_{\nu,p}[V]|^2 - N_D\right)$$

plus boundary conditions.

These equations cannot be decoupled because we need the eigenfunctions to compute the potential (in the expression of the total density), and we need the potential to compute the eigenfunctions.

000000 Mathematical model	00000	0000000000	000000
The model			

The collision operator

The collision operator takes into account the electron-optical phonon scattering mechanism. It reads

$$\mathcal{Q}_{\nu,p}[f] = \sum_{s} \sum_{\nu',p'} \int_{\mathbb{R}^2} \left[S^s_{(\nu',p',k')\to(\nu,p,k)} f_{\nu',p'}(k') - S^s_{(\nu,p,k)\to(\nu',p',k')} f_{\nu,p}(k) \right] dk':$$

every S^s represents a different interaction, which may be elastic or inelastic, intra-valley or inter-valley. Each of them is inter-band.

Structure of the S^s

Each of the *S*^s consists of a constant, an overlap integral and a delta for the exchange of energy:

$$S^{s}_{(\nu,p,k)\to(\nu',p',k')} = C_{\nu,\nu'} \int_{0}^{l_{z}} |\chi_{\nu,p}|^{2} |\chi_{\nu',p'}|^{2} dz \delta\left(\epsilon^{tot}_{\nu',p'}(k') - \epsilon^{tot}_{\nu,p}(k) \pm \text{some energy}\right)$$

・ロト・日本・日本・日本・日本・日本

000000 Mathematical model	00000	0000000000	000000
The model			

The collision operator

The collision operator takes into account the electron-optical phonon scattering mechanism. It reads

$$\mathcal{Q}_{\nu,p}[f] = \sum_{s} \sum_{\nu',p'} \int_{\mathbb{R}^2} \left[S^s_{(\nu',p',k')\to(\nu,p,k)} f_{\nu',p'}(k') - S^s_{(\nu,p,k)\to(\nu',p',k')} f_{\nu,p}(k) \right] dk':$$

every S^s represents a different interaction, which may be elastic or inelastic, intra-valley or inter-valley. Each of them is inter-band.

Structure of the S^s

Each of the S^s consists of a constant, an overlap integral and a delta for the exchange of energy:

$$S^{s}_{(\nu,p,k)\to(\nu',p',k')} = C_{\nu,\nu'} \int_{0}^{l_{z}} |\chi_{\nu,p}|^{2} |\chi_{\nu',p'}|^{2} dz \delta\left(\epsilon^{tot}_{\nu',p'}(k') - \epsilon^{tot}_{\nu,p}(k) \pm \text{some energy}\right)$$

・ロト・日本・日本・日本・日本・日本

	Numerical methods for the Schrödinger-Poisson block	
	● 00 00	
Newton schemes		
Outline		

The model

- Geometry
- Mathematical model

2 Numerical methods for the Schrödinger-Poisson block

Newton schemes

• Solvers for Schrödinger and Poisson

Solvers for the BTE block

- BTE discretizations
- Linear advection
- PWENO interpolations

- Simplifying assumptions
- Equilibria
- Time-dependent simulations

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
	0000		
Newton schemes			
The Newt	on scheme		

The functional

Solving the Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{\nu}}\frac{d\chi_{\nu,p}[V]}{dz}\right] - q\left(V + V_c\right)\chi_{\nu,p}[V] = \epsilon_{\nu,p}^{pot}[V]\chi_{\nu,p}[V]$$
$$-\operatorname{div}\left[\varepsilon_R\nabla V\right] = -\frac{q}{\varepsilon_0}\left(\sum_{\nu,p}\rho_{\nu,p}|\chi_{\nu,p}[V]|^2 - N_D\right)$$

is equivalt to minimizing, under the constraints of the Schrödinger equation, the functional P[V]

$$P[V] = - ext{div}\left(arepsilon_R
abla V
ight) + rac{q}{arepsilon_0} \left(\sum_{
u,p}
ho_{
u,p} |\chi_{
u,p}[V]|^2 - N_D
ight),$$

The scheme

which is achieved by means of a Newton scheme

$$dP(V^{old}, V^{new} - V^{old}) = -P[V^{old}]$$

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
	0000		
Newton schemes			
The Newt	on scheme		

The functional

Solving the Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{\nu}}\frac{d\chi_{\nu,p}[V]}{dz}\right] - q\left(V + V_c\right)\chi_{\nu,p}[V] = \epsilon_{\nu,p}^{pot}[V]\chi_{\nu,p}[V]$$
$$-\operatorname{div}\left[\varepsilon_R\nabla V\right] = -\frac{q}{\varepsilon_0}\left(\sum_{\nu,p}\rho_{\nu,p}|\chi_{\nu,p}[V]|^2 - N_D\right)$$

is equivalt to minimizing, under the constraints of the Schrödinger equation, the functional P[V]

$$P[V] = - ext{div}\left(arepsilon_R
abla V
ight) + rac{q}{arepsilon_0} \left(\sum_{
u,p}
ho_{
u,p} |\chi_{
u,p}[V]|^2 - N_D
ight),$$

The scheme

which is achieved by means of a Newton scheme

$$dP(V^{old}, V^{new} - V^{old}) = -P[V^{old}].$$

	Numerical methods for the Schrödinger-Poisson block	Experiments
	00000	
Newton schemes		
The iterati	ons	

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

$$d\epsilon_{\nu,p}(V,U) = -q \int U(\zeta) |\chi_{\nu,p}[V](\zeta)|^2 d\zeta$$

$$d\chi_{\nu,p}(V,U) = -q \sum_{p' \neq p} \frac{\int U(\zeta) \chi_{\nu,p}[V](\zeta) \chi_{\nu,p'}[V](\zeta) d\zeta}{\epsilon_{\nu,p}[V] - \epsilon_{\nu,p'}[V]} \chi_{\nu,p'}[V](z).$$

Iterations

After computing the Gâteaux-derivative of the density and developping calculations, we are led to a Poisson-like equation

$$-\operatorname{div}\left(\varepsilon_{R}\nabla V^{new}\right) + \int_{0}^{l_{z}} \mathcal{A}[V^{old}](z,\zeta)V^{new}(\zeta)d\zeta$$
$$= -\frac{q}{\varepsilon_{0}}\left(N[V^{old}] - N_{D}\right) + \int_{0}^{l_{z}} \mathcal{A}[V^{old}](z,\zeta)V^{old}(\zeta)d\zeta,$$

where $\mathcal{A}[V]$ is essentially the Gâteaux-derivative of the functional P[V].

	Numerical methods for the Schrödinger-Poisson block	Experiments
	00000	
Newton schemes		
The iterati	ons	

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

$$d\epsilon_{\nu,p}(V,U) = -q \int U(\zeta) |\chi_{\nu,p}[V](\zeta)|^2 d\zeta$$

$$d\chi_{\nu,p}(V,U) = -q \sum_{p' \neq p} \frac{\int U(\zeta) \chi_{\nu,p}[V](\zeta) \chi_{\nu,p'}[V](\zeta) d\zeta}{\epsilon_{\nu,p}[V] - \epsilon_{\nu,p'}[V]} \chi_{\nu,p'}[V](z).$$

Iterations

After computing the Gâteaux-derivative of the density and developping calculations, we are led to a Poisson-like equation

$$\begin{split} -\mathrm{div}\left(\varepsilon_{R}\nabla V^{new}\right) &+ \int_{0}^{l_{z}}\mathcal{A}[V^{old}](z,\zeta)V^{new}(\zeta)d\zeta \\ &= -\frac{q}{\varepsilon_{0}}\left(N[V^{old}]-N_{D}\right) + \int_{0}^{l_{z}}\mathcal{A}[V^{old}](z,\zeta)V^{old}(\zeta)d\zeta, \end{split}$$

where $\mathcal{A}[V]$ is essentially the Gâteaux-derivative of the functional P[V].

	Numerical methods for the Schrödinger-Poisson block	Experiments
	00000	
Solvers for Schrödinger and	d Poisson	
Outline		

The mode

- Geometry
- Mathematical model

2 Numerical methods for the Schrödinger-Poisson block

Newton schemes

Solvers for Schrödinger and Poisson

Solvers for the BTE block

- BTE discretizations
- Linear advection
- PWENO interpolations

- Simplifying assumptions
- Equilibria
- Time-dependent simulations

NT	un atte a dia				
Solvers for Schrödinger and Poisson					
	0000				
The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments		

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{\nu}}\frac{d\chi_{\nu,p}}{dz}\right] - q\left(V+V_c\right)\chi_{\nu,p} = \epsilon_{\nu,p}\chi_{\nu,p}$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

$$-\operatorname{div}\left[\varepsilon_{R}\nabla V\right] + \int_{0}^{l_{z}} \mathcal{A}(z,\zeta)V(\zeta)d\zeta = \mathcal{B}(z).$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system (full) is solved by means of a LAPACK routine called DGESV.

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments			
	00000					
Solvers for Schrödinger a	Solvers for Schrödinger and Poisson					
Numeric	al methods					

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{\nu}}\frac{d\chi_{\nu,p}}{dz}\right] - q\left(V+V_c\right)\chi_{\nu,p} = \epsilon_{\nu,p}\chi_{\nu,p}$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

$$-\operatorname{div}\left[\varepsilon_{R}\nabla V\right] + \int_{0}^{l_{z}} \mathcal{A}(z,\zeta)V(\zeta)d\zeta = \mathcal{B}(z).$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system (full) is solved by means of a LAPACK routine called DGESV.

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments		
	00000				
Solvers for Schrödinger and Poisson					
Numerio	al methods				

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{\nu}}\frac{d\chi_{\nu,p}}{dz}\right] - q\left(V + V_c\right)\chi_{\nu,p} = \epsilon_{\nu,p}\chi_{\nu,p}$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

$$-\operatorname{div}\left[\varepsilon_{R}\nabla V
ight]+\int_{0}^{l_{z}}\mathcal{A}(z,\zeta)V(\zeta)d\zeta=\mathcal{B}(z).$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system (full) is solved by means of a LAPACK routine called DGESV.

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 000000
BTE discretizations			
Outline			

The model

- Geometry
- Mathematical model

2 Numerical methods for the Schrödinger-Poisson block

- Newton schemes
- Solvers for Schrödinger and Poisson

Solvers for the BTE block

- BTE discretizations
- Linear advection
- PWENO interpolations

- Simplifying assumptions
- Equilibria
- Time-dependent simulations

The	model
00	

Numerical methods for the Schrödinger-Poisson block

Solvers for the BTE block

BTE discretizations

Discretization for the transport

Once we have developped the method for updating the band-potential energies, we can focus the attention on solving the transport. Two discretization are proposed.

Runge-Kutta

FDWENO evaluates via dimension-by-dimension approximation the derivatives $\frac{\partial f_{\nu,p}}{\partial x}$ and $\frac{\partial f_{\nu,p}}{\partial k_1}$ and is coupled with the TVD (Total Variation Diminishing) **Runge-Kutta-3** for the time discretization.

Time- & dimensional-splitting

The BTE is split into the solution of the transport and the collisions, then inside the transport we split dimensions and solve linear advection problems:

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{1}{\hbar} \frac{\partial \epsilon_{\nu}^{kin}}{\partial k_1} \frac{\partial f_{\nu,p}}{\partial x} - \frac{1}{\hbar} \frac{\partial \epsilon_{\nu,p}^{pot}}{\partial x} \frac{\partial f_{\nu,p}}{\partial k_1} = 0$$
$$\frac{\partial f_{\nu,p}}{\partial t} = Q_{\nu,p}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The	model
oc	

Numerical methods for the Schrödinger-Poisson block

Solvers for the BTE block

BTE discretizations

Discretization for the transport

Once we have developped the method for updating the band-potential energies, we can focus the attention on solving the transport. Two discretization are proposed.

Runge-Kutta

FDWENO evaluates via dimension-by-dimension approximation the derivatives $\frac{\partial f_{\nu,p}}{\partial x}$ and $\frac{\partial f_{\nu,p}}{\partial k_1}$ and is coupled with the TVD (Total Variation Diminishing) **Runge-Kutta-3** for the time discretization.

Time- & dimensional-splitting

The BTE is split into the solution of the transport and the collisions, then inside the transport we split dimensions and solve linear advection problems:

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{1}{\hbar} \frac{\partial \epsilon_{\nu}^{kin}}{\partial k_1} \frac{\partial f_{\nu,p}}{\partial x} - \frac{1}{\hbar} \frac{\partial \epsilon_{\nu,p}^{pot}}{\partial x} \frac{\partial f_{\nu,p}}{\partial k_1} = 0$$
$$\frac{\partial f_{\nu,p}}{\partial t} = Q_{\nu,p}$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

The	model	
oc	000000	

Numerical methods for the Schrödinger-Poisson block

Solvers for the BTE block

BTE discretizations

Discretization for the transport

Once we have developped the method for updating the band-potential energies, we can focus the attention on solving the transport. Two discretization are proposed.

Runge-Kutta

FDWENO evaluates via dimension-by-dimension approximation the derivatives $\frac{\partial f_{\nu,p}}{\partial x}$ and $\frac{\partial f_{\nu,p}}{\partial k_1}$ and is coupled with the TVD (Total Variation Diminishing) **Runge-Kutta-3** for the time discretization.

Time- & dimensional-splitting

The BTE is split into the solution of the transport and the collisions, then inside the transport we split dimensions and solve linear advection problems:

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{1}{\hbar} \frac{\partial \epsilon_{\nu}^{kin}}{\partial k_1} \frac{\partial f_{\nu,p}}{\partial x} - \frac{1}{\hbar} \frac{\partial \epsilon_{\nu,p}^{pot}}{\partial x} \frac{\partial f_{\nu,p}}{\partial k_1} = 0$$
$$\frac{\partial f_{\nu,p}}{\partial t} = \mathcal{Q}_{\nu,p} f.$$

The model 00000000	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 000000
BTE discretizations			
Runge-Kut	ta		

The operator

Define the operator

$$L_{\nu,p}(t,f) = -\frac{1}{\hbar} \frac{\partial}{\partial k_1} \left[\epsilon_{\nu}^{kin} f_{\nu,p} \right] + \frac{1}{\hbar} \frac{\partial}{\partial x} \left[\epsilon_{\nu,p}^{pot}(t) f_{\nu,p} \right] + \mathcal{Q}_{\nu,p} f,$$

Runge-Kutta scheme

then the third order Total Variation Diminishing Runge-Kutta scheme reads

$$\begin{aligned} f_{\nu,p}^{(1)} &= f_{\nu,p}^{n} + \Delta t L_{\nu,p}(t^{n}, f^{n}) \\ f_{\nu,p}^{(2)} &= \frac{3}{4} f_{\nu,p}^{n} + \frac{1}{4} f_{\nu,p}^{(1)} + \frac{1}{4} \Delta t L_{\nu,p}(t^{n} + \Delta t, f^{(1)}) \\ f_{\nu,p}^{n+1} &= \frac{1}{3} f_{\nu,p}^{n} + \frac{2}{3} f_{\nu,p}^{(2)} + \frac{2}{3} \Delta t L_{\nu,p} \left(t^{n} + \frac{\Delta t}{2}, f^{(2)} \right) \end{aligned}$$

Explicit time-dependence

As a remark, the operator $L_{\nu,p}$ has an explicit time-dependence, because the drain-source potential drop is applied smoothly.

The model 00000000	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 000000
BTE discretizations			
Runge-Kut	ta		

The operator

Define the operator

$$L_{\nu,p}(t,f) = -\frac{1}{\hbar} \frac{\partial}{\partial k_1} \left[\epsilon_{\nu}^{kin} f_{\nu,p} \right] + \frac{1}{\hbar} \frac{\partial}{\partial x} \left[\epsilon_{\nu,p}^{pot}(t) f_{\nu,p} \right] + \mathcal{Q}_{\nu,p} f,$$

Runge-Kutta scheme

then the third order Total Variation Diminishing Runge-Kutta scheme reads

$$\begin{aligned} f_{\nu,p}^{(1)} &= f_{\nu,p}^{n} + \Delta t L_{\nu,p}(t^{n}, f^{n}) \\ f_{\nu,p}^{(2)} &= \frac{3}{4} f_{\nu,p}^{n} + \frac{1}{4} f_{\nu,p}^{(1)} + \frac{1}{4} \Delta t L_{\nu,p}(t^{n} + \Delta t, f^{(1)}) \\ f_{\nu,p}^{n+1} &= \frac{1}{3} f_{\nu,p}^{n} + \frac{2}{3} f_{\nu,p}^{(2)} + \frac{2}{3} \Delta t L_{\nu,p}\left(t^{n} + \frac{\Delta t}{2}, f^{(2)}\right). \end{aligned}$$

Explicit time-dependence

As a remark, the operator $L_{\nu,p}$ has an explicit time-dependence, because the drain-source potential drop is applied smoothly.

The model 00000000	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 000000
BTE discretizations			
Runge-Kut	ta		

The operator

Define the operator

$$L_{\nu,p}(t,f) = -\frac{1}{\hbar} \frac{\partial}{\partial k_1} \left[\epsilon_{\nu}^{kin} f_{\nu,p} \right] + \frac{1}{\hbar} \frac{\partial}{\partial x} \left[\epsilon_{\nu,p}^{pot}(t) f_{\nu,p} \right] + \mathcal{Q}_{\nu,p} f,$$

Runge-Kutta scheme

then the third order Total Variation Diminishing Runge-Kutta scheme reads

$$\begin{aligned} f_{\nu,p}^{(1)} &= f_{\nu,p}^{n} + \Delta t L_{\nu,p}(t^{n}, f^{n}) \\ f_{\nu,p}^{(2)} &= \frac{3}{4} f_{\nu,p}^{n} + \frac{1}{4} f_{\nu,p}^{(1)} + \frac{1}{4} \Delta t L_{\nu,p}(t^{n} + \Delta t, f^{(1)}) \\ f_{\nu,p}^{n+1} &= \frac{1}{3} f_{\nu,p}^{n} + \frac{2}{3} f_{\nu,p}^{(2)} + \frac{2}{3} \Delta t L_{\nu,p}\left(t^{n} + \frac{\Delta t}{2}, f^{(2)}\right) \end{aligned}$$

Explicit time-dependence

As a remark, the operator $L_{\nu,p}$ has an explicit time-dependence, because the drain-source potential drop is applied smoothly.

COOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	00000	000000
Outline		

The model

- Geometry
- Mathematical model

2 Numerical methods for the Schrödinger-Poisson block

- Newton schemes
- Solvers for Schrödinger and Poisson

Solvers for the BTE block

- BTE discretizations
- Linear advection
- PWENO interpolations

- Simplifying assumptions
- Equilibria
- Time-dependent simulations

Linear ad	vection		
Linear advection			
0000000	00000	000000000	000000
The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	

Flux Balance Method:

Total mass conservation is forced. It is based on the idea of following backward the characteristics, but integral values are taken instead of point values:

PWENO interpolations			
The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 000000

The model

- Geometry
- Mathematical model

2 Numerical methods for the Schrödinger-Poisson block

- Newton schemes
- Solvers for Schrödinger and Poisson

Solvers for the BTE block

- BTE discretizations
- Linear advection
- PWENO interpolations

- Simplifying assumptions
- Equilibria
- Time-dependent simulations

		Solvers for the BTE block	
00000000	00000	0000000000	000000
PWENO interpolations			
Motivation			

We need a **Pointwise** interpolation method which does not add spurious oscillations when high gradients appear, e.g. when a jump has to be transported.

Figure: Left: PWENO interpolation. Right: Lagrange interpolation.

イロト 不得 トイヨト イヨト

ж

	Solvers for the BTE block	
0000000	0000000000	000000
PWENO interpolations		
Motivation		

We need a **Pointwise** interpolation method which does not add spurious oscillations when high gradients appear, e.g. when a jump has to be transported.

Figure: Left: PWENO interpolation. Right: Lagrange interpolation.

▲□▶▲□▶▲□▶▲□▶ □ のQで

	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
		00000000000	
PWENO interpolations			

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of Lagrange polynomial reconstructions.

PWENO-6,4

We want to reconstruct the value at this point: we take the reconstruction of the three Lagrange polynomials and compute a sensible average of them, based on how smooth is each

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The model	Numerical method	Solvers for the BTE block $\bigcirc \bigcirc \bigcirc$	Experiments 000000
PWENO interpolations	s		
э .т	• • • •		

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of Lagrange polynomial reconstructions.

We describe the case of PWENO-6,4: we take a stencil of six points and divide it into three substencils of four points:

PWENO-6,4

We want to reconstruct the value at this point: we take the reconstruction of the three Lagrange polynomials and compute a sensible average of them, based on how smooth is each

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block $\circ \circ \circ$	Experiments 000000
PWENO interpolations			
The average	Je		

If we note $p_r(x)$ the Lagrange polynomials, PWENO reconstruction reads

 $p_{PWENO}(x) = \omega_0(x)p_0(x) + \omega_1(x)p_1(x) + \omega_2(x)p_2(x).$

Convex combination.

The convex combination $\{\omega_r(x)\}_r$ must penalize the substencils S_r in which the $p_r(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils S_r are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^2 -norms of the Lagrange polynomials $p_r(x)$ to measure their regularity close to the reconstruction point *x*. The following smoothness indicators have been proposed by Jiang and Shu:

$$\beta_r = \Delta x \left\| \frac{dp_r}{dx} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^3 \left\| \frac{d^2 p_r}{dx^2} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^5 \left\| \frac{d^3 p_r}{dx^3} \right\|_{L^2_{(x_i, x_{i+1})}}.$$

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 000000
PWENO interpolations			
The aver	. аде		

If we note $p_r(x)$ the Lagrange polynomials, PWENO reconstruction reads

$$p_{PWENO}(x) = \omega_0(x)p_0(x) + \omega_1(x)p_1(x) + \omega_2(x)p_2(x).$$

Convex combination.

The convex combination $\{\omega_r(x)\}_r$ must penalize the substencils S_r in which the $p_r(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils S_r are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^2 -norms of the Lagrange polynomials $p_r(x)$ to measure their regularity close to the reconstruction point *x*. The following smoothness indicators have been proposed by Jiang and Shu:

$$\beta_r = \Delta x \left\| \frac{dp_r}{dx} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^3 \left\| \frac{d^2 p_r}{dx^2} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^5 \left\| \frac{d^3 p_r}{dx^3} \right\|_{L^2_{(x_i, x_{i+1})}}.$$

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 000000
PWENO interpolations			
The aver	. аде		

If we note $p_r(x)$ the Lagrange polynomials, PWENO reconstruction reads

$$p_{PWENO}(x) = \omega_0(x)p_0(x) + \omega_1(x)p_1(x) + \omega_2(x)p_2(x).$$

Convex combination.

The convex combination $\{\omega_r(x)\}_r$ must penalize the substencils S_r in which the $p_r(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils S_r are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^2 -norms of the Lagrange polynomials $p_r(x)$ to measure their regularity close to the reconstruction point *x*. The following smoothness indicators have been proposed by Jiang and Shu:

$$\beta_r = \Delta x \left\| \frac{dp_r}{dx} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^3 \left\| \frac{d^2 p_r}{dx^2} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^5 \left\| \frac{d^3 p_r}{dx^3} \right\|_{L^2_{(x_i, x_{i+1})}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々で

TT: also and						
PWENO interpolations						
00000000		00000000000	000000			
	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments			

High order reconstruction

Admit for now that the convex combination is given by the normalization $\omega_r(x) = \frac{\tilde{\omega}_r(x)}{\sum_{s=0}^2 \tilde{\omega}_s(x)}$ of the protoweights $\tilde{\omega}_r(x)$ defined this way:

$$\tilde{\omega}_r(x) = \frac{d_r(x)}{(\epsilon + \beta_r)^2}.$$

Regular reconstruction

Suppose that all the β_r are equal; then we have

$$\omega_r(x)=d_r(x).$$

The optimal order is achieved by Lagrange reconstruction $p_{Lagrange}(x)$ in the whole stencil S, so if we define $d_r(x)$ to be the polynomials such that

 $p_{Lagrange}(x) = d_0(x)p_0(x) + d_1(x)p_1(x) + d_2(x)p_2(x),$

then we have achieved the optimal order because $p_{PWENO}(x) = p_{Lagrange}(x)$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへで

II al anda						
PWENO interpolations						
		0000000000				
	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments			

High order reconstruction

Admit for now that the convex combination is given by the normalization $\omega_r(x) = \frac{\tilde{\omega}_r(x)}{\sum_{s=0}^2 \tilde{\omega}_s(x)}$ of the protoweights $\tilde{\omega}_r(x)$ defined this way:

$$\tilde{\omega}_r(x) = \frac{d_r(x)}{(\epsilon + \beta_r)^2}.$$

Regular reconstruction

Suppose that all the β_r are equal; then we have

$$\omega_r(x)=d_r(x).$$

The optimal order is achieved by Lagrange reconstruction $p_{Lagrange}(x)$ in the whole stencil S, so if we define $d_r(x)$ to be the polynomials such that

$$p_{Lagrange}(x) = d_0(x)p_0(x) + d_1(x)p_1(x) + d_2(x)p_2(x),$$

then we have achieved the optimal order because $p_{PWENO}(x) = p_{Lagrange}(x)$.

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block $\bigcirc \bigcirc \bigcirc$	Experiments 000000
PWENO interpolations			
High order	reconstruction		

Admit for now that the convex combination is given by the normalization $\omega_r(x) = \frac{\tilde{\omega}_r(x)}{\sum_{s=0}^2 \tilde{\omega}_s(x)}$ of the protoweights $\tilde{\omega}_r(x)$ defined this way:

$$\tilde{\omega}_r(x) = \frac{d_r(x)}{(\epsilon + \beta_r)^2}.$$

High gradients

Otherwise, suppose for instance that β_0 is high order than the other ones: in this case S_0 is penalized and most of the reconstruction is carried by the other more "regular" substencils.

▲□▶▲□▶▲□▶▲□▶ □ のQで

The model 0000000	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
Simplifying assumptions			
Outline			

The model

- Geometry
- Mathematical model

2 Numerical methods for the Schrödinger-Poisson block

- Newton schemes
- Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- BTE discretizations
- Linear advection
- PWENO interpolations

4 Experiments

• Simplifying assumptions

- Equilibria
- Time-dependent simulations

Simplifying assumptions	00000	00000000000	000000
Collision o	perator		

Results are presented for the the DG MOSFET in the one-valley, parabolic-band approximation. Moreover, the complete collision operator is substituted by a simple relaxation-time operator:

$$\mathcal{Q}_p f = rac{1}{ au} \left(
ho_p M - f_p
ight).$$

The goal of this work is just the setting up of numerical tools for a more profound and realistic simulation.

A parallel code in the most realistic case is being implemented.

The model 00000000 Equilibria	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 00000
Outline			

The model

- Geometry
- Mathematical model

2 Numerical methods for the Schrödinger-Poisson block

- Newton schemes
- Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- BTE discretizations
- Linear advection
- PWENO interpolations

- Simplifying assumptions
- Equilibria
- Time-dependent simulations

	Numerical methods for the Schrödinger-Poisson block	Experiments
		000000
Equilibria		

Thermodynamical equilibrium: one-valley case

Potential at equilibrium

Outline		
Time-dependent simulations		
		000000
	Numerical methods for the Schrödinger-Poisson block	Experiments

The model

- Geometry
- Mathematical model

2 Numerical methods for the Schrödinger-Poisson block

- Newton schemes
- Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- BTE discretizations
- Linear advection
- PWENO interpolations

- Simplifying assumptions
- Equilibria
- Time-dependent simulations

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 00000			
Time-dependent simulations						
Long-ume benavior						

We propose now some results relative to the long-time behavior of the system.

・ロ・・ (雪・・ (目・・ 目・ のへぐ)