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The model

We afford the simulation of a nanoscaled MOSFET.

gate

source channel drain

gate

SiO2 layers

Dimensional coupling
x-dimension is longer thardimension, therefore we adopt a different description:

@ alongx-dimensiorelectrons behave likearticles their movement being
described by the Boltzmann Transport Equation;

@ alongz-dimensiorelectrons confined in a potential well behave likeves
moreover they are supposed to be at equilibrium, therefore their stateis g
by the stationary-state Schrddinger equation.
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Subband decomposition

Electrons in different energy levels, also calkedi-bands, another name for the
eigenvalues of the Schrédinger equatibave to be considered independent
populations, so that we have to transport them for separate.
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Electrons in different energy levels, also calkedi-bands, another name for the
eigenvalues of the Schrédinger equatibave to be considered independent
populations, so that we have to transport them for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for theteion of
the electrostatic field in the expression of the total density.
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Coupling between subbands

Subbands are also coupled in the scattering operator, where thesaraedlowed
to jump from an energy level to another one.
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Bandstructure

The three valleys
The Si bandstructure presents six minima in the first Brillouin zone:

. Projection on the (x,y)-plane
The constant energy surfaces in the

wavevector space Ay
z :

effectiye masses: effective masses:
" my  alpng direction x my¢  along direction x
] m, alpng direction y ' m, along direction

mt  alpng direction z | m; along direction {z

- valley of type 1

The valleys of type 1 have : The valleys of type 4 have
valley of type 3 .

i valley of type 2 Y i
| ! The valleys of type 3 have
: m, =0.19m 1\ effective masses
H m,  along direction x
. m = 0.91 n , m along direction y
valley of type 3 . m, along direction z

The axes of the ellipsoids are disposed alongxttyeandz axes of the reciprocal
lattice. The three minima have the same value, therefore there is no gap.
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Bandstructure

Non-parabolicity

The bandstructure around the three minima can be expanded followikgttee
non-parabolic approximation:

kin hz k)% kg
€, = X 4 ,
(L e\
L 1+ 20,02 (i + )

wherem{*! are the axes of the ellispoids (calleffiective masses) of the pth valley
alongx andy directions, and thé&, are known as Kane dispersion factors.
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Bandstructure

Non-parabolicity

The bandstructure around the three minima can be expanded followikgttee
non-parabolic approximation:

kin hz k)% kg
€, = X 4 ,
(L e\
L 1+ 20,02 (i + )

wherem{*! are the axes of the ellispoids (calleffiective masses) of the pth valley
alongx andy directions, and thé&, are known as Kane dispersion factors.

The simplest case: one-valley, parabolic

i _ h2|k|?
2m,

)

with m, an average value between the effective masses.
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BTE
The Boltzmann Transport Equation (one for each band and for edigly)reads
3;'1,9 + %vkﬁf’in “Vidup — ;VX“B% Vidp = Quplf], fop(t=0) = PTPM
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The model
BTE
The Boltzmann Transport Equation (one for each band and for edigly)reads
3;'1,9 + %vkﬁf’in “Vidup — %ng% Vidp = Quplf], fop(t=0) = PTPM

Schrodinger-Poisson block

n*d [id\,_p[Vj

T 2dz(m az }_q(V+Vc)\vMVJ:eﬂ‘?tp[V]\u.p,w

2 dz
{x.s}, € Ha(0, ;) orthonormal basis

~div [rvV] =~ <Z pupbxwplVII® = ND>
v,p
plus boundary conditions

These equations cannot be decoupled because we needdhéunctiondo compute
the potential (in the expression of th&al density, and we need the potential to
compute the eigenfunctions.
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The model

The collision operator

The collision operator takes into account the electron-optical phondiesng
mechanism. It reads

Quplf] ZZ/ S k) — o fur i (K) = S p i, k) Trp(K)] K

s v/ p

everyS represents a different interaction, which may be elastic or inelastic,
intra-valley or inter-valley. Each of them is inter-band.
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The model

The collision operator

The collision operator takes into account the electron-optical phondiesng
mechanism. It reads

Quplf] ZZ/ S k) — o fur i (K) = S p i, k) Trp(K)] K
s vp

everyS represents a different interaction, which may be elastic or inelastic,
intra-valley or inter-valley. Each of them is inter-band.

Structure of thes®

Each of theS’ consists of a constant, an overlap integral and a delta for the exchange
of energy:

Iz
SEu,p,k)H(u/,pf,k') =C, / |X»,p|2|Xu’,p’ |2d25 (th},p' (K) — 659,tp(k) + some energ).
0

v
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The Newton scheme

The functional
Solving the Schrédinger-Poisson block

h? d [id\//p[Vj

5 | M - q v v vVl = E3VIIY)

2 dz
—div[erVV] = —E% <Z puplXvpV][* = ND)
v,p

is equivalt to minimizing, under the constraints of the Schrédinger equdkien
functionalP[V]

PIV] = —div (srVV) + E% <Z poplxvplV][* ND> ,
v,p
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The Newton scheme

The functional
Solving the Schrédinger-Poisson block

®d [id\ﬂpw

2dz[m,  dz }*‘“V* Ve) XuplV] = eXp[VIxuplV]

—div[erVV] = _5% <Z puplXvpV][* = ND>

v,p

is equivalt to minimizing, under the constraints of the Schrédinger equdkien
functionalP[V]

PIV] = —div (srVV) + E% <Z poplxvplV][* ND> ,
v,p

The scheme
which is achieved by means of a Newton scheme

dP(VOld, VnaN _ Vold) — —P[VOId].
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The iterations

Derivatives
The Gateaux-derivatives of the eigenproperties are needed:

deyp(V,U) U(Q)[xwpVI(Q)PdC

= JUOxs MOy VIO
a2 euplV] — vy V]

Il

\

o
—

dXVaP(Va U)

Xvp [VI(2).
p’'#p
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The iterations

Derivatives
The Gateaux-derivatives of the eigenproperties are needed:
devg(V,U) = =a [ UOhwslVIQ)dC
JU©OxvpVI(©)xwp [VI(C)dC
Xm/, V, U - 7q . Xv,p/ V](2).
P( ) p,z;ﬁp €y,p[V] — ey [V} p [ ]( )
Iterations

After computing the Gateaux-derivative of the density and developg@Etmyiations,
we are led to a Poisson-like equation

Iz
_div (5rVV™) + / ANV (2, OV™(C)dC

3 (v o)+ [ A oveE o,

€0

whereA[V] is essentially the Gateaux-derivative of the functidpad].
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We need to solve the Schrédinger eigenvalue problem and Poisson eguatio
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Numerical methods

We need to solve the Schrédinger eigenvalue problem and Poisson eguatio
The Schrédinger equation
Equation

r*d [ 1 dxup

T2d|m Az } =V + Vo) Xup = €,pXuip

2 dz

is discretized by alternate finite differences for the derivatives therythengtric
matrix is diagonalized by a LAPACK routine called DSTEQR.
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Numerical methods

We need to solve the Schrédinger eigenvalue problem and Poisson eguatio

The Schrédinger equation
Equation

_h?d 1 dx
2dz|m, dz

} =V + Vo) Xup = €,pXuip

is discretized by alternate finite differences for the derivatives therythengtric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation
We need to solve equations like

iRV + [ Az OV = B2).
0

The derivatives are discretized by finite differences in alternate dires;tthe
integral is computed via trapezoid rule and the linear system (full) is solyeadans
of a LAPACK routine called DGESV.
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Discretization for the transport

Once we have developped the method for updating the band-potentigie=neve
can focus the attention on solving the transport. Two discretization aregedp
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Once we have developped the method for updating the band-potentigie=neve
can focus the attention on solving the transport. Two discretization aregedp

Runge-Kutta

FDWENO evaluates via dimension-by-dimension approximation the dwmaaf#

and ‘r”” " and is coupled with the TVD (Total Variation Diminishingunge-K utta-3
for the time discretization.
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Discretization for the transport

Once we have developped the method for updating the band-potentigie=neve
can focus the attention on solving the transport. Two discretization aregedp

Runge-Kutta

FDWENO evaluates via dimension-by-dimension approximation the dwmaaf#

and af“ " and is coupled with the TVD (Total Variation Diminishingunge-K utta-3
for the time discretization.

v

Time- & dimensional-splitting

>

The BTE is split into the solution of the transport and the collisions, then ins&le
transport we split dimensions and solve linear advection problems:

Op 100t , 10X dfp
ot " h ok Ox h Ox Ok
Ofup
ot

= 0

= O,,f.
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Runge-Kutta

The operator
Define the operator

190 i 0
Luplt.f) = — 7 e [57uo] + 7 2 [(0fup] + Quof.

>t
St =




BTE discretizations

Runge-Kutta

The operator
Define the operator

LV»P(t7f) =

Solvers for the BTE block
[e]e] J

10 : 9
Ak [65”]‘”’4 + x [EB%(t)fv,p] + Qupf,

>t
St =

Runge-Kutta scheme

then the third order Total Variation Diminishing Runge-Kutta scheme reads

(1)
fop
(2)
fop

n+1
fV;P

o+ AtL,p(t", f")
3 1 1
ng,p + Zfrﬁ,lrz + ZAtLv,p(tn + At F)

1
3

2.2 2 At
Do+ 212 + 2AtLp (t” + 2l >) .
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Runge-Kutta

The operator
Define the operator

190 i 0
Luplt.f) = — 7 e [57uo] + 7 2 [(0fup] + Quof.

>t
St =

Runge-Kutta scheme
then the third order Total Variation Diminishing Runge-Kutta scheme reads

(= Do+ Atlup(t ")
2 3 1 1 1 1
fls,g = ng,p + Zf;ﬁ,p) + ZAtLu,p(tn + At,f( ))
1 2 2 At
+1 2 2
W = e+ 3f0 + 34t (t” + St >) .

Explicit time-dependence

As a remark, the operatdy, , has an explicit time-dependence, because the
drain-source potential drop is applied smoothly.
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Linear advection

Flux Balance Method:
Total mass conservation is forced. It is based on the idea of followiokprd the

characteristics, but integral values are taken instead of point values:

Xiciz X i

Xig 0 X1 Xia
; ["+1
% j ¢

The averages along the red segments
are the same, because we have followed
the characteristics backward.

FLUX BALANCE METHOD means evualuating
the flux at time £ from a balance of
fluxes at previous time't :
—-.—.-.= the average along the purple segment
- - plus the average along the blue segment
.. minus the average along the green segment
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PWENO interpolations

Motivation

We need &ointwise interpolation method which does not add spurious oscillations
when high gradients appear, e.g. when a jump has to be transported.

0006060004

I
|
I
I
1 -
|
I
|
I
1

000600004 P0000000R0
Y




Solvers for the BTE block
O@0000

PWENO interpolations

Motivation

We need &ointwise interpolation method which does not add spurious oscillations
when high gradients appear, e.g. when a jump has to be transported.
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Figure:Left: PWENO interpolation. Right: Lagrange interpolation.



PWENO interpolations

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensibbgavei

Lagrange polynomial reconstructions.

PWENO-6,4

i
. . . X . .
XigXj—2 Xi-1 % T x|+1 Xis2 X3

Solvers for the BTE block
[e]e] lele]e]

. The smoothness of the Lagrange

\

D)

Lagrange polynomial mterpolatlo
is performed on the three
substencils made of four

points each.

N\

polynomials is measured along
this segment, between the
two central points.

\ We want to reconstruct
the value at this point: we
take the reconstruction
of the three Lagrange
polynomials and compute a
sensible average of them, bas
on how smooth is each.
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Non-oscillatory properties
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Essentially Non Oscillatory (ENO) methods are based on on a sensibbgavei

Lagrange polynomial reconstructions.

We describe the case of PWENO-6,4: we take a stencil of six points giule dli into

three substencils of four points:

PWENO-6,4

1
|

XigXj—2 Xi-1 % T x|+1 Xis2 X3

= —

. The smoothness of the Lagran

je
polynomials is measured along
this segment, between the

two central points.

/)

Lagrange polynomial mterpolatlo
is performed on the three
substencils made of four

points each.

\ We want to reconstruct
the value at this point: we
take the reconstruction
of the three Lagrange
polynomials and compute a
sensible average of them, bas
on how smooth is each.
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The average

If we notepy (x) the Lagrange polynomials, PWENO reconstruction reads

Peweno(X) = wo(X)Po(X) + wi(X)Pr(X) + w2(X)P2(X)-
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PWENO interpolations

The average

If we notepy (x) the Lagrange polynomials, PWENO reconstruction reads
Prweno(X) = wo(X)Po(X) + wi(X)P1(X) + wa2(X)P2(X).

Convex combination.

The convex combinatiofr (X) }, must penalize the substencsin which the
pr (X) have high derivatives.
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PWENO interpolations

The average

If we notepy (x) the Lagrange polynomials, PWENO reconstruction reads
Prweno(X) = wo(X)Po(X) + wi(X)P1(X) + wa2(X)P2(X).

Convex combination.

The convex combinatiofr (X) }, must penalize the substencsin which the
pr (X) have high derivatives.

Smoothness indicators

In order to decide which substencifs are “regular” and which ones are not, we have
to introduce the smoothness indicators: we use a weighted sumlof-tims of the
Lagrange polynomialp; (x) to measure their regularity close to the reconstructio
pointx. The following smoothness indicators have been proposed by Jiarghand
2 3
+ax|9P + |9
2 dx? 2 3
L L
4% 41) (4 %i41) )

dpr

O = Ax dx
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High order reconstruction

Admit for now that the convex combination is given by the normalization
wr(x) = 5% of the protoweightr (x) defined this way:
s=0 S

o Gi(%)
Wr(X) = 7(6—‘,—/8;)2.
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High order reconstruction

Admit for now that the convex combination is given by the normalization

wr(X) = % of the protoweightsi (x) defined this way:
- dr (x)
X) = — L.
& (e+6)?

Regular reconstruction
Suppose that all thg are equal; then we have

wr(X) = dr (X).

The optimal order is achieved by Lagrange reconstrugii@gange(X) in the whole
stencilS, so if we defineal; (x) to be the polynomials such that

PLagrange(X) = do(X)Po(X) + du(X)P1(X) + d2(X)p2(x),

then we have achieved the optimal order becgsgeno(X) = PLagrange(X)-
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High order reconstruction

Admit for now that the convex combination is given by the normalization

wr(X) = % of the protoweights, (x) defined this way:
- d: (%)
X) = —~2
&) (€ + r)?

High gradients

Otherwise, suppose for instance tf¥atis high order than the other ones: in this case
So is penalized and most of the reconstruction is carried by the other megalér”
substencils.
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Collision operator

Results are presented for the the DG MOSFET in the one-valley, pardizoiit-
approximation. Moreover, the complete collision operator is substitutecsbyiale
relaxation-time operator:

1
Opf = = (ppM — ).

T
The goal of this work is just the setting up of numerical tools for a moréopirod

and realistic simulation.
A parallel code in the most realistic case is being implemented.
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[SGENNENTE

Thermodynamical equilibrium: one-valley case

tho [m*=(-2)]
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Time-dependent simulations

Long-time behavior

We propose now some results relative to the long-time behavior of thexsyste
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