
The model Numerical methods for the Schrödinger-Poisson block Solvers for the BTE block Experiments

A semi-Lagrangian deterministic solver for a
hybrid quantum-classical nanoMOSFET

Naoufel Ben Abdallah, María José Cáceres, José Antonio Carrillo,
Francesco Vecil

SIMAI minisimposia, 15-19/09/2008



The model Numerical methods for the Schrödinger-Poisson block Solvers for the BTE block Experiments

Outline

1 The model
Geometry
Mathematical model

2 Numerical methods for the Schrödinger-Poisson block
Newton schemes
Solvers for Schrödinger and Poisson

3 Solvers for the BTE block
BTE discretizations
Linear advection
PWENO interpolations

4 Experiments
Simplifying assumptions
Equilibria
Time-dependent simulations



The model Numerical methods for the Schrödinger-Poisson block Solvers for the BTE block Experiments

Geometry

Outline

1 The model
Geometry
Mathematical model

2 Numerical methods for the Schrödinger-Poisson block
Newton schemes
Solvers for Schrödinger and Poisson

3 Solvers for the BTE block
BTE discretizations
Linear advection
PWENO interpolations

4 Experiments
Simplifying assumptions
Equilibria
Time-dependent simulations



The model Numerical methods for the Schrödinger-Poisson block Solvers for the BTE block Experiments

Geometry

The model

We afford the simulation of a nanoscaled MOSFET.
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Dimensional coupling

x-dimension is longer thanz-dimension, therefore we adopt a different description:

alongx-dimensionelectrons behave likeparticles, their movement being
described by the Boltzmann Transport Equation;

alongz-dimensionelectrons confined in a potential well behave likewaves,
moreover they are supposed to be at equilibrium, therefore their state is given
by the stationary-state Schrödinger equation.
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Geometry

The model

Subband decomposition

Electrons in different energy levels, also calledsub-bands, another name for the
eigenvalues of the Schrödinger equation, have to be considered independent
populations, so that we have to transport them for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of
the electrostatic field in the expression of the total density.

Coupling between subbands

Subbands are also coupled in the scattering operator, where the carriers are allowed
to jump from an energy level to another one.
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Geometry

Bandstructure

The three valleys

The Si bandstructure presents six minima in the first Brillouin zone:

The constant energy surfaces in the
wavevector space
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Projection on the (x,y)−plane

The valleys of type 1 have
effective masses:
m     along direction x

m     along direction z

The valleys of type 3 have 
effective masses:
m     along direction x
m     along direction y
m     along direction z

The valleys of type 2 have
effective masses:
m     along direction x
m     along direction y
m     along direction z
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The axes of the ellipsoids are disposed along thex, y andz axes of the reciprocal
lattice. The three minima have the same value, therefore there is no gap.
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Geometry

Bandstructure

Non-parabolicity

The bandstructure around the three minima can be expanded following theKane
non-parabolic approximation:
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wherem{x,y}
ν are the axes of the ellispoids (calledeffective masses) of theνth valley

alongx andy directions, and thẽαν are known as Kane dispersion factors.

The simplest case: one-valley, parabolic

ǫ
kin =

~
2|k|2

2m∗
,

with m∗ an average value between the effective masses.
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Mathematical model

The model

BTE

The Boltzmann Transport Equation (one for each band and for each valley) reads

∂fν,p

∂t
+

1
~
∇kǫ

kin
ν · ∇xfν,p −

1
~
∇xǫ

pot
ν,p · ∇kfν,p = Qν,p[f ], fν,p(t = 0) = ρ

eq
ν,pM.

Schrödinger-Poisson block

−
~

2

2
d
dz

»

1
mν

dχν,p[V]

dz

–

− q (V + Vc) χν,p[V] = ǫ
pot
ν,p[V]χν,p[V]

{χν,p}p ⊆ H1
o(0, lz) orthonormal basis

−div [εR∇V] = −
q
ε0

 

X

ν,p

ρν,p|χν,p[V]|2 − ND

!

plus boundary conditions.

These equations cannot be decoupled because we need theeigenfunctionsto compute
the potential (in the expression of thetotal density), and we need the potential to
compute the eigenfunctions.
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Mathematical model

The model

The collision operator

The collision operator takes into account the electron-optical phonon scattering
mechanism. It reads

Qν,p[f ] =
X

s

X

ν′,p′

Z

R2

ˆ

Ss
(ν′,p′,k′)→(ν,p,k)fν′,p′(k′) − Ss

(ν,p,k)→(ν′,p′,k′)fν,p(k)
˜

dk′ :

everySs represents a different interaction, which may be elastic or inelastic,
intra-valley or inter-valley. Each of them is inter-band.

Structure of theSs

Each of theSs consists of a constant, an overlap integral and a delta for the exchange
of energy:

Ss
(ν,p,k)→(ν′,p′,k′) = Cν,ν′

Z lz

0
|χν,p|

2|χν′,p′ |
2dzδ

`

ǫ
tot
ν′,p′(k′) − ǫ

tot
ν,p(k) ± some energy

´

.
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Newton schemes

The Newton scheme

The functional

Solving the Schrödinger-Poisson block

−
~

2

2
d
dz

»

1
mν

dχν,p[V]

dz

–

− q (V + Vc) χν,p[V] = ǫ
pot
ν,p[V]χν,p[V]

−div [εR∇V] = −
q
ε0

 

X

ν,p

ρν,p|χν,p[V]|2 − ND

!

is equivalt to minimizing, under the constraints of the Schrödinger equation, the
functionalP[V]

P[V] = −div (εR∇V) +
q
ε0

 

X

ν,p

ρν,p|χν,p[V]|2 − ND

!

,

The scheme

which is achieved by means of a Newton scheme

dP(Vold
, Vnew − Vold) = −P[Vold].



The model Numerical methods for the Schrödinger-Poisson block Solvers for the BTE block Experiments

Newton schemes

The Newton scheme

The functional

Solving the Schrödinger-Poisson block

−
~

2

2
d
dz

»

1
mν

dχν,p[V]

dz

–

− q (V + Vc) χν,p[V] = ǫ
pot
ν,p[V]χν,p[V]

−div [εR∇V] = −
q
ε0

 

X

ν,p

ρν,p|χν,p[V]|2 − ND

!

is equivalt to minimizing, under the constraints of the Schrödinger equation, the
functionalP[V]

P[V] = −div (εR∇V) +
q
ε0

 

X

ν,p

ρν,p|χν,p[V]|2 − ND

!

,

The scheme

which is achieved by means of a Newton scheme

dP(Vold
, Vnew − Vold) = −P[Vold].



The model Numerical methods for the Schrödinger-Poisson block Solvers for the BTE block Experiments

Newton schemes

The iterations

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

dǫν,p(V, U) = −q
Z

U(ζ)|χν,p[V](ζ)|2dζ

dχν,p(V, U) = −q
X

p′ 6=p

R

U(ζ)χν,p[V](ζ)χν,p′ [V](ζ)dζ

ǫν,p[V] − ǫν,p′ [V]
χν,p′ [V](z).

Iterations

After computing the Gâteaux-derivative of the density and developping calculations,
we are led to a Poisson-like equation

−div (εR∇Vnew) +

Z lz

0
A[Vold](z, ζ)Vnew(ζ)dζ

= −
q
ε0

“

N[Vold] − ND

”

+

Z lz

0
A[Vold](z, ζ)Vold(ζ)dζ,

whereA[V] is essentially the Gâteaux-derivative of the functionalP[V].
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Solvers for Schrödinger and Poisson

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

−
~

2

2
d
dz

»

1
mν

dχν,p

dz

–

− q (V + Vc) χν,p = ǫν,pχν,p

is discretized by alternate finite differences for the derivatives then the symmetric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

−div [εR∇V] +

Z lz

0
A(z, ζ)V(ζ)dζ = B(z).

The derivatives are discretized by finite differences in alternate directions, the
integral is computed via trapezoid rule and the linear system (full) is solved by means
of a LAPACK routine called DGESV.



The model Numerical methods for the Schrödinger-Poisson block Solvers for the BTE block Experiments

Solvers for Schrödinger and Poisson

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

−
~

2

2
d
dz

»

1
mν

dχν,p

dz

–

− q (V + Vc) χν,p = ǫν,pχν,p

is discretized by alternate finite differences for the derivatives then the symmetric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

−div [εR∇V] +

Z lz

0
A(z, ζ)V(ζ)dζ = B(z).

The derivatives are discretized by finite differences in alternate directions, the
integral is computed via trapezoid rule and the linear system (full) is solved by means
of a LAPACK routine called DGESV.



The model Numerical methods for the Schrödinger-Poisson block Solvers for the BTE block Experiments

Solvers for Schrödinger and Poisson

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

−
~

2

2
d
dz

»

1
mν

dχν,p

dz

–

− q (V + Vc) χν,p = ǫν,pχν,p

is discretized by alternate finite differences for the derivatives then the symmetric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

−div [εR∇V] +

Z lz

0
A(z, ζ)V(ζ)dζ = B(z).

The derivatives are discretized by finite differences in alternate directions, the
integral is computed via trapezoid rule and the linear system (full) is solved by means
of a LAPACK routine called DGESV.



The model Numerical methods for the Schrödinger-Poisson block Solvers for the BTE block Experiments

BTE discretizations

Outline

1 The model
Geometry
Mathematical model

2 Numerical methods for the Schrödinger-Poisson block
Newton schemes
Solvers for Schrödinger and Poisson

3 Solvers for the BTE block
BTE discretizations
Linear advection
PWENO interpolations

4 Experiments
Simplifying assumptions
Equilibria
Time-dependent simulations



The model Numerical methods for the Schrödinger-Poisson block Solvers for the BTE block Experiments

BTE discretizations

Discretization for the transport

Once we have developped the method for updating the band-potential energies, we
can focus the attention on solving the transport. Two discretization are proposed.

Runge-Kutta

FDWENO evaluates via dimension-by-dimension approximation the derivatives ∂fν,p

∂x

and ∂fν,p

∂k1
and is coupled with the TVD (Total Variation Diminishing)Runge-Kutta-3

for the time discretization.

Time- & dimensional-splitting

The BTE is split into the solution of the transport and the collisions, then inside the
transport we split dimensions and solve linear advection problems:

∂fν,p

∂t
+

1
~

∂ǫkin
ν

∂k1

∂fν,p

∂x
−

1
~

∂ǫpot
ν,p

∂x
∂fν,p

∂k1
= 0

∂fν,p

∂t
= Qν,pf .
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BTE discretizations

Runge-Kutta

The operator

Define the operator

Lν,p(t, f ) = −
1
~

∂

∂k1

h

ǫ
kin
ν fν,p

i

+
1
~

∂

∂x

ˆ

ǫ
pot
ν,p(t)fν,p

˜

+ Qν,pf ,

Runge-Kutta scheme

then the third order Total Variation Diminishing Runge-Kutta scheme reads

f (1)
ν,p = f n

ν,p + ∆tLν,p(tn
, f n)

f (2)
ν,p =

3
4

f n
ν,p +

1
4

f (1)
ν,p +

1
4
∆tLν,p(tn + ∆t, f (1))

f n+1
ν,p =

1
3

f n
ν,p +

2
3

f (2)
ν,p +

2
3
∆tLν,p

„

tn +
∆t
2

, f (2)
«

.

Explicit time-dependence

As a remark, the operatorLν,p has an explicit time-dependence, because the
drain-source potential drop is applied smoothly.
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Linear advection

Linear advection

Flux Balance Method:

Total mass conservation is forced. It is based on the idea of following backward the
characteristics, but integral values are taken instead of point values:

tn+1

t n

x i−1
x i+1x i

i−1/2x i+1/2x

the average along the purple segment
plus the average along the blue segment

minus the average along the green segment

x x

the characteristics backward.

FLUX BALANCE METHOD means evualuating
the flux at time t       from a balance ofn+1

fluxes at previous time t   : n

The averages along the red segments
are the same, because we have followed
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PWENO interpolations

Motivation

We need aPointwise interpolation method which does not add spurious oscillations
when high gradients appear, e.g. when a jump has to be transported.
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Figure:Left: PWENO interpolation. Right: Lagrange interpolation.
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PWENO interpolations

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of
Lagrange polynomial reconstructions.
We describe the case of PWENO-6,4: we take a stencil of six points and divide it into
three substencils of four points:
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��
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��

S0S1
S2

S

Lagrange polynomial interpolation
is performed on the three 
substencils made of four 
points each.

The smoothness of the Lagrange
polynomials is measured along 
this segment, between the
two central points.

We want to reconstruct
the value at this point: we
take the reconstruction
of the three Lagrange 
polynomials and compute a
sensible average of them, based 
on how smooth is each.

x x x xxxx i i+1 i+2 i+3i−1i−2i−3

PWENO−6,4
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PWENO interpolations

The average

If we notepr(x) the Lagrange polynomials, PWENO reconstruction reads

pPWENO(x) = ω0(x)p0(x) + ω1(x)p1(x) + ω2(x)p2(x).

Convex combination.

The convex combination{ωr(x)}r must penalize the substencilsSr in which the
pr(x) have high derivatives.

Smoothness indicators

In order to decide which substencilsSr are “regular” and which ones are not, we have
to introduce the smoothness indicators: we use a weighted sum of theL2-norms of the
Lagrange polynomialspr(x) to measure their regularity close to the reconstruction
point x. The following smoothness indicators have been proposed by Jiang andShu:

βr = ∆x

‚

‚

‚

‚

dpr

dx

‚

‚

‚

‚

L2
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+ ∆x3
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d2pr

dx2
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L2
(xi,xi+1)

+ ∆x5
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d3pr

dx3
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(xi,xi+1)
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PWENO interpolations
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PWENO interpolations

High order reconstruction

Admit for now that the convex combination is given by the normalization
ωr(x) = ω̃r(x)

P2
s=0 ω̃s(x)

of the protoweights̃ωr(x) defined this way:

ω̃r(x) =
dr(x)

(ǫ + βr)2
.

Regular reconstruction

Suppose that all theβr are equal; then we have

ωr(x) = dr(x).

The optimal order is achieved by Lagrange reconstructionpLagrange(x) in the whole
stencilS, so if we definedr(x) to be the polynomials such that

pLagrange(x) = d0(x)p0(x) + d1(x)p1(x) + d2(x)p2(x),

then we have achieved the optimal order becausepPWENO(x) = pLagrange(x).
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PWENO interpolations

High order reconstruction

Admit for now that the convex combination is given by the normalization
ωr(x) = ω̃r(x)

P2
s=0 ω̃s(x)

of the protoweights̃ωr(x) defined this way:

ω̃r(x) =
dr(x)

(ǫ + βr)2
.

High gradients

Otherwise, suppose for instance thatβ0 is high order than the other ones: in this case
S0 is penalized and most of the reconstruction is carried by the other more “regular”
substencils.



The model Numerical methods for the Schrödinger-Poisson block Solvers for the BTE block Experiments

Simplifying assumptions

Outline

1 The model
Geometry
Mathematical model

2 Numerical methods for the Schrödinger-Poisson block
Newton schemes
Solvers for Schrödinger and Poisson

3 Solvers for the BTE block
BTE discretizations
Linear advection
PWENO interpolations

4 Experiments
Simplifying assumptions
Equilibria
Time-dependent simulations



The model Numerical methods for the Schrödinger-Poisson block Solvers for the BTE block Experiments

Simplifying assumptions

Collision operator

Results are presented for the the DG MOSFET in the one-valley, parabolic-band
approximation. Moreover, the complete collision operator is substituted by asimple
relaxation-time operator:

Qpf =
1
τ

(ρpM − fp) .

The goal of this work is just the setting up of numerical tools for a more profound
and realistic simulation.
A parallel code in the most realistic case is being implemented.
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Equilibria
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Equilibria

Thermodynamical equilibrium: one-valley case
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Time-dependent simulations
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Time-dependent simulations

Long-time behavior

We propose now some results relative to the long-time behavior of the system.
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