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Introduction

Objects of the simulations

The goal of this work is a contribution to the numerical simulation of kinetic models
for transistors.
Here we sketch the typical architecture of aMOSFET.
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Introduction

Equations

Transport.

The Boltzmann Transport Equation (BTE) describes, at mesoscopic level, how the
charge carriers move inside the object of study:

∂f
∂t

+ v · ∇xf +
F(t, x)

m
· ∇vf = Q[f ].

Force field.

Apart from the free motion, the charge carriers may be driven by the effect of a force
field:

self-consistent Poisson equation, in classical semiconductors;

coupled Schrödinger-Poisson equation, in nanostructures.

Collisions.

The charge carriers may have collisions with other carriers, with the fixedlattice or
with phonons (pseudo-particles describing the vibration of the lattice).
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Introduction

Transport

Two categories of transport equations are used.

Microscopic models.

At kinetic level the motion is described by a probabilistic magnitudef defined in the
phase space(x, v), (x, p) or (x, k): the choice of the problem may make more suitable
the use of the velocityv instead of the impulsionp or the wave vectork.

Macroscopic models.

The system does not depend onv or p or k; the magnitude describing the evolution
just depends on time and position. Starting from the BTE, hydrodynamics or
diffusion limits give Euler, Navier-Stokes, Spherical Harmonics Expansion,
Energy-Transport or Drift-Diffusion systems.
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Splitting techniques

Motivation

In this work, splitting techniques are used at different levels, namely:

to split the Boltzmann Transport Equation into the solution of thetransport part
and thecollisional partfor separate, i.e. theTime Splitting :

∂f
∂t

+ v · ∇xf + F · ∇vf = Q[f ]

splits into

∂f
∂t

+ v · ∇xf + F · ∇vf = 0,
∂f
∂t

= Q[f ];

to split the(x, v)-phase space in a collisionless context (Dimensional
Splitting ):

∂f
∂t

+ v · ∇xf + F · ∇vf = 0

splits into

∂f
∂t

+ v · ∇xf = 0,
∂f
∂t

+ F · ∇vf = 0.
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Splitting techniques

General framework

The (formal) exact solution of the linear PDE

∂f
∂t

= Lf , f (t = 0) = f 0

is

f (t) = eLtf 0.

If we can write the linear operatorL as the sum of two linear operators,

L = L1 + L2,

then we may approximate the exact solution by solving for separate

∂f
∂t

= L1f and
∂f
∂t

= L2f .

Several schemes are proposed for reconstructing the solution of the original PDE
from the solution of either blocks; a first order (in time) scheme is given by

f̃ (t + ∆t) = eL2∆teL1∆tf (t),

while a second order (in time) scheme is given by

f̃ (t + ∆t) = eL1
∆t
2 eL2∆teL1

∆t
2 f (t).
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Linear advection

Linear advection

We propose two schemes for solving the linear advection

∂f
∂t

+ v
∂f
∂x

= 0 :

Semi-Lagrangian:

Directly integrate backward in the characteristic

tn+1

t n

x i−1
x i+1

x i+1x i−1

x i

x i

n n+1X(t    ;t      ,x   )i
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Linear advection

Linear advection

Flux Balance Method:

Total mass conservation is forced. It is based on the idea of following backward the
characteristics, but integral values are taken instead of point values:

tn+1

t n

x i−1
x i+1x i

i−1/2x i+1/2x

the average along the purple segment
plus the average along the blue segment

minus the average along the green segment

x x

the characteristics backward.

FLUX BALANCE METHOD means evualuating
the flux at time t       from a balance ofn+1

fluxes at previous time t   : n

The averages along the red segments
are the same, because we have followed
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PWENO interpolations

Motivation

We need aPointwise interpolation method which does not add spurious oscillations
when high gradients appear, e.g. when a jump has to be transported.
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Figure:Left: PWENO interpolation. Right: Lagrange interpolation.
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PWENO interpolations

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of
Lagrange polynomial reconstructions.
We describe the case of PWENO-6,4: we take a stencil of six points and divide it into
three substencils of four points:

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��

S0S1
S2

S

Lagrange polynomial interpolation
is performed on the three 
substencils made of four 
points each.

The smoothness of the Lagrange
polynomials is measured along 
this segment, between the
two central points.

We want to reconstruct
the value at this point: we
take the reconstruction
of the three Lagrange 
polynomials and compute a
sensible average of them, based 
on how smooth is each.

x x x xxxx i i+1 i+2 i+3i−1i−2i−3

PWENO−6,4
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PWENO interpolations

The average

If we notepr(x) the Lagrange polynomials, PWENO reconstruction reads

pPWENO(x) = ω0(x)p0(x) + ω1(x)p1(x) + ω2(x)p2(x).

Convex combination.

The convex combination{ωr(x)}r must penalize the substencilsSr in which the
pr(x) have high derivatives.

Smoothness indicators

In order to decide which substencilsSr are “regular” and which ones are not, we have
to introduce the smoothness indicators: we use a weighted sum of theL2-norms of the
Lagrange polynomialspr(x) to measure their regularity close to the reconstruction
point x. The following smoothness indicators have been proposed by Jiang andShu:

βr = ∆x

‚

‚

‚

‚

dpr

dx

‚

‚

‚

‚

L2
(xi,xi+1)

+ ∆x3

‚

‚

‚

‚

d2pr

dx2

‚

‚

‚

‚

L2
(xi,xi+1)

+ ∆x5

‚

‚

‚

‚

d3pr

dx3

‚

‚

‚

‚

L2
(xi,xi+1)

.
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PWENO interpolations

High order reconstruction

Admit for now that the convex combination is given by the normalization
ωr(x) = ω̃r(x)

P2
s=0 ω̃s(x)

of the protoweights̃ωr(x) defined this way:

ω̃r(x) =
dr(x)

(ǫ + βr)2
.

Regular reconstruction

Suppose that all theβr are equal; then we have

ωr(x) = dr(x).

The optimal order is achieved by Lagrange reconstructionpLagrange(x) in the whole
stencilS, so if we definedr(x) to be the polynomials such that

pLagrange(x) = d0(x)p0(x) + d1(x)p1(x) + d2(x)p2(x),

then we have achieved the optimal order becausepPWENO(x) = pLagrange(x).
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PWENO interpolations

High order reconstruction

Admit for now that the convex combination is given by the normalization
ωr(x) = ω̃r(x)

P2
s=0 ω̃s(x)

of the protoweights̃ωr(x) defined this way:

ω̃r(x) =
dr(x)
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.

High gradients

Otherwise, suppose for instance thatβ0 is high order than the other ones: in this case
S0 is penalized and most of the reconstruction is carried by the other more “regular”
substencils.
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Vlasov with confining potential

The system

We solve a Vlasov equation withgiven potentialand alinear relaxation-time operator
as collision operator by time (linear) splitting to decouple the Vlasov part and the
Boltzmann part, and recursively dimensional splitting to divide thex-advection from
thev-advection:

∂f
∂t

+ v
∂f
∂x

−
d
“

x2

2

”

dx
∂f
∂v

=
1
τ

»

1
π

e−
v2
2 ρ − f

–

, f (0, x) = f0(x).

We expect the solution to rotate (due to the Vlasov part and the potential) and to
converge to anequilibrium(due to collisions) given by

fs =
mass(f )

π2
exp

„

− x2 + v2

2

«

.
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Vlasov with confining potential

Setting up initial conditions

We perform tests with three initial conditions, more or less close to the equilibrium;
the relaxation time is setτ = 3.5:

f (1)
0 = Z1 sin2

“ x
2

”

e−
x2+v2

2

f (2)
0 = Z2 sin2

“ x
2

”

sin2
“ v

2

”

e−
x2+v2

2

f (3)
0 = Z3

h

1 + 0.05 sin2
“ x

2

”i

e−
x2+v2

2 .

Entropies

Theglobalandlocal relative entropies are defined this way:

H[f ; fs] =

Z

R

Z

R

|f − fs|2
fs

dvdx

H̃[f ; ρM1] =

Z

R

Z

R

|f − ρM1|2
fs

dvdx.
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Vlasov-Poisson
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Vlasov-Poisson

Two-stream instability

The problem

We set the problem in a collisionless context. Theforce fieldis self-consistently
computed through aPoisson equation. Equations are normalized, periodic boundary
conditions are taken for both the transport and the potential.

∂f
∂t

+ v
∂f
∂x

−∂Φ

∂x
∂f
∂v

= 0

∂2Φ

∂x2
= 1−

Z

R

fdv

f (t = 0, x, v) = feq(v)

»

1 + 0.01

„

cos(2kx) + cos(3kx)
1.2

+ cos(kx)

«–

.

As initial condition, we perturb the equilibrium-state given by

feq(v) = K(1 + v2)e−
v2
2 ,

K being a normalization factor.
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Overview

The model

We describe via the Boltzmann Transport Equation the transport/collision in an
electronic device

∂f
∂t

+
1
~
∇kε · ∇xf − q

~
E · ∇kf = Q[f ]

∆Φ =
q
ǫ0

[ρ[f ] − ND] , E = −∇xΦ

f0(x, k) = ND(x)M(k),

where the band structure is given in the parabolic approximation

ε(k) =
~

2|k|2
2m∗

,

m∗ being the Silicon effective mass.
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Overview

The collision operator

The collision operator takes into account the scattering of the carriers withacoustic
phonons, in the elastic approximation, and withoptical phonons, with a single
frequencyω. Therefore the operator reads, in the low-density approximation:

Q[f ] =

Z

R3

ˆ

S(k′, k)f (t, x, k′) − S(k, k′)f (t, x, k)
˜

dk′,

where the scattering rate is given by

S(k, k′) = K
ˆ

(nq + 1)δ(ǫ(k′) − ǫ(k) + ~ω) + nqδ(ǫ(k′) − ǫ(k) − ~ω)
˜

+ K0δ(ǫ(k′) − ǫ(k)).
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Numerics

Adimensionalization

The system is reduced to dimensionless magnitudes in order to improve numerical
results by making the computer perform calculations on numbers of order 1. Then
splitting schemes are applied to solve for separate transport and collision,and
dimensional splitting is applied to separatex-dimension fromk1-dimension.

adim. parameter 400 nm device 50 nm device

k̃ = k∗k k∗ =
√

2m∗kBTL
~

4.65974× 108m−1 4.65974× 108m−1

x̃ = l∗x l∗ = device length 1 µm 250nm
t̃ = t∗t t∗ = typical time 1 ps = 10−12s 1 ps = 10−12s
Ṽ(x̃) = V∗V(x) V∗ = typical Vbias 1V 1V
Ẽ(x̃) = E∗E(x) E∗ = 1

10
V∗

l∗ 100000Vm−1 400000Vm−1

ε̃(k̃) = ε∗ε(k) ǫ∗ = ~
2k∗2

2m∗ 4.14195e − 21 4.14195e − 21

ρ̃(x̃) = ρ∗ρ(x) ρ∗ =
“

2m∗kBTL
~

”3/2
1.01178× 1026 1.01178× 1026

j̃(x̃) = j∗j(x) j∗ = 1
l∗2t∗

1024 1.6× 1025

ũ(x̃) = u∗u(x) u∗ = l∗

t∗ 106 250000
W̃(x̃) = W∗W(x) W∗ = (l∗/t∗)2 1012 6.25× 1010

.
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Numerics

Collision integraion

The solution of the collisions is achieved when we are able to solve the following
integrals (in dimensionless units):

Q+[f ] = c0π

Z

√
γ0(k)

−
√

γ0(k)
f

„

k′1,
q

γ0(k) − k′21

«

dk′1

+ c+π

Z

√
γ+(k)

−
√

γ+(k)
f

„

k′1,
q

γ+(k) − k′21

«

dk′1

+ χ{γ−(k)>0}c−π

Z

√
γ−(k)

−
√

γ−(k)
f

„

k′1,
q

γ−(k) − k′21

«

dk′1

with γ0(k) = ε(k), γ+(k) = ε(k) +
hω

ε∗
, γ−(k) = ε(k) − ~ω

ε∗
, and

Q−[f ] = c02π
p

γ0(k)f (k) + χ{γ−(k)>0}c+2π
p

γ−(k)f (k) + c−2π
p

γ+(k)f (k).



Introduction Numerical methods Benchmark tests Diode nanoMOSFET

Numerics

Collision integraion

For integrating along the[−√
γ,

√
γ]-segment following a semicircle in the

“

k1,
p

k2
2 + k2

3

”

-plane, we have adopted as strategy a plain linear interpolation using

the values of the two nearest points along the vertical lines. Other more sofisticated
strategies have not significantly improved the results.

k1 k1

k23
k23

m+1

m+2

m

m−1

lfifi−1 fi+1 fi+2

SS

S

S

0

0

1

1

U

L R

D

l

m

m+1

fi fi+1
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Experiments

Multifrequency phonons

We present the results relative to a device where phonons are not single-frequency:
the structure of the solver allows an easy implementation of such model.
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Geometry

The model

We afford the simulation of a nanoscaled MOSFET.
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gate

gate

channel

SiO   layers2

Dimensional coupling

x-dimension is longer thanz-dimension, therefore we adopt a different description:

alongx-dimensionelectrons behave likeparticles, their movement being
described by the Boltzmann Transport Equation;

alongz-dimensionelectrons confined in a potential well behave likewaves,
moreover they are supposed to be at equilibrium, therefore their state is given
by the stationary-state Schrödinger equation.
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Geometry

The model

Subband decomposition

Electrons in different energy levels, also calledsub-bands, another name for the
eigenvalues of the Schrödinger equation, have to be considered independent
populations, so that we have to transport them for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of
the electrostatic field in the expression of the total density.

Coupling between subbands

Subbands are also coupled in the scattering operator, where the carriers are allowed
to jump from an energy level to another one.
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Geometry

Bandstructure

The three valleys

The Si bandstructure presents six minima in the first Brillouin zone:

The constant energy surfaces in the
wavevector space

m    = 0.19 m0t

m    = 0.91 m0l

x

y

z

valley of type 1

valley of type 1

valley of type 3

valley of type 3

valley of type 2

valley of type 2 x

y

z (outwards)

Projection on the (x,y)−plane

The valleys of type 1 have
effective masses:
m     along direction x

m     along direction z

The valleys of type 3 have 
effective masses:
m     along direction x
m     along direction y
m     along direction z

The valleys of type 2 have
effective masses:
m     along direction x
m     along direction y
m     along direction z

l

t

t

l

t

m     along direction yt

t

t

l

The axes of the ellipsoids are disposed along thex, y andz axes of the reciprocal
lattice. The three minima have the same value, therefore there is no gap.
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Geometry

Bandstructure

Non-parabolicity

The bandstructure around the three minima can be expanded following theKane
non-parabolic approximation:

ǫkin
ν =

~
2

1 +

r

1 + 2α̃ν~2
“

k2
x

mx
ν

+
k2

y

my
ν

”

 

k2
x

mx
ν

+
k2

y

my
ν

!

,

wherem{x,y}
ν are the axes of the ellispoids (calledeffective masses) of theνth valley

alongx andy directions, and thẽαν are known as Kane dispersion factors.

The simplest case: one-valley, parabolic

ǫkin =
~

2|k|2
2m∗

,

with m∗ an average value between the effective masses.
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Mathematical model

The model

BTE

The Boltzmann Transport Equation (one for each band and for each valley) reads

∂fν,p

∂t
+

1
~
∇kǫ

kin
ν · ∇xfν,p −

1
~
∇xǫ

pot
ν,p · ∇kfν,p = Qν,p[f ], fν,p(t = 0) = ρeq

ν,pM.

Schrödinger-Poisson block

−~
2

2
d
dz

»

1
mν

dχν,p[V]

dz

–

− q (V + Vc) χν,p[V] = ǫpot
ν,p[V]χν,p[V]

{χν,p}p ⊆ H1
o(0, lz) orthonormal basis

−div [εR∇V] = − q
ε0

 

X

ν,p

ρν,p|χν,p[V]|2 − ND

!

plus boundary conditions.

These equations cannot be decoupled because we need theeigenfunctionsto compute
the potential (in the expression of thetotal density), and we need the potential to
compute the eigenfunctions.
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Mathematical model

The model

The collision operator

The collision operator takes into account the electron-optical phonon scattering
mechanism. It reads

Qν,p[f ] =
X

s

X

ν′,p′

Z

R2

ˆ

Ss
(ν′,p′,k′)→(ν,p,k)fν′,p′(k′) − Ss

(ν,p,k)→(ν′,p′,k′)fν,p(k)
˜

dk′ :

everySs represents a different interaction, which may be elastic or inelastic,
intra-valley or inter-valley. Each of them is inter-band.

Structure of theSs

Each of theSs consists of a constant, an overlap integral and a delta for the exchange
of energy:

Ss
(ν,p,k)→(ν′,p′,k′) = Cν,ν′

Z lz

0
|χν,p|2|χν′,p′ |2dzδ

`

ǫtot
ν′,p′(k′) − ǫtot

ν,p(k) ± some energy
´

.
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Newton schemes for the Schrödinger-Poisson block

The Newton scheme

The functional

Solving the Schrödinger-Poisson block

−~
2

2
d
dz

»

1
mν

dχν,p[V]

dz

–

− q (V + Vc) χν,p[V] = ǫpot
ν,p[V]χν,p[V]

−div [εR∇V] = − q
ε0

 

X

ν,p

ρν,p|χν,p[V]|2 − ND

!

is equivalt to minimizing, under the constraints of the Schrödinger equation, the
functionalP[V]

P[V] = −div (εR∇V) +
q
ε0

 

X

ν,p

ρν,p|χν,p[V]|2 − ND

!

,

The scheme

which is achieved by means of a Newton scheme

dP(Vold, Vnew − Vold) = −P[Vold].
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Newton schemes for the Schrödinger-Poisson block

The iterations

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

dǫν,p(V, U) = −q
Z

U(ζ)|χν,p[V](ζ)|2dζ

dχν,p(V, U) = −q
X

p′ 6=p

R

U(ζ)χν,p[V](ζ)χν,p′ [V](ζ)dζ

ǫν,p[V] − ǫν,p′ [V]
χν,p′ [V](z).

Iterations

After computing the Gâteaux-derivative of the density and developping calculations,
we are led to a Poisson-like equation

−div (εR∇Vnew) +

Z lz

0
A[Vold](z, ζ)Vnew(ζ)dζ

= − q
ε0

“

N[Vold] − ND

”

+

Z lz

0
A[Vold](z, ζ)Vold(ζ)dζ,

whereA[V] is essentially the Gâteaux-derivative of the functionalP[V].
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Solvers for Schrödinger and Poisson

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

−~
2

2
d
dz

»

1
mν

dχν,p

dz

–

− q (V + Vc) χν,p = ǫν,pχν,p

is discretized by alternate finite differences for the derivatives then the symmetric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

−div [εR∇V] +

Z lz

0
A(z, ζ)V(ζ)dζ = B(z).

The derivatives are discretized by finite differences in alternate directions, the
integral is computed via trapezoid rule and the linear system (full) is solved by means
of a LAPACK routine called DGESV.
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Experiments: simplifying assumptions

Collision operator

Results are presented for the the DG MOSFET in the one-valley, parabolic-band
approximation. Moreover, the complete collision operator is substituted by asimple
relaxation-time operator:

Qpf =
1
τ

(ρpM − fp) .

The goal of this work is just the setting up of numerical tools for a more profound
and realistic simulation.
A parallel code in the most realistic case is being implemented.
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Thermodynamical equilibrium: one-valley case
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Transient states

We propose now some results relative to the long-time behavior of the system.
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