				nanoMOSFET
0000	00000000000	00000	00000000	000000000

Splitting methods for the solution of electron transport in semiconductors

Francesco Vecil

RICAM

Johannes Kepler Universität Linz, 07/10/08

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

0000	00000000000	00000	00000000	0000000000
	Numerical methods	Benchmark tests		nanoMOSFET

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Introduction
- - Numerical methods
 - Splitting techniques
 - Linear advection
 - PWENO interpolations
- 3 Benchmark tests
 - Vlasov with confining potential
 - Vlasov-Poisson

- Overview
- Numerics
- Experiments

- Geometry
- Mathematical model
- Newton schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Experiments: simplifying assumptions

Introduction ••••••••••••••••••••••••••••••••••••	Numerical methods	Benchmark tests	Diode 000000000	nanoMOSFET
Outli	ine			
1	Introduction Introduction 			
2	Numerical methodsSplitting techniquesLinear advectionPWENO interpolations			
3	Benchmark testsVlasov with confining potentialVlasov-Poisson			
4	Diode • Overview • Numerics • Experiments			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

- Geometry
- Mathematical model
- Newton schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Experiments: simplifying assumptions

Introduction	Numerical methods	Benchmark tests	Diode 000000000	nanoMOSFET
Introduction				
Objects of th	ne simulations			

The goal of this work is a contribution to the numerical simulation of kinetic models for transistors.

Here we sketch the typical architecture of a MOSFET.

Figure: A Metal Oxide Semiconductor Field Effect Transistor.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction		nanoMOSFET
0000		
Introduction		
Equations		

Transport.

The Boltzmann Transport Equation (BTE) describes, at mesoscopic level, how the charge carriers move inside the object of study:

$$rac{\partial f}{\partial t} + v \cdot
abla_x f + rac{F(t,x)}{m} \cdot
abla_v f = \mathcal{Q}[f].$$

Force field.

Apart from the free motion, the charge carriers may be driven by the effect of a force field:

- self-consistent Poisson equation, in classical semiconductors;
- coupled Schrödinger-Poisson equation, in nanostructures.

Collisions.

The charge carriers may have collisions with other carriers, with the fixed lattice or with phonons (pseudo-particles describing the vibration of the lattice).

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

э

Introduction		nanoMOSFET
0000		
Introduction		
Equations		

Transport.

The Boltzmann Transport Equation (BTE) describes, at mesoscopic level, how the charge carriers move inside the object of study:

$$rac{\partial f}{\partial t} + v \cdot
abla_x f + rac{F(t,x)}{m} \cdot
abla_v f = \mathcal{Q}[f].$$

Force field.

Apart from the free motion, the charge carriers may be driven by the effect of a force field:

- self-consistent Poisson equation, in classical semiconductors;
- coupled Schrödinger-Poisson equation, in nanostructures.

Collisions

The charge carriers may have collisions with other carriers, with the fixed lattice or with phonons (pseudo-particles describing the vibration of the lattice).

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

э

Introduction		nanoMOSFET
0000		
Introduction		
Equations		

Transport.

The Boltzmann Transport Equation (BTE) describes, at mesoscopic level, how the charge carriers move inside the object of study:

$$rac{\partial f}{\partial t} + v \cdot
abla_x f + rac{F(t,x)}{m} \cdot
abla_v f = \mathcal{Q}[f].$$

Force field.

Apart from the free motion, the charge carriers may be driven by the effect of a force field:

- self-consistent Poisson equation, in classical semiconductors;
- coupled Schrödinger-Poisson equation, in nanostructures.

Collisions.

The charge carriers may have collisions with other carriers, with the fixed lattice or with phonons (pseudo-particles describing the vibration of the lattice).

Introduction		nanoMOSFET
0000		
Introduction		
Transport		

Two categories of transport equations are used.

Microscopic models.

At kinetic level the motion is described by a probabilistic magnitude f defined in the phase space (x, v), (x, p) or (x, k): the choice of the problem may make more suitable the use of the velocity v instead of the impulsion p or the wave vector k.

Macroscopic models.

The system does not depend on v or p or k; the magnitude describing the evolution just depends on time and position. Starting from the BTE, hydrodynamics or diffusion limits give Euler, Navier-Stokes, Spherical Harmonics Expansion, Energy-Transport or Drift-Diffusion systems.

イロト 不得 トイヨト イヨト 三日

Introduction		nanoMOSFET
0000		
Introduction		
Transport		

Two categories of transport equations are used.

Microscopic models.

At kinetic level the motion is described by a probabilistic magnitude f defined in the phase space (x, v), (x, p) or (x, k): the choice of the problem may make more suitable the use of the velocity v instead of the impulsion p or the wave vector k.

Macroscopic models.

The system does not depend on v or p or k; the magnitude describing the evolution just depends on time and position. Starting from the BTE, hydrodynamics or diffusion limits give Euler, Navier-Stokes, Spherical Harmonics Expansion, Energy-Transport or Drift-Diffusion systems.

Introduction		nanoMOSFET
0000		
Introduction		
Transport		

Two categories of transport equations are used.

Microscopic models.

At kinetic level the motion is described by a probabilistic magnitude f defined in the phase space (x, v), (x, p) or (x, k): the choice of the problem may make more suitable the use of the velocity v instead of the impulsion p or the wave vector k.

Macroscopic models.

The system does not depend on v or p or k; the magnitude describing the evolution just depends on time and position. Starting from the BTE, hydrodynamics or diffusion limits give Euler, Navier-Stokes, Spherical Harmonics Expansion, Energy-Transport or Drift-Diffusion systems.

Introduction	Numerical methods	Benchmark tests	Diode	nanoMOSFET
Splitting techn	iques			
Outli	ne			
0	Introduction			
	Introduction			
2	Numerical methods			
-	 Splitting techniques 			
	• Linear advection			
	• PWENO interpolations			
3	Benchmark tests			
	• Vlasov with confining potential			
	Vlasov-Poisson			
4	Diode			
	Overview			
	• Numerics			
	 Experiments 			
5	nanoMOSFET			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

- Geometry
- Mathematical model
- Newton schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Experiments: simplifying assumptions

	Numerical methods		nanoMOSFET
	00000000000		
Splitting techniques			
Motivation			

In this work, splitting techniques are used at different levels, namely:

• to split the Boltzmann Transport Equation into the solution of the transport part and the collisional part for separate, i.e. the **Time Splitting**:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + F \cdot \nabla_v f = \mathcal{Q}[f]$$

splits into

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{\mathbf{x}} f + F \cdot \nabla_{\mathbf{x}} f = 0, \qquad \frac{\partial f}{\partial t} = \mathcal{Q}[f];$$

• to split the (*x*, *v*)-phase space in a collisionless context (**Dimensional Splitting**):

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + F \cdot \nabla_v f = 0$$

splits into

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = 0, \qquad \frac{\partial f}{\partial t} + F \cdot \nabla_y f = 0.$$

	Numerical methods		nanoMOSFET
	00000000000		
Splitting techniques			
Motivation			

In this work, splitting techniques are used at different levels, namely:

• to split the Boltzmann Transport Equation into the solution of the transport part and the collisional part for separate, i.e. the **Time Splitting**:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{x} f + F \cdot \nabla_{v} f = \mathcal{Q}[f]$$

splits into

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + F \cdot \nabla_{\mathbf{v}} f = 0, \qquad \frac{\partial f}{\partial t} = \mathcal{Q}[f];$$

• to split the (*x*, *v*)-phase space in a collisionless context (**Dimensional Splitting**):

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + F \cdot \nabla_y f = 0$$

splits into

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = 0, \qquad \frac{\partial f}{\partial t} + F \cdot \nabla_y f = 0.$$

	Numerical methods		nanoMOSFET
	00000000000		
Splitting techniques			
Motivation			

In this work, splitting techniques are used at different levels, namely:

• to split the Boltzmann Transport Equation into the solution of the transport part and the collisional part for separate, i.e. the **Time Splitting**:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{x} f + F \cdot \nabla_{v} f = \mathcal{Q}[f]$$

splits into

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + F \cdot \nabla_{\mathbf{x}} f = 0, \qquad \frac{\partial f}{\partial t} = \mathcal{Q}[f];$$

• to split the (*x*, *v*)-phase space in a collisionless context (**Dimensional Splitting**):

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{x} f + F \cdot \nabla_{v} f = 0$$

splits into

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{x} f = 0, \qquad \frac{\partial f}{\partial t} + F \cdot \nabla_{v} f = 0.$$

Splitting techniques				
0000	0000000000000	00000	00000000	000000000
	Numerical methods	Benchmark tests		nanoMOSFET

$$\frac{\partial f}{\partial t} = \mathbf{L}f, \qquad f(t=0) = f^0$$

is

 $f(t) = e^{Lt} f^0.$

If we can write the linear operator L as the sum of two linear operators,

 $L = L_1 + L_2$

then we may approximate the exact solution by solving for separate

$$\frac{\partial f}{\partial t} = L_1 f$$
 and $\frac{\partial f}{\partial t} = L_2 f$.

Several schemes are proposed for reconstructing the solution of the original PDE from the solution of either blocks; a first order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_2 \Delta t} e^{L_1 \Delta t} f(t),$$

while a second order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_1 \frac{\Delta t}{2}} e^{L_2 \Delta t} e^{L_1 \frac{\Delta t}{2}} f(t).$$

Splitting techniques	• 1			
0000	00000000000	00000	000000000	000000000
	Numerical methods	Benchmark tests		nanoMOSFET

$$\frac{\partial f}{\partial t} = \mathbf{L}f, \qquad f(t=0) = f^0$$

is

 $f(t) = e^{Lt} f^0.$

If we can write the linear operator L as the sum of two linear operators,

 $L = \mathbf{L}_1 + \mathbf{L}_2,$

then we may approximate the exact solution by solving for separate

$$\frac{\partial f}{\partial t} = L_1 f$$
 and $\frac{\partial f}{\partial t} = L_2 f$.

Several schemes are proposed for reconstructing the solution of the original PDE from the solution of either blocks; a first order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_2 \Delta t} e^{L_1 \Delta t} f(t),$$

while a second order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_1 \frac{\Delta t}{2}} e^{L_2 \Delta t} e^{L_1 \frac{\Delta t}{2}} f(t).$$

Splitting techniques	• 1			
0000	00000000000	00000	000000000	000000000
	Numerical methods	Benchmark tests		nanoMOSFET

$$\frac{\partial f}{\partial t} = \mathbf{L}f, \qquad f(t=0) = f^0$$

is

 $f(t) = e^{Lt} f^0.$

If we can write the linear operator L as the sum of two linear operators,

 $L = \mathbf{L}_1 + \mathbf{L}_2,$

then we may approximate the exact solution by solving for separate

$$\frac{\partial f}{\partial t} = L_1 f$$
 and $\frac{\partial f}{\partial t} = L_2 f$.

Several schemes are proposed for reconstructing the solution of the original PDE from the solution of either blocks; a first order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_2 \Delta t} e^{L_1 \Delta t} f(t),$$

while a second order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_1 \frac{\Delta t}{2}} e^{L_2 \Delta t} e^{L_1 \frac{\Delta t}{2}} f(t)$$

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のへで

Splitting techniques	• 1			
0000	00000000000	00000	000000000	000000000
	Numerical methods	Benchmark tests		nanoMOSFET

$$\frac{\partial f}{\partial t} = \mathbf{L}f, \qquad f(t=0) = f^0$$

is

 $f(t) = e^{Lt} f^0.$

If we can write the linear operator L as the sum of two linear operators,

 $L = \mathbf{L}_1 + \mathbf{L}_2,$

then we may approximate the exact solution by solving for separate

$$\frac{\partial f}{\partial t} = L_1 f$$
 and $\frac{\partial f}{\partial t} = L_2 f$.

Several schemes are proposed for reconstructing the solution of the original PDE from the solution of either blocks; a first order (in time) scheme is given by

$$\tilde{f}(t + \Delta t) = e^{L_2 \Delta t} e^{L_1 \Delta t} f(t),$$

while a second order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_1 \frac{\Delta t}{2}} e^{L_2 \Delta t} e^{L_1 \frac{\Delta t}{2}} f(t).$$

Introduction 0000	Numerical methods Be ○○○●○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	nchmark tests 0000	Diode 000000000	nanoMOSFET 000000000
Linear advec	tion			
Outl	ine			
0	Introduction			
	Introduction			
2	Numerical methods			
	 Splitting techniques 			
	 Linear advection 			
	• PWENO interpolations			
3	Benchmark tests			
	Vlasov with confining potential			
	Vlasov-Poisson			
4	Diode			
	Overview			
	Numerics			
	 Experiments 			
5	nanoMOSFET			
	Geometry			
	 Mathematical model 			
	 Newton schemes for the Schrödinger 	-Poisson block		
	• Solvers for Schrödinger and Poisson			
	• Experiments: simplifying assumption	1S ▲ 1		

	Numerical methods		nanoMOSFET
	000000000000		
Linear advection			
Linear a	advection		

We propose two schemes for solving the linear advection

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} = 0:$$

Semi-Lagrangian:

Directly integrate backward in the characteristic

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

	Numerical methods			nanoMOSFET
	0000000000			
Linear advection				
Linear advection				

We propose two schemes for solving the linear advection

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} = 0:$$

Semi-Lagrangian:

Directly integrate backward in the characteristic

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

	Numerical methods			nanoMOSFET
0000	00000000000	00000	000000000	000000000
Linear advection				
Linear adve	ection			

Flux Balance Method:

Total mass conservation is forced. It is based on the idea of following backward the characteristics, but integral values are taken instead of point values:

	Numerical methods	Benchmark tests	nanoMOSFET
	00000000000		
PWENO interpolations			
Outline			

(日) (個) (注) (注) (三)

1) Introduction

Introduction

Numerical methods

- Splitting techniques
- Linear advection

• PWENO interpolations

- 3 Benchmark test
 - Vlasov with confining potential
 - Vlasov-Poisson

🕘 Diode

- Overview
- Numerics
- Experiments

5 nanoMOSFE

- Geometry
- Mathematical model
- Newton schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Experiments: simplifying assumptions

	Numerical methods		nanoMOSFET
	000000000000		
PWENO interpolations			
Motivation			

We need a **Pointwise** interpolation method which does not add spurious oscillations when high gradients appear, e.g. when a jump has to be transported.

Figure: Left: PWENO interpolation. Right: Lagrange interpolation.

イロト 不得 とう アイロト

ж

	Numerical methods		nanoMOSFET
	00000000000		
PWENO interpolations			
N <i>K</i>			
Motivation			

We need a **Pointwise** interpolation method which does not add spurious oscillations when high gradients appear, e.g. when a jump has to be transported.

Figure: Left: PWENO interpolation. Right: Lagrange interpolation.

イロト イポト イヨト イヨト

э

	Numerical methods			nanoMOSFET
	000000000000			
PWENO interpolations				
Non-oscillatory properties				

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of Lagrange polynomial reconstructions.

We describe the case of PWENO-6,4: we take a stencil of six points and divide it into three substencils of four points:

PWENO-6,4

Non-osci	llatory properties	5	
PWENO interpolations			
	000000000000		
	Numerical methods		nanoMOSFET

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of Lagrange polynomial reconstructions.

We describe the case of PWENO-6,4: we take a stencil of six points and divide it into three substencils of four points:

PWENO-6,4

	Numerical methods		nanoMOSFET
	000000000000		
PWENO interpolations			
The average			

If we note $p_r(x)$ the Lagrange polynomials, PWENO reconstruction reads

 $p_{PWENO}(x) = \omega_0(x)p_0(x) + \omega_1(x)p_1(x) + \omega_2(x)p_2(x).$

Convex combination.

The convex combination $\{\omega_r(x)\}_r$ must penalize the substencils S_r in which the $p_r(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils S_r are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^2 -norms of the Lagrange polynomials $p_r(x)$ to measure their regularity close to the reconstruction point *x*. The following smoothness indicators have been proposed by Jiang and Shu:

$$\beta_r = \Delta x \left\| \frac{dp_r}{dx} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^3 \left\| \frac{d^2 p_r}{dx^2} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^5 \left\| \frac{d^3 p_r}{dx^3} \right\|_{L^2_{(x_i, x_{i+1})}}.$$

	Numerical methods		nanoMOSFET
	000000000000		
PWENO interpolations			
The average			

If we note $p_r(x)$ the Lagrange polynomials, PWENO reconstruction reads

$$p_{PWENO}(x) = \omega_0(x)p_0(x) + \omega_1(x)p_1(x) + \omega_2(x)p_2(x).$$

Convex combination.

The convex combination $\{\omega_r(x)\}_r$ must penalize the substencils S_r in which the $p_r(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils S_r are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^2 -norms of the Lagrange polynomials $p_r(x)$ to measure their regularity close to the reconstruction point *x*. The following smoothness indicators have been proposed by Jiang and Shu:

$$\beta_r = \Delta x \left\| \frac{dp_r}{dx} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^3 \left\| \frac{d^2 p_r}{dx^2} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^5 \left\| \frac{d^3 p_r}{dx^3} \right\|_{L^2_{(x_i, x_{i+1})}}.$$

	Numerical methods		nanoMOSFET
	000000000000		
PWENO interpolations			
The average			

If we note $p_r(x)$ the Lagrange polynomials, PWENO reconstruction reads

$$p_{PWENO}(x) = \omega_0(x)p_0(x) + \omega_1(x)p_1(x) + \omega_2(x)p_2(x).$$

Convex combination.

The convex combination $\{\omega_r(x)\}_r$ must penalize the substencils S_r in which the $p_r(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils S_r are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^2 -norms of the Lagrange polynomials $p_r(x)$ to measure their regularity close to the reconstruction point *x*. The following smoothness indicators have been proposed by Jiang and Shu:

$$\beta_r = \Delta x \left\| \frac{dp_r}{dx} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^3 \left\| \frac{d^2 p_r}{dx^2} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^5 \left\| \frac{d^3 p_r}{dx^3} \right\|_{L^2_{(x_i, x_{i+1})}}.$$

High order reconstruction					
PWENO interpolations					
	00000000000000				
	Numerical methods			nanoMOSFET	

Admit for now that the convex combination is given by the normalization $\omega_r(x) = \frac{\tilde{\omega}_r(x)}{\sum_{s=0}^2 \tilde{\omega}_s(x)}$ of the protoweights $\tilde{\omega}_r(x)$ defined this way:

$$\tilde{\omega}_r(x) = \frac{d_r(x)}{(\epsilon + \beta_r)^2}.$$

Regular reconstruction

Suppose that all the β_r are equal; then we have

$$\omega_r(x)=d_r(x).$$

The optimal order is achieved by Lagrange reconstruction $p_{Lagrange}(x)$ in the whole stencil S, so if we define $d_r(x)$ to be the polynomials such that

 $p_{Lagrange}(x) = d_0(x)p_0(x) + d_1(x)p_1(x) + d_2(x)p_2(x),$

then we have achieved the optimal order because $p_{PWENO}(x) = p_{Lagrange}(x)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

High order reconstruction					
PWENO interpolations					
	00000000000000				
	Numerical methods			nanoMOSFET	

Admit for now that the convex combination is given by the normalization $\omega_r(x) = \frac{\tilde{\omega}_r(x)}{\sum_{s=0}^2 \tilde{\omega}_s(x)}$ of the protoweights $\tilde{\omega}_r(x)$ defined this way:

$$\tilde{\omega}_r(x) = \frac{d_r(x)}{(\epsilon + \beta_r)^2}.$$

Regular reconstruction

Suppose that all the β_r are equal; then we have

$$\omega_r(x)=d_r(x).$$

The optimal order is achieved by Lagrange reconstruction $p_{Lagrange}(x)$ in the whole stencil S, so if we define $d_r(x)$ to be the polynomials such that

$$p_{Lagrange}(x) = d_0(x)p_0(x) + d_1(x)p_1(x) + d_2(x)p_2(x),$$

then we have achieved the optimal order because $p_{PWENO}(x) = p_{Lagrange}(x)$.

	Numerical methods			nanoMOSFET
	0000000000			
PWENO interpolations				
High order reconstruction				

Admit for now that the convex combination is given by the normalization $\omega_r(x) = \frac{\tilde{\omega}_r(x)}{\sum_{s=0}^2 \tilde{\omega}_s(x)}$ of the protoweights $\tilde{\omega}_r(x)$ defined this way:

$$\tilde{\omega}_r(x) = \frac{d_r(x)}{(\epsilon + \beta_r)^2}.$$

High gradients

Otherwise, suppose for instance that β_0 is high order than the other ones: in this case S_0 is penalized and most of the reconstruction is carried by the other more "regular" substencils.

		Benchmark tests		nanoMOSFET
0000	00000000000	00000	00000000	000000000
Vlasov with confining po	tential			
Outline				
Outime				
Trefere				
1 Intro				
Int	roduction			
2 Nume				
o Sn	litting techniques			
• sp	inting teeninques			
Lin	near advection			
• PV	ENO interpolations			
	1			

▲□▶ ▲課▶ ★理▶ ★理▶ = 臣 = のへで

3 Benchmark tests

Vlasov with confining potential

Vlasov-Poisson

4 Diode

- Overview
- Numerics
- Experiments

5 nanoMOSFE1

- Geometry
- Mathematical model
- Newton schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Experiments: simplifying assumptions

	Benchmark tests	nanoMOSFET
	00000	
Vlasov with confining potential		
The system		

We solve a Vlasov equation with given potential and a linear relaxation-time operator as collision operator by time (linear) splitting to decouple the Vlasov part and the Boltzmann part, and recursively dimensional splitting to divide the *x*-advection from the *v*-advection:

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} - \frac{d\left(\frac{x^2}{2}\right)}{dx} \frac{\partial f}{\partial v} = \frac{1}{\tau} \left[\frac{1}{\pi} e^{-\frac{v^2}{2}} \rho - f \right], \qquad f(0, x) = f_0(x).$$

We expect the solution to rotate (due to the Vlasov part and the potential) and to converge to an equilibrium (due to collisions) given by

$$f_s = \frac{\max(f)}{\pi^2} \exp\left(-\frac{x^2 + v^2}{2}\right)$$

		Benchmark tests		nanoMOSFET	
		00000			
Vlasov with confining potent	ial				
Setting up initial conditions					

We perform tests with three initial conditions, more or less close to the equilibrium; the relaxation time is set $\tau = 3.5$:

$$\begin{aligned} f_0^{(1)} &= Z_1 \sin^2 \left(\frac{x}{2}\right) e^{-\frac{x^2 + v^2}{2}} \\ f_0^{(2)} &= Z_2 \sin^2 \left(\frac{x}{2}\right) \sin^2 \left(\frac{v}{2}\right) e^{-\frac{x^2 + v^2}{2}} \\ f_0^{(3)} &= Z_3 \left[1 + 0.05 \sin^2 \left(\frac{x}{2}\right)\right] e^{-\frac{x^2 + v^2}{2}}. \end{aligned}$$

Entropies

The global and local relative entropies are defined this way:

$$H[f;f_s] = \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{|f-f_s|^2}{f_s} dv dx$$

$$\tilde{H}[f;\rho M_1] = \int_{\mathbb{R}} \int_{\mathbb{R}} \frac{|f-\rho M_1|^2}{f_s} dv dx.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで
Introduction 0000	Numerical methods	Benchmark tests ○○○●○	Diode 000000000	nanoMOSFET
Vlasov-Poisson Outline				
 Introc Intro Intro Nume Spl Lin PW 	luction roduction prical methods itting techniques tear advection /ENO interpolations			
 3 Bench • Vla • Vla 	nmark tests usov with confining potent asov-Poisson	ial		
 Diode Ov. Nu Exp 	e erview merics periments			
5 nanol • Ge	MOSFET ometry			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

- Mathematical model
- Newton schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Experiments: simplifying assumptions

Introduction	Numerical methods	Benchmark tests	Diode 000000000	nanoMOSFET
Vlasov-Poisson				
Two-strea	am instability			

The problem

We set the problem in a collisionless context. The force field is self-consistently computed through a Poisson equation. Equations are normalized, periodic boundary conditions are taken for both the transport and the potential.

$$\begin{aligned} \frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} - \frac{\partial \Phi}{\partial x} \frac{\partial f}{\partial v} &= 0\\ \frac{\partial^2 \Phi}{\partial x^2} &= 1 - \int_{\mathbb{R}} f dv\\ f(t=0,x,v) &= f_{eq}(v) \left[1 + 0.01 \left(\frac{\cos(2kx) + \cos(3kx)}{1.2} + \cos(kx) \right) \right] \end{aligned}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

э

As initial condition, we perturb the equilibrium-state given by

$$f_{eq}(v) = K(1+v^2)e^{-\frac{v^2}{2}},$$

K being a normalization factor.

0000	000000000000000000000000000000000000000	••••	00000000
Out	ine		
1	Introduction		
2	 Numerical methods Splitting techniques Linear advection PWENO interpolations 		
3	Benchmark testsVlasov with confining potentialVlasov-Poisson		
4	Diode		
	 Overview Numerics Experiments 		
5	 nanoMOSFET Geometry Mathematical model Newton schemes for the Schrödinger-Poi Solvers for Schrödinger and Poisson Experiments: simplifying assumptions 	sson block	
	r · · · · · · · · · · · · · · · · · · ·	▲□▶▲圖▶ ▲圖▶ ▲圖	। । । । । । । । । । । । । । । । । । । ।

Diode

		Diode	nanoMOSFET
		00000000	
Overview			
The model			

We describe via the Boltzmann Transport Equation the transport/collision in an electronic device

$$\begin{split} \frac{\partial f}{\partial t} &+ \frac{1}{\hbar} \nabla_k \varepsilon \cdot \nabla_x f - \frac{q}{\hbar} E \cdot \nabla_k f = \mathcal{Q}[f] \\ \Delta \Phi &= \frac{q}{\epsilon_0} \left[\rho[f] - N_D \right], \qquad E = -\nabla_x \Phi \\ f_0(x,k) &= N_D(x) M(k), \end{split}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

where the band structure is given in the parabolic approximation

$$\varepsilon(k) = \frac{\hbar^2 |k|^2}{2m_*},$$

 m_* being the Silicon effective mass.

Introduction 0000	Numerical methods	Benchmark tests	Diode ○○●○○○○○○	nanoMOSFET 000000000
Overview				
The colli	sion operator			

The collision operator takes into account the scattering of the carriers with acoustic phonons, in the elastic approximation, and with optical phonons, with a single frequency ω . Therefore the operator reads, in the low-density approximation:

$$\mathcal{Q}[f] = \int_{\mathbb{R}^3} \left[S(k',k)f(t,x,k') - S(k,k')f(t,x,k) \right] dk',$$

where the scattering rate is given by

$$S(k,k') = K \left[(n_q + 1)\delta(\epsilon(k') - \epsilon(k) + \hbar\omega) + n_q \delta(\epsilon(k') - \epsilon(k) - \hbar\omega) \right] + K_0 \delta(\epsilon(k') - \epsilon(k)).$$

0000	000000000000000000000000000000000000000	000 00	000000	000000000
Numerics				
Outl	ine			
0	Introduction			
	• Introduction			
2	Numerical methods			
	 Splitting techniques 			
	Linear advection			
	• PWENO interpolations			
3	Benchmark tests			
	Vlasov with confining potential			
_	Vlasov-Poisson			
4	Diode			
	• Overview			
	 Numerics 			
	• Experiments			
5	nanoMOSFET			
	• Geometry			
	Mathematical model			
	 Newton schemes for the Schrödinger- Colorer for Scheidingen and Deisen 	Poisson block		
	• Solvers for Schrödinger and Poisson			
	• Experiments, simplifying assumption	> ∢□≻∢∄	▶ ★ 臣 ▶ ★ 臣 ▶	∃ 900

Diode

			Diode	nanoMOSFET	
			000000000		
Numerics					
Adimensionalization					

The system is reduced to dimensionless magnitudes in order to improve numerical results by making the computer perform calculations on numbers of order 1. Then splitting schemes are applied to solve for separate transport and collision, and dimensional splitting is applied to separate *x*-dimension from k_1 -dimension.

adim.	parameter	400 nm device	50 nm device
$\tilde{k} = k^* k$	$k^* = \frac{\sqrt{2m^*k_BT_L}}{\hbar}$	$4.65974 \times 10^8 m^{-1}$	$4.65974 \times 10^8 m^{-1}$
$\tilde{x} = l^* x$	$l^* = $ device length	$1 \ \mu m$	250 nm
$\tilde{t} = t^* t$	$t^* =$ typical time	$1 ps = 10^{-12} s$	$1 ps = 10^{-12} s$
$\tilde{V}(\tilde{x}) = V^* V(x)$	$V^* =$ typical Vbias	1V	1V
$\tilde{E}(\tilde{x}) = E^* E(x)$	$E^* = rac{1}{10} rac{V^*}{l^*}$	$100000 Vm^{-1}$	$400000 Vm^{-1}$
$\tilde{\varepsilon}(\tilde{k}) = \varepsilon^* \varepsilon(k)$	$\epsilon^* = \frac{\hbar^2 k^{*2}}{2m^*}$	4.14195e - 21	4.14195e - 21
$\tilde{\rho}(\tilde{x}) = \rho^* \rho(x)$	$\rho^* = \left(\frac{2m^* k_B T_L}{\hbar}\right)^{3/2}$	$1.01178 imes 10^{26}$	$1.01178 imes 10^{26}$
$\tilde{j}(\tilde{x}) = j^* j(x)$	$j^* = \frac{1}{l^* 2 t^*}$	10^{24}	1.6×10^{25}
$\tilde{u}(\tilde{x}) = u^* u(x)$	$u^* = \frac{l^*}{t^*}$	10 ⁶	250000
$\tilde{W}(\tilde{x}) = W^* W(x)$	$W^* = (l^*/t^*)^2$	10 ¹²	6.25×10^{10}

			Diode	nanoMOSFET
0000	00000000000	00000	000000000	000000000
Numerics				
Collision int	egraion			

The solution of the collisions is achieved when we are able to solve the following integrals (in dimensionless units):

$$\begin{aligned} \mathcal{Q}^{+}[f] &= c_{0}\pi \int_{-\sqrt{\gamma_{0}(k)}}^{\sqrt{\gamma_{0}(k)}} f\left(k'_{1}, \sqrt{\gamma_{0}(k) - k'_{1}^{2}}\right) dk'_{1} \\ &+ c_{+}\pi \int_{-\sqrt{\gamma_{+}(k)}}^{\sqrt{\gamma_{+}(k)}} f\left(k'_{1}, \sqrt{\gamma_{+}(k) - k'_{1}^{2}}\right) dk'_{1} \\ &+ \chi_{\left\{\gamma_{-}(k) > 0\right\}} c_{-}\pi \int_{-\sqrt{\gamma_{-}(k)}}^{\sqrt{\gamma_{-}(k)}} f\left(k'_{1}, \sqrt{\gamma_{-}(k) - k'_{1}^{2}}\right) dk'_{1} \end{aligned}$$

with
$$\gamma_0(k) = \varepsilon(k), \gamma_+(k) = \varepsilon(k) + \frac{h\omega}{\varepsilon^*}, \gamma_-(k) = \varepsilon(k) - \frac{\hbar\omega}{\varepsilon^*}$$
, and
 $\mathcal{Q}^-[f] = c_0 2\pi \sqrt{\gamma_0(k)} f(k) + \chi_{\{\gamma_-(k)>0\}} c_+ 2\pi \sqrt{\gamma_-(k)} f(k) + c_- 2\pi \sqrt{\gamma_+(k)} f(k).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction	Numerical methods	Benchmark tests	Diode ○○○○○○●○○	nanoMOSFET
Numerics				
Collision	integraion			

For integrating along the $[-\sqrt{\gamma}, \sqrt{\gamma}]$ -segment following a semicircle in the $(k_1, \sqrt{k_2^2 + k_3^2})$ -plane, we have adopted as strategy a plain linear interpolation using the values of the two nearest points along the vertical lines. Other more sofisticated strategies have not significantly improved the results.

0000	OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	00000	000000000000000000000000000000000000000
Outlin	e		
Ir •	ntroduction Introduction		
2 N • •	umerical methods Splitting techniques Linear advection PWENO interpolations		
3 B • •	enchmark tests Vlasov with confining potenti Vlasov-Poisson	ial	
(4) D (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	iode Overview Numerics		
• 5 n: • •	Experiments anoMOSFET Geometry Mathematical model Newton schemes for the Schr	ödinger-Poisson block	
•	Solvers for Schrödinger and Experiments: simplifying ass	2015SON umptions	

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Multifree	quency phonons		
Experiments			
		00000000	
		Diode	nanoMOSFET

We present the results relative to a device where phonons are not single-frequency: the structure of the solver allows an easy implementation of such model.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Introduction 0000	Numerical methods	Benchmark tests	Diode 000000000	nanoMOSFET
Geometry				
Outlin	e			
I Ii	ntroduction			
2 N	Jumerical methods 9 Splitting techniques 9 Linear advection 9 PWENO interpolations			
3 E	Senchmark tests Vlasov with confining potent Vlasov-Poisson	ial		
	Diode Overview Numerics Experiments			
5 n	anoMOSFET Geometry Mathematical model Newton schemes for the Schr Solvers for Schrödinger and I	ödinger-Poisson block Poisson		
9	Experiments: simplifying ass	umptions		

Introduction	Numerical methods	Benchmark tests	Diode	nanoMOSFET
Geometry	000000000000	00000	00000000	000000000
rmi 1.1				
The model				

We afford the simulation of a nanoscaled MOSFET.

Dimensional coupling

x-dimension is longer than z-dimension, therefore we adopt a different description:

- along *x*-dimension electrons behave like particles, their movement being described by the Boltzmann Transport Equation;
- along *z*-dimension electrons confined in a potential well behave like waves, moreover they are supposed to be at equilibrium, therefore their state is given by the stationary-state Schrödinger equation.

Introduction	Numerical methods	Benchmark tests	Diode 000000000	nanoMOSFET
Geometry				
The model				

Subband decomposition

Electrons in different energy levels, also called *sub-bands*, another name for the eigenvalues of the Schrödinger equation, have to be considered independent populations, so that we have to transport them for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of the electrostatic field in the expression of the total density.

Coupling between subbands

Subbands are also coupled in the scattering operator, where the carriers are allowed to jump from an energy level to another one.

イロト 不得 トイヨト イヨト 三日

			nanoMOSFET
			00000000000000
Geometry			
The mode	1		

Subband decomposition

Electrons in different energy levels, also called *sub-bands*, another name for the eigenvalues of the Schrödinger equation, have to be considered independent populations, so that we have to transport them for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of the electrostatic field in the expression of the total density.

Coupling between subbands

Subbands are also coupled in the scattering operator, where the carriers are allowed to jump from an energy level to another one.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Introduction	Numerical methods	Benchmark tests	Diode 000000000	nanoMOSFET
Geometry				
The model				

Subband decomposition

Electrons in different energy levels, also called *sub-bands*, another name for the eigenvalues of the Schrödinger equation, have to be considered independent populations, so that we have to transport them for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of the electrostatic field in the expression of the total density.

Coupling between subbands

Subbands are also coupled in the scattering operator, where the carriers are allowed to jump from an energy level to another one.

			nanoMOSFET
			0000000000
Geometry			
Bandstrue	cture		

The three valleys

The Si bandstructure presents six minima in the first Brillouin zone:

The axes of the ellipsoids are disposed along the x, y and z axes of the reciprocal lattice. The three minima have the same value, therefore there is no gap.

90

Bandstruc	ture			
0000 Geometry	00000000000	00000	000000000	000000000
				nanoMOSFET

Non-parabolicity

The bandstructure around the three minima can be expanded following the Kane non-parabolic approximation:

$$\epsilon_{\nu}^{kin} = rac{\hbar^2}{1 + \sqrt{1 + 2 ilde{lpha}_{
u}\hbar^2 \left(rac{k_x^2}{m_{
u}^x} + rac{k_y^2}{m_{
u}^y}
ight)}} \left(rac{k_x^2}{m_{
u}^x} + rac{k_y^2}{m_{
u}^y}
ight),$$

where $m_{\nu}^{\{x,y\}}$ are the axes of the ellispoids (called *effective masses*) of the ν^{th} valley along *x* and *y* directions, and the $\tilde{\alpha}_{\nu}$ are known as Kane dispersion factors.

The simplest case: one-valley, parabolic

$$\epsilon^{kin} = \frac{\hbar^2 |k|^2}{2m_*},$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

with m_* an average value between the effective masses.

Bandstruc	ture			
0000 Geometry	00000000000	00000	000000000	000000000
				nanoMOSFET

Non-parabolicity

The bandstructure around the three minima can be expanded following the Kane non-parabolic approximation:

$$\epsilon_{\nu}^{kin} = rac{\hbar^2}{1 + \sqrt{1 + 2 ilde{lpha}_{
u}\hbar^2 \left(rac{k_x^2}{m_{
u}^x} + rac{k_y^2}{m_{
u}^y}
ight)}} \left(rac{k_x^2}{m_{
u}^x} + rac{k_y^2}{m_{
u}^y}
ight),$$

where $m_{\nu}^{\{x,y\}}$ are the axes of the ellispoids (called *effective masses*) of the ν^{th} valley along *x* and *y* directions, and the $\tilde{\alpha}_{\nu}$ are known as Kane dispersion factors.

The simplest case: one-valley, parabolic

$$\epsilon^{kin} = \frac{\hbar^2 |k|^2}{2m_*},$$

with m_* an average value between the effective masses.

Introduction	Numerical methods	Benchmark tests	Diode	nanoMOSFET
Mathematical model				
Outline				
 Introd Introd Introd Introd Nume Sp Lin PV Benc VI. 	duction roduction erical methods litting techniques hear advection VENO interpolations hmark tests asov with confining potent	ial		
• VI. • Diode • Ov • Nu • Ex	asov-Poisson e rerview imerics periments			
5 nanol • Ge • Ma • Ne	MOSFET ometry athematical model wton schemes for the Schr	ödinger-Poisson block		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

- Solvers for Schrödinger and Poisson
- Experiments: simplifying assumptions

		nanoMOSFET
		000000000000000000000000000000000000000
Mathematical model		
The model		

BTE

The Boltzmann Transport Equation (one for each band and for each valley) reads

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{1}{\hbar} \nabla_k \epsilon_{\nu}^{kin} \cdot \nabla_x f_{\nu,p} - \frac{1}{\hbar} \nabla_x \epsilon_{\nu,p}^{pot} \cdot \nabla_k f_{\nu,p} = \mathcal{Q}_{\nu,p}[f], \qquad f_{\nu,p}(t=0) = \rho_{\nu,p}^{eq} M.$$

Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{\nu}}\frac{d\chi_{\nu,p}[V]}{dz}\right] - q\left(V + V_c\right)\chi_{\nu,p}[V] = \epsilon_{\nu,p}^{pot}[V]\chi_{\nu,p}[V]$$
$$\{\chi_{\nu,p}\}_p \subseteq H_{\sigma}^{1}(0, l_z) \text{ orthonormal basis}$$
$$-\operatorname{div}\left[\varepsilon_R \nabla V\right] = -\frac{q}{\varepsilon_0}\left(\sum_{\nu,p} \rho_{\nu,p}|\chi_{\nu,p}[V]|^2 - N_D\right)$$

plus boundary conditions.

These equations cannot be decoupled because we need the eigenfunctions to compute the potential (in the expression of the total density), and we need the potential to compute the eigenfunctions.

		nanoMOSFET
		000000000000000000000000000000000000000
Mathematical model		
The model		

BTE

The Boltzmann Transport Equation (one for each band and for each valley) reads

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{1}{\hbar} \nabla_k \epsilon_{\nu}^{kin} \cdot \nabla_x f_{\nu,p} - \frac{1}{\hbar} \nabla_x \epsilon_{\nu,p}^{pot} \cdot \nabla_k f_{\nu,p} = \mathcal{Q}_{\nu,p}[f], \qquad f_{\nu,p}(t=0) = \rho_{\nu,p}^{eq} M.$$

Schrödinger-Poisson block

$$-\frac{\hbar^2}{2} \frac{d}{dz} \left[\frac{1}{m_{\nu}} \frac{d\chi_{\nu,p}[V]}{dz} \right] - q \left(V + V_c \right) \chi_{\nu,p}[V] = \epsilon_{\nu,p}^{pot}[V] \chi_{\nu,p}[V]$$
$$\{\chi_{\nu,p}\}_p \subseteq H_o^1(0, l_z) \text{ orthonormal basis}$$
$$-\text{div} \left[\varepsilon_R \nabla V \right] = -\frac{q}{\varepsilon_0} \left(\sum_{\nu,p} \rho_{\nu,p} |\chi_{\nu,p}[V]|^2 - N_D \right)$$

plus boundary conditions.

These equations cannot be decoupled because we need the eigenfunctions to compute the potential (in the expression of the total density), and we need the potential to compute the eigenfunctions.

				nanoMOSFET
0000	00000000000	00000	00000000	000000000000000000000000000000000000000
Mathematical model				
The model				
I ne model				

The collision operator

The collision operator takes into account the electron-optical phonon scattering mechanism. It reads

$$\mathcal{Q}_{\nu,p}[f] = \sum_{s} \sum_{\nu',p'} \int_{\mathbb{R}^2} \left[S^s_{(\nu',p',k')\to(\nu,p,k)} f_{\nu',p'}(k') - S^s_{(\nu,p,k)\to(\nu',p',k')} f_{\nu,p}(k) \right] dk':$$

every S^s represents a different interaction, which may be elastic or inelastic, intra-valley or inter-valley. Each of them is inter-band.

Structure of the S^s

Each of the S^s consists of a constant, an overlap integral and a delta for the exchange of energy:

$$S^{s}_{(\nu,p,k)\to(\nu',p',k')} = C_{\nu,\nu'} \int_{0}^{l_{z}} |\chi_{\nu,p}|^{2} |\chi_{\nu',p'}|^{2} dz \delta\left(\epsilon^{tot}_{\nu',p'}(k') - \epsilon^{tot}_{\nu,p}(k) \pm \text{some energy}\right)$$

・ロト・日本・日本・日本・日本・日本

		nanoMOSFET
		000000000000000000000000000000000000000
Mathematical model		
The model		

The collision operator

The collision operator takes into account the electron-optical phonon scattering mechanism. It reads

$$\mathcal{Q}_{\nu,p}[f] = \sum_{s} \sum_{\nu',p'} \int_{\mathbb{R}^2} \left[S^s_{(\nu',p',k')\to(\nu,p,k)} f_{\nu',p'}(k') - S^s_{(\nu,p,k)\to(\nu',p',k')} f_{\nu,p}(k) \right] dk':$$

every S^s represents a different interaction, which may be elastic or inelastic, intra-valley or inter-valley. Each of them is inter-band.

Structure of the S^s

Each of the S^s consists of a constant, an overlap integral and a delta for the exchange of energy:

$$S^{s}_{(\nu,p,k)\to(\nu',p',k')} = C_{\nu,\nu'} \int_{0}^{l_{z}} |\chi_{\nu,p}|^{2} |\chi_{\nu',p'}|^{2} dz \delta\left(\epsilon^{tot}_{\nu',p'}(k') - \epsilon^{tot}_{\nu,p}(k) \pm \text{some energy}\right)$$

▲□▶▲□▶▲□▶▲□▶ □ つへで

Introduction	Numerical methods	Benchmark tests	Diode	nanoMOSFET
Newton schemes for the S	Schrödinger-Poisson block	00000		
Outline				
Introd Int	luction roduction			
 Nume Sp! Lir PW 	erical methods litting techniques near advection /ENO interpolations			
 Bencl Vla Vla 	hmark tests asov with confining potent asov-Poisson	ial		
 Diode Ov Nu Ex 	e erview merics periments			
5 nanol • Ge	MOSFET ometry			

Mathematical model

• Newton schemes for the Schrödinger-Poisson block

- Solvers for Schrödinger and Poisson
- Experiments: simplifying assumptions

				nanoMOSFET	
				000000000	
Newton schemes for the Schrödinger-Poisson block					
The Newto	on scheme				

The functional

Solving the Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{\nu}}\frac{d\chi_{\nu,p}[V]}{dz}\right] - q\left(V + V_c\right)\chi_{\nu,p}[V] = \epsilon_{\nu,p}^{pot}[V]\chi_{\nu,p}[V]$$
$$-\operatorname{div}\left[\varepsilon_R\nabla V\right] = -\frac{q}{\varepsilon_0}\left(\sum_{\nu,p}\rho_{\nu,p}|\chi_{\nu,p}[V]|^2 - N_D\right)$$

is equivalt to minimizing, under the constraints of the Schrödinger equation, the functional P[V]

$$P[V] = - ext{div}\left(arepsilon_R
abla V
ight) + rac{q}{arepsilon_0} \left(\sum_{
u,p}
ho_{
u,p} |\chi_{
u,p}[V]|^2 - N_D
ight),$$

The scheme

which is achieved by means of a Newton scheme

$$dP(V^{old}, V^{new} - V^{old}) = -P[V^{old}]$$

				nanoMOSFET	
				000000000	
Newton schemes for the Schrödinger-Poisson block					
The Newto	on scheme				

The functional

Solving the Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{\nu}}\frac{d\chi_{\nu,p}[V]}{dz}\right] - q\left(V + V_c\right)\chi_{\nu,p}[V] = \epsilon_{\nu,p}^{pot}[V]\chi_{\nu,p}[V]$$
$$-\operatorname{div}\left[\varepsilon_R\nabla V\right] = -\frac{q}{\varepsilon_0}\left(\sum_{\nu,p}\rho_{\nu,p}|\chi_{\nu,p}[V]|^2 - N_D\right)$$

is equivalt to minimizing, under the constraints of the Schrödinger equation, the functional P[V]

$$P[V] = - ext{div}\left(arepsilon_R
abla V
ight) + rac{q}{arepsilon_0} \left(\sum_{
u,p}
ho_{
u,p} |\chi_{
u,p}[V]|^2 - N_D
ight),$$

The scheme

which is achieved by means of a Newton scheme

$$dP(V^{old}, V^{new} - V^{old}) = -P[V^{old}].$$

				nanoMOSFET		
				000000000		
Newton schemes for the S	Schrödinger-Poisson block					
The iterations						

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

$$d\epsilon_{\nu,p}(V,U) = -q \int U(\zeta) |\chi_{\nu,p}[V](\zeta)|^2 d\zeta$$

$$d\chi_{\nu,p}(V,U) = -q \sum_{p' \neq p} \frac{\int U(\zeta) \chi_{\nu,p}[V](\zeta) \chi_{\nu,p'}[V](\zeta) d\zeta}{\epsilon_{\nu,p}[V] - \epsilon_{\nu,p'}[V]} \chi_{\nu,p'}[V](z).$$

Iterations

After computing the Gâteaux-derivative of the density and developping calculations, we are led to a Poisson-like equation

$$-\operatorname{div}\left(\varepsilon_{R}\nabla V^{new}\right) + \int_{0}^{l_{z}} \mathcal{A}[V^{old}](z,\zeta)V^{new}(\zeta)d\zeta$$
$$= -\frac{q}{\varepsilon_{0}}\left(N[V^{old}] - N_{D}\right) + \int_{0}^{l_{z}} \mathcal{A}[V^{old}](z,\zeta)V^{old}(\zeta)d\zeta,$$

where $\mathcal{A}[V]$ is essentially the Gâteaux-derivative of the functional P[V].

			nanoMOSFET
			000000000
Newton schemes for the Schr	ödinger-Poisson block		
The iterati	ons		

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

$$d\epsilon_{\nu,p}(V,U) = -q \int U(\zeta) |\chi_{\nu,p}[V](\zeta)|^2 d\zeta$$

$$d\chi_{\nu,p}(V,U) = -q \sum_{p' \neq p} \frac{\int U(\zeta) \chi_{\nu,p}[V](\zeta) \chi_{\nu,p'}[V](\zeta) d\zeta}{\epsilon_{\nu,p}[V] - \epsilon_{\nu,p'}[V]} \chi_{\nu,p'}[V](z).$$

Iterations

After computing the Gâteaux-derivative of the density and developping calculations, we are led to a Poisson-like equation

$$\begin{aligned} -\operatorname{div}\left(\varepsilon_{R}\nabla V^{new}\right) &+ \int_{0}^{l_{z}}\mathcal{A}[V^{old}](z,\zeta)V^{new}(\zeta)d\zeta \\ &= -\frac{q}{\varepsilon_{0}}\left(N[V^{old}] - N_{D}\right) + \int_{0}^{l_{z}}\mathcal{A}[V^{old}](z,\zeta)V^{old}(\zeta)d\zeta, \end{aligned}$$

where $\mathcal{A}[V]$ is essentially the Gâteaux-derivative of the functional P[V].

Introduction	Numerical methods	Benchmark tests	Diode 000000000	nanoMOSFET
Solvers for Schrödinger	and Poisson			
Outline				
1 Intro	duction			
• In	troduction			
2 Num				
• Sp	litting techniques			
• Li	near advection			
• PV	VENO interpolations			
3 Benc	hmark tests			
• VI	asov with confining potent	ial		
• V]	asov-Poisson			
4 Diod				
• 0	verview			
Nı	umerics			
• Ex	periments			
5 nano	MOSFET			
• Ge	eometry			

- Mathematical model
- Newton schemes for the Schrödinger-Poisson block

Solvers for Schrödinger and Poisson

• Experiments: simplifying assumptions

Introduction	Numerical methods	Benchmark tests	Diode 000000000	nanoMOSFET	
Solvers for Schrödinger and Po	isson				
Numerical methods					

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{\nu}}\frac{d\chi_{\nu,p}}{dz}\right] - q\left(V+V_c\right)\chi_{\nu,p} = \epsilon_{\nu,p}\chi_{\nu,p}$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

$$-\operatorname{div}\left[\varepsilon_{R}\nabla V\right] + \int_{0}^{l_{z}} \mathcal{A}(z,\zeta)V(\zeta)d\zeta = \mathcal{B}(z).$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system (full) is solved by means of a LAPACK routine called DGESV.

			nanoMOSFET
Solvers for Schrödinger and Poi	sson		
Numerical	methods		

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{\nu}}\frac{d\chi_{\nu,p}}{dz}\right] - q\left(V+V_c\right)\chi_{\nu,p} = \epsilon_{\nu,p}\chi_{\nu,p}$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

$$-\operatorname{div}\left[\varepsilon_{R}\nabla V\right]+\int_{0}^{l_{z}}\mathcal{A}(z,\zeta)V(\zeta)d\zeta=\mathcal{B}(z).$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system (full) is solved by means of a LAPACK routine called DGESV.

			nanoMOSFET
Solvers for Schrödinger and Poi	sson		
Numerical	methods		

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{\nu}}\frac{d\chi_{\nu,p}}{dz}\right] - q\left(V+V_c\right)\chi_{\nu,p} = \epsilon_{\nu,p}\chi_{\nu,p}$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

$$-\operatorname{div}\left[arepsilon_R
abla V
ight] + \int_0^{l_z} \mathcal{A}(z,\zeta) V(\zeta) d\zeta = \mathcal{B}(z).$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system (full) is solved by means of a LAPACK routine called DGESV.

Introduction	Numerical methods	Benchmark tests	Diode	nanoMOSFET
Experiments: sin	nplifying assumptions	00000		
Outlin	ne			
	ntroduction Introduction Numerical methods Splitting techniques Linear advection PWENO interpolations Benchmark tests			
	 Vlasov with comming potential Vlasov-Poisson Diode 			
	OverviewNumericsExperiments			
5 I	nanoMOSFET Geometry Mathematical model			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

- Mathematical model
- Newton schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Experiments: simplifying assumptions

	Numerical methods	Benchmark tests		nanoMOSFET	
Experiments: simplifying assumptions					
Collision of	perator				

Results are presented for the the DG MOSFET in the one-valley, parabolic-band approximation. Moreover, the complete collision operator is substituted by a simple relaxation-time operator:

$$\mathcal{Q}_p f = rac{1}{ au} \left(
ho_p M - f_p
ight).$$

The goal of this work is just the setting up of numerical tools for a more profound and realistic simulation.

A parallel code in the most realistic case is being implemented.

Thermodynamical equilibrium: one-valley case				
Experiments: simplifying assumptions				
				nanoMOSFET

1-th band Np [m**(-3)]

2-th band Np [m**(-3)]

x [m]

4e+25 3.5e+25 3e+25 2.5e+25 2e+25 1.5e+25 1e+25 5e+24

	Numerical methods	Benchmark tests		nanoMOSFET
Experiments: simplifying assumptions				
Transient states				

We propose now some results relative to the long-time behavior of the system.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで