A deterministic hybrid quantum/classical solver for a nanoscaled MOSFET device

Naoufel Ben Abdallah, María José Cáceres, José Antonio Carrillo, Francesco Vecil

Quantum systems and semiconductor device analysis, simulations, applications, 20-24/04

Outline

(1) The model

- Geometry
- Mathematical model
(2) Numerical methods for the Schrödinger-Poisson block
- Iterative schemes
- Solvers for Schrödinger and Poisson
(3) Solvers for the BTE block
- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations
(4) Experiments
- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

Outline

(1) The model

- Geometry
- Mathematical model
(2) Numerical methods for the Schrödinger-Poisson block
- Iterative schemes
- Solvers for Schrödinger and Poisson
(3) Solvers for the BTE block
- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations
(4) Experiments
- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

The model

We afford the simulation of a nanoscaled MOSFET.

Dimensional coupling

x-dimension is unconfined unlike z-dimension, therefore we adopt a different description:

- along x-dimension the electrons behave like particles, their movement being described by the Boltzmann Transport Equation;
- along z-dimension the electrons, confined in a potential well, behave like waves; the equilibrium being reached much faster than transport (quasi-static phenomenon), their state is given by the stationary-state Schrödinger equation.

The model

Subband decomposition
Due to the confinement, different sub-bands (another name for the eigenvalues of the Schrödinger equation) identify independent populations, which have to be transported for separate.

Coupling between dimensions
Dimensions and subbands are coupled in the Poisson equation for the computation of the electrostatic field in the expression of the total density.

The model

Subband decomposition
Due to the confinement, different sub-bands (another name for the eigenvalues of the Schrödinger equation) identify independent populations, which have to be transported for separate.

Coupling between dimensions
Dimensions and subbands are coupled in the Poisson equation for the computation of the electrostatic field in the expression of the total density.

Geometry

Bandstructure

The three valleys

The Si bandstructure presents six minima in the first Brillouin zone:

The axes of the ellipsoids are disposed along the x, y and z axes of the reciprocal lattice. The three minima have the same value, therefore there is no gap.

Bandstructure

Coupling between subbands and valleys
The sub-bands as well as the valleys are coupled by the Poisson equation in the expression of the total density and, if the case, by the scattering operator.

Non-parabolicity
The bandstructure around the three minima can be expanded following the Kane non-parabolic approximation (ν indexes the valley):

where $m_{\{x, y, z\}, \nu}$ are the axes of the ellispoids (called effective masses) of the $\nu^{\text {th }}$ valley along x, y and z directions, and the $\tilde{\alpha}_{\nu}$ are known as Kane dispersion factors.

Bandstructure

Coupling between subbands and valleys
The sub-bands as well as the valleys are coupled by the Poisson equation in the expression of the total density and, if the case, by the scattering operator.

Non-parabolicity
The bandstructure around the three minima can be expanded following the Kane non-parabolic approximation (ν indexes the valley):

$$
\epsilon_{\nu}^{k i n}=\frac{\hbar^{2}}{1+\sqrt{1+2 \tilde{\alpha}_{\nu} \hbar^{2}\left(\frac{k_{x}^{2}}{m_{x, \nu}}+\frac{k_{y}^{2}}{m_{y, \nu}}\right)}}\left(\frac{k_{x}^{2}}{m_{x, \nu}}+\frac{k_{y}^{2}}{m_{y, \nu}}\right)
$$

where $m_{\{x, y, z\}, \nu}$ are the axes of the ellispoids (called effective masses) of the $\nu^{\text {th }}$ valley along x, y and z directions, and the $\tilde{\alpha}_{\nu}$ are known as Kane dispersion factors.

Outline

(1) The model

- Geometry
- Mathematical model
(2) Numerical methods for the Schrödinger-Poisson block
- Iterative schemes
- Solvers for Schrödinger and PoissonSolvers for the BTE block
- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolationsExperiments
- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

The model

BTE

The Boltzmann Transport Equation (one for each band and for each valley) reads

$$
\frac{\partial f_{\nu, p}}{\partial t}+\frac{1}{\hbar} \nabla_{k} \epsilon_{\nu}^{k i n} \cdot \nabla_{x} f_{\nu, p}-\frac{1}{\hbar} \nabla_{x} \epsilon_{\nu, p}^{p o t} \cdot \nabla_{k} f_{\nu, p}=\mathcal{Q}_{\nu, p}[f], \quad f_{\nu, p}(t=0)=\rho_{\nu, p}^{e q} M_{\nu} .
$$

Schrödinger-Poisson block

The model

BTE

The Boltzmann Transport Equation (one for each band and for each valley) reads

$$
\frac{\partial f_{\nu, p}}{\partial t}+\frac{1}{\hbar} \nabla_{k} \epsilon_{\nu}^{k i n} \cdot \nabla_{x} f_{\nu, p}-\frac{1}{\hbar} \nabla_{x} \epsilon_{\nu, p}^{p o t} \cdot \nabla_{k} f_{\nu, p}=\mathcal{Q}_{\nu, p}[f], \quad f_{\nu, p}(t=0)=\rho_{\nu, p}^{e q} M_{\nu} .
$$

Schrödinger-Poisson block

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2} \frac{d}{d z}\left[\frac{1}{m_{z, \nu}} \frac{d \chi_{\nu, p}[V]}{d z}\right]-q\left(V+V_{c}\right) \chi_{\nu, p}[V]=\epsilon_{\nu, p}^{p o t}[V] \chi_{\nu, p}[V] \\
& \left\langle\chi_{\nu, p}[V], \chi_{\nu, p^{\prime}}[V]\right\rangle=\delta_{p, p^{\prime}} \\
& -\operatorname{div}\left[\varepsilon_{R} \nabla V\right]=-\frac{q}{\varepsilon_{0}}\left(N[V]-N_{D}\right) \\
& N[V]=\sum_{\nu, p} \rho_{\nu, p}\left|\chi_{\nu, p}[V]\right|^{2}
\end{aligned}
$$

These equations cannot be decoupled because we need the eigenfunctions to compute the potential (in the expression of the total density), and we need the potential to compute the eigenfunctions.

The model

The collision operator
The collision operator takes into account the phonon scattering mechanism. It reads

$$
\begin{aligned}
& \mathcal{Q}_{\nu, p}[f]=\sum_{s} \mathcal{Q}_{\nu, p}^{s}[f] \\
& \mathcal{Q}_{\nu, p}^{s}[f]=\sum_{\nu^{\prime}, p^{\prime}} \int_{\mathbb{R}^{2}}\left[S_{\left(\nu^{\prime}, p^{\prime}, k^{\prime}\right) \rightarrow(\nu, p, k)}^{s} f_{\nu^{\prime}, p^{\prime}}\left(k^{\prime}\right)-S_{(\nu, p, k) \rightarrow\left(\nu^{\prime}, p^{\prime}, k^{\prime}\right)}^{s} f_{\nu, p}(k)\right] d k^{\prime}:
\end{aligned}
$$

every S^{S} represents a different interaction.

Structure of the S

The missing dimension of the wave-vector $k \in \mathbb{R}^{2}$, instead of $k \in \mathbb{R}^{3}$, is replaced by an overlap integral $W_{(\nu, p),\left(\nu^{\prime}, p^{\prime}\right)}$:

The model

The collision operator
The collision operator takes into account the phonon scattering mechanism. It reads

$$
\begin{aligned}
& \mathcal{Q}_{\nu, p}[f]=\sum_{s} \mathcal{Q}_{\nu, p}^{s}[f] \\
& \mathcal{Q}_{\nu, p}^{s}[f]=\sum_{\nu^{\prime}, p^{\prime}} \int_{\mathbb{R}^{2}}\left[S_{\left(\nu^{\prime}, p^{\prime}, k^{\prime}\right) \rightarrow(\nu, p, k)}^{s} f_{\nu^{\prime}, p^{\prime}}\left(k^{\prime}\right)-S_{(\nu, p, k) \rightarrow\left(\nu^{\prime}, p^{\prime}, k^{\prime}\right)}^{s} f_{\nu, p}(k)\right] d k^{\prime}:
\end{aligned}
$$

every S^{S} represents a different interaction.

Structure of the S^{S}

The missing dimension of the wave-vector $k \in \mathbb{R}^{2}$, instead of $k \in \mathbb{R}^{3}$, is replaced by an overlap integral $W_{(\nu, p),\left(\nu^{\prime}, p^{\prime}\right)}$:

$$
\begin{aligned}
& S_{(\nu, p, k) \rightarrow\left(\nu^{\prime}, p^{\prime}, k^{\prime}\right)}^{s}=C_{\nu \rightarrow \nu^{\prime}} \frac{1}{W_{(\nu, p),\left(\nu^{\prime}, p^{\prime}\right)}} \delta\left(\epsilon_{\nu^{\prime}, p^{\prime}}^{\text {tot }}\left(k^{\prime}\right)-\epsilon_{\nu, p}^{\text {tot }}(k) \pm \text { some energy }\right) \\
& \frac{1}{W_{(\nu, p),\left(\nu^{\prime}, p^{\prime}\right)}}=\int_{0}^{l_{z}}\left|\chi_{\nu, p}\right|^{2}\left|\chi_{\nu^{\prime}, p^{\prime}}\right|^{2} d z, \quad[W]=m .
\end{aligned}
$$

Boundary conditions

$=$ force the density to stay close to the equilibrium density

- - - - - homogeneous Neumann
= Homogeneous Neumann

Outline

The model- Geometry
- Mathematical model
(2) Numerical methods for the Schrödinger-Poisson block
- Iterative schemes
- Solvers for Schrödinger and PoissonSolvers for the BTE block
- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolationsExperiments
- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

The Newton scheme

The functional
Solving the Schrödinger-Poisson block

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2} \frac{d}{d z}\left[\frac{1}{m_{z, \nu}} \frac{d \chi_{\nu, p}[V]}{d z}\right]-q\left(V+V_{c}\right) \chi_{\nu, p}[V]=\epsilon_{\nu, p}^{p o t}[V] \chi_{\nu, p}[V] \\
& -\operatorname{div}\left[\varepsilon_{R} \nabla V\right]=-\frac{q}{\varepsilon_{0}}\left(N[V]-N_{D}\right)
\end{aligned}
$$

is equivalt to minimizing, under the constraints of the Schrödinger equation, the functional $P[V]$

$$
P[V]=-\operatorname{div}\left(\varepsilon_{R} \nabla V\right)+\frac{q}{\varepsilon_{0}}\left(N[V]-N_{D}\right)
$$

The scheme
which is achieved by means of a Newton-Raphson iterative scheme

The Newton scheme

The functional
Solving the Schrödinger-Poisson block

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2} \frac{d}{d z}\left[\frac{1}{m_{z, \nu}} \frac{d \chi_{\nu, p}[V]}{d z}\right]-q\left(V+V_{c}\right) \chi_{\nu, p}[V]=\epsilon_{\nu, p}^{p o t}[V] \chi_{\nu, p}[V] \\
& -\operatorname{div}\left[\varepsilon_{R} \nabla V\right]=-\frac{q}{\varepsilon_{0}}\left(N[V]-N_{D}\right)
\end{aligned}
$$

is equivalt to minimizing, under the constraints of the Schrödinger equation, the functional $P[V]$

$$
P[V]=-\operatorname{div}\left(\varepsilon_{R} \nabla V\right)+\frac{q}{\varepsilon_{0}}\left(N[V]-N_{D}\right)
$$

The scheme
which is achieved by means of a Newton-Raphson iterative scheme

$$
d P\left(V^{\text {old }}, V^{\text {new }}-V^{\text {old }}\right)=-P\left[V^{\text {old }}\right]
$$

The iterations

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

$$
\begin{aligned}
d \epsilon_{\nu, p}(V, U) & =-q \int U(\zeta)\left|\chi_{\nu, p}[V](\zeta)\right|^{2} d \zeta \\
d \chi_{\nu, p}(V, U) & =-q \sum_{p^{\prime} \neq p} \frac{\int U(\zeta) \chi_{\nu, p}[V](\zeta) \chi_{\nu, p^{\prime}}[V](\zeta) d \zeta}{\epsilon_{\nu, p}[V]-\epsilon_{\nu, p^{\prime}}[V]} \chi_{\nu, p^{\prime}}[V](z)
\end{aligned}
$$

Iterations
After computing the Gâteaux-derivative of the density and developping calculations, we are led to a Poisson-like equation

The iterations

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

$$
\begin{aligned}
d \epsilon_{\nu, p}(V, U) & =-q \int U(\zeta)\left|\chi_{\nu, p}[V](\zeta)\right|^{2} d \zeta \\
d \chi_{\nu, p}(V, U) & =-q \sum_{p^{\prime} \neq p} \frac{\int U(\zeta) \chi_{\nu, p}[V](\zeta) \chi_{\nu, p^{\prime}}[V](\zeta) d \zeta}{\epsilon_{\nu, p}[V]-\epsilon_{\nu, p^{\prime}}[V]} \chi_{\nu, p^{\prime}}[V](z)
\end{aligned}
$$

Iterations

After computing the Gâteaux-derivative of the density and developping calculations, we are led to a Poisson-like equation

$$
\begin{aligned}
& -\operatorname{div}\left(\varepsilon_{R} \nabla V^{\text {new }}\right)+\int_{0}^{l_{z}} \mathcal{A}\left[V^{\text {old }}\right](z, \zeta) V^{\text {new }}(\zeta) d \zeta \\
= & -\frac{q}{\varepsilon_{0}}\left(N\left[V^{\text {old }}\right]-N_{D}\right)+\int_{0}^{l_{z}} \mathcal{A}\left[V^{\text {old }}\right](z, \zeta) V^{\text {old }}(\zeta) d \zeta
\end{aligned}
$$

where $\mathcal{A}[V]$ is essentially the Gâteaux-derivative of the functional $P[V]$.

The Gummel scheme

The iteration
Solving the Schrödinger-Poisson block

$$
\begin{aligned}
& -\operatorname{div}\left(\varepsilon_{R} \nabla V^{\text {new }}\right)+\frac{q}{\varepsilon_{0}} N\left[V^{\text {old }}\right] \frac{q}{k_{B} T_{L}} V^{\text {new }} \\
= & -\frac{q}{\varepsilon_{0}}\left(N\left[V^{\text {old }}\right]-N_{D}\right)+\frac{q}{\varepsilon_{0}} N\left[V^{\text {old }}\right] \frac{q}{k_{B} T_{L}} V^{\text {old }},
\end{aligned}
$$

Comparison with Newton
We here repeat the Newton iteration:

The Gummel scheme

The iteration
Solving the Schrödinger-Poisson block

$$
\begin{aligned}
& -\operatorname{div}\left(\varepsilon_{R} \nabla V^{\text {new }}\right)+\frac{q}{\varepsilon_{0}} N\left[V^{\text {old }}\right] \frac{q}{k_{B} T_{L}} V^{\text {new }} \\
= & -\frac{q}{\varepsilon_{0}}\left(N\left[V^{\text {old }}\right]-N_{D}\right)+\frac{q}{\varepsilon_{0}} N\left[V^{\text {old }}\right] \frac{q}{k_{B} T_{L}} V^{\text {old }},
\end{aligned}
$$

Comparison with Newton

We here repeat the Newton iteration:

$$
\begin{aligned}
& -\operatorname{div}\left(\varepsilon_{R} \nabla V^{\text {new }}\right)+\int_{0}^{l_{z}} \mathcal{A}\left[V^{\text {old }}\right](z, \zeta) V^{\text {new }}(\zeta) d \zeta \\
= & -\frac{q}{\varepsilon_{0}}\left(N\left[V^{\text {old }}\right]-N_{D}\right)+\int_{0}^{l_{z}} \mathcal{A}\left[V^{\text {old }}\right](z, \zeta) V^{\text {old }}(\zeta) d \zeta
\end{aligned}
$$

Framework

Outline

The model- Geometry
- Mathematical model

2 Numerical methods for the Schrödinger-Poisson block

- Iterative schemes
- Solvers for Schrödinger and PoissonSolvers for the BTE block
- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolationsExperiments
- Simplifying assumptions
- Equilibria
- Time-depenclent simulations
- Newton vs. Gummel
- Plasma oscillations

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.
The Schrödinger equation
Equation

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation
We need to solve equations like

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system (full) is solved by means of a LAPACK routine called DGESV.

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.
The Schrödinger equation
Equation

$$
-\frac{\hbar^{2}}{2} \frac{d}{d z}\left[\frac{1}{m_{z, \nu}} \frac{d \chi_{\nu, p}}{d z}\right]-q\left(V+V_{c}\right) \chi_{\nu, p}=\epsilon_{\nu, p} \chi_{\nu, p}
$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation
We need to solve equations like

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system (full) is solved by means of a LAPACK routine called DGESV.

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$
-\frac{\hbar^{2}}{2} \frac{d}{d z}\left[\frac{1}{m_{z, \nu}} \frac{d \chi_{\nu, p}}{d z}\right]-q\left(V+V_{c}\right) \chi_{\nu, p}=\epsilon_{\nu, p} \chi_{\nu, p}
$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation
We need to solve equations like

$$
-\operatorname{div}\left[\varepsilon_{R} \nabla V\right]+\int_{0}^{l_{z}} \mathcal{A}(z, \zeta) V(\zeta) d \zeta=\mathcal{B}(z)
$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system (full) is solved by means of a LAPACK routine called DGESV.

Outline

The model- Geometry
- Mathematical modelNumerical methods for the Schrödinger-Poisson block
- Iterative schemes
- Solvers for Schrödinger and Poisson
(3) Solvers for the BTE block
- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolationsExperiments
- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

Wave-vector space

Two different adimensionalizations are proposed for the wave-vector space. Magnitudes with tilde are meant with dimension.

Cartesian coordinates

Ellipsoidal coordinated

The wave-vector for the $\nu^{\text {th }}$ valley reads:

Wave-vector space

Two different adimensionalizations are proposed for the wave-vector space. Magnitudes with tilde are meant with dimension.

Cartesian coordinates

$$
\left(\tilde{k}_{x}, \tilde{k}_{y}\right)=\frac{\sqrt{m_{e} \kappa_{B} T_{L}}}{\hbar}\left(k_{x}, k_{y}\right)
$$

Ellipsoidal coordinated

The wave-vector for the $\nu^{\text {th }}$ valley reads:

Wave-vector space

Two different adimensionalizations are proposed for the wave-vector space. Magnitudes with tilde are meant with dimension.

Cartesian coordinates

$$
\left(\tilde{k}_{x}, \tilde{k}_{y}\right)=\frac{\sqrt{m_{e} \kappa_{B} T_{L}}}{\hbar}\left(k_{x}, k_{y}\right)
$$

Ellipsoidal coordinated

The wave-vector for the $\nu^{\text {th }}$ valley reads:

$$
\left(\tilde{k}_{x}, \tilde{k}_{y}\right)=\frac{\sqrt{m_{e} \kappa_{B} T_{L}}}{\hbar} \sqrt{2 w\left(1+\alpha_{\nu} w\right)}\left(\sqrt{m_{x, \nu}} \cos (\phi), \sqrt{m_{y, \nu}} \sin (\phi)\right) .
$$

BTE in cartesian coordinates

Let the flux coefficients

$$
\begin{aligned}
a_{\nu}^{1}(k) & =C^{V} v_{x, \nu}(k) \\
a_{\nu, p}^{2}(x) & =-C^{V} \frac{\partial \epsilon_{x, \nu}^{p o t}}{\partial x}(x)
\end{aligned}
$$

Transport form

The BTE in transn ort form reads

Conservation-law form
The DTE in conscrivation-law form reads

BTE in cartesian coordinates

Let the flux coefficients

$$
\begin{aligned}
a_{\nu}^{1}(k) & =C^{V} v_{x, \nu}(k) \\
a_{\nu, p}^{2}(x) & =-C^{V} \frac{\partial \epsilon_{x, \nu}^{p o t}}{\partial x}(x) .
\end{aligned}
$$

Transport form
The BTE in transport form reads

$$
\frac{\partial f_{\nu, p}}{\partial t}+a_{\nu}^{1} \frac{\partial f_{\nu, p}}{\partial x}+a_{\nu, p}^{2} \frac{\partial f_{\nu, p}}{\partial k}=\mathcal{Q}_{\nu, p}[f] .
$$

Conservation-law form
The BTE in conservation-law form reads

BTE in cartesian coordinates

Let the flux coefficients

$$
\begin{aligned}
a_{\nu}^{1}(k) & =C^{V} v_{x, \nu}(k) \\
a_{\nu, p}^{2}(x) & =-C^{V} \frac{\partial \epsilon_{x, \nu}^{p o t}}{\partial x}(x)
\end{aligned}
$$

Transport form
The BTE in transport form reads

$$
\frac{\partial f_{\nu, p}}{\partial t}+a_{\nu}^{1} \frac{\partial f_{\nu, p}}{\partial x}+a_{\nu, p}^{2} \frac{\partial f_{\nu, p}}{\partial k}=\mathcal{Q}_{\nu, p}[f] .
$$

Conservation-law form
The BTE in conservation-law form reads

$$
\frac{\partial f_{\nu, p}}{\partial t}+\frac{\partial}{\partial x}\left[a_{\nu}^{1} f_{\nu, p}\right]+\frac{\partial}{\partial k}\left[a_{\nu, p}^{2} f_{\nu, p}\right]=\mathcal{Q}_{\nu, p}[f] .
$$

BTE in ellipsoidal coordinates

Let the flux coefficients

$$
\begin{aligned}
a_{\nu}^{1}(w, \phi) & =C^{V} \frac{\sqrt{2 w\left(1+\alpha_{\nu} w\right)} \cos (\phi)}{\sqrt{m_{x, \nu}}} \frac{1}{1+2 \alpha_{\nu} w} \\
a_{\nu, p}^{2}(x, w, \phi) & =-C^{V} \frac{\partial \epsilon_{\nu, p}}{\partial x}(x) \frac{1}{1+2 \alpha_{\nu} w} \frac{\sqrt{2 w\left(1+\alpha_{\nu} w\right)} \cos (\phi)}{\sqrt{m_{x, \nu}}} \\
a_{\nu, p}^{3}(x, w, \phi) & =C^{V} \frac{\partial \epsilon_{\nu, p}}{\partial x}(x) \frac{\sin (\phi)}{\sqrt{m_{x, \nu}} \sqrt{2 w\left(1+\alpha_{\nu} w\right)}}
\end{aligned}
$$

BTE in ellipsoidal coordinates

Let the flux coefficients

$$
\begin{aligned}
a_{\nu}^{1}(w, \phi) & =C^{V} \frac{\sqrt{2 w\left(1+\alpha_{\nu} w\right)} \cos (\phi)}{\sqrt{m_{x, \nu}}} \frac{1}{1+2 \alpha_{\nu} w} \\
a_{\nu, p}^{2}(x, w, \phi) & =-C^{V} \frac{\partial \epsilon_{\nu, p}}{\partial x}(x) \frac{1}{1+2 \alpha_{\nu} w} \frac{\sqrt{2 w\left(1+\alpha_{\nu} w\right)} \cos (\phi)}{\sqrt{m_{x, \nu}}} \\
a_{\nu, p}^{3}(x, w, \phi) & =C^{V} \frac{\partial \epsilon_{\nu, p}}{\partial x}(x) \frac{\sin (\phi)}{\sqrt{m_{x, \nu}} \sqrt{2 w\left(1+\alpha_{\nu} w\right)}} .
\end{aligned}
$$

Conservation-law form

$$
\frac{\partial \Phi_{\nu, p}}{\partial t}+\frac{\partial}{\partial x}\left[a_{\nu}^{1} \Phi_{\nu, p}\right]+\frac{\partial}{\partial w}\left[a_{\nu, p}^{2} \Phi_{\nu, p}\right]+\frac{\partial}{\partial \phi}\left[a_{\nu, p}^{3} \Phi_{\nu, p}\right]=\mathcal{Q}_{\nu, p}[\Phi] s(w)
$$

Outline

The model- Geometry
- Mathematical modelNumerical methods for the Schrödinger-Poisson block
- Iterative schemes
- Solvers for Schrödinger and Poisson
(3) Solvers for the BTE block
- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolationsExperiments
- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

Runge-Kutta vs. splitting

We propose two discretizations for the time, following the choice between conservation-law form and transport form.

Runge-Kutta vs. splitting

We propose two discretizations for the time, following the choice between conservation-law form and transport form.

Runge-Kutta

If the BTE is written in conservation-law form, then we advance in time by the third order Total Variation Diminishing Runge-Kutta scheme: if the evolution equation reads $\frac{d f}{d t}=H(t, f)$, then
(1) $f^{(1)}=\Delta t H^{n}\left(t^{n}, f^{n}\right)$
(2) $f^{(2)}=\frac{3}{4} f^{n}+\frac{1}{4} f^{(1)}+\frac{1}{4} \Delta t H^{(1)}\left(t^{n}+\Delta t, f^{(1)}\right)$
(3) $f^{n+1}=\frac{1}{3} f^{n}+\frac{2}{3} f^{(2)}+\frac{2}{3} H^{(2)}\left(t^{n}+\frac{1}{2} \Delta t, f^{(2)}\right)$

Splitting schemes

Time splitting
If the BTE is written in transport form, then we advance in time by time splitting schemes:

$$
\begin{aligned}
\frac{\partial f_{\nu, p}}{\partial t}+C^{V}\left\{\epsilon^{t o t}, f_{\nu, p}\right\} & =0 \\
\frac{\partial f_{\nu, p}}{\partial t} & =\mathcal{Q}_{\nu, p}[f]
\end{aligned}
$$

Splitting schemes

Dimensional splitting
Apart from time splitting, we also split the phase-space:

$$
\begin{array}{r}
\frac{\partial f_{\nu, p}}{\partial t}+a_{\nu}^{1} \frac{\partial f_{\nu, p}}{\partial x}=0 \\
\frac{\partial f_{\nu, p}}{\partial t}+a_{\nu, p}^{2} \frac{\partial f_{\nu, p}}{\partial k}=0
\end{array}
$$

The overall scheme is summarized in the following figure.

Splitting schemes

Dimensional splitting
Apart from time splitting, we also split the phase-space:

$$
\begin{array}{r}
\frac{\partial f_{\nu, p}}{\partial t}+a_{\nu}^{1} \frac{\partial f_{\nu, p}}{\partial x}=0 \\
\frac{\partial f_{\nu, p}}{\partial t}+a_{\nu, p}^{2} \frac{\partial f_{\nu, p}}{\partial k}=0
\end{array}
$$

The overall scheme is summarized in the following figure.

Outline

The model- Geometry
- Mathematical modelNumerical methods for the Schrödinger-Poisson block
- Iterative schemes
- Solvers for Schrödinger and Poisson
(3) Solvers for the BTE block
- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolationsExperiments
- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

Linear advection

Flux Balance Method:
Total mass conservation is forced. It is based on the idea of following backward the characteristics, but integral values are taken instead of point values:

The averages along the red segments are the same, because we have followed the characteristics backward.

FLUX BALANCE METHOD means evualuating the flux at time $\mathrm{t}^{\mathrm{n}+1}$ from a balance of fluxes at previous time t^{n} :
-.-..-.- the average along the purple segment

- - - - - - plus the average along the blue segment

Outline

The model- Geometry
- Mathematical modelNumerical methods for the Schrödinger-Poisson block
- Iterative schemes
- Solvers for Schrödinger and Poisson
(3) Solvers for the BTE block
- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations
(4) Experiments
- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

Motivation

We need a Pointwise interpolation method which does not add spurious oscillations when high gradients appear, e.g. when a jump has to be transported.

Figure: Left: PWENO interpolation. Right: Lagrange interpolation.

Motivation

We need a Pointwise interpolation method which does not add spurious oscillations when high gradients appear, e.g. when a jump has to be transported.

Figure: Left: PWENO interpolation. Right: Lagrange interpolation.

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of Lagrange polynomial reconstructions.

We describe the case of PWENO-6,4: we take a stencil of six points and divide it into

 three substencils of four points:PWENO-6,4

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of Lagrange polynomial reconstructions.
We describe the case of PWENO-6,4: we take a stencil of six points and divide it into three substencils of four points:

The average

If we note $p_{r}(x)$ the Lagrange polynomials, PWENO reconstruction reads

$$
p_{P W E N O}(x)=\omega_{0}(x) p_{0}(x)+\omega_{1}(x) p_{1}(x)+\omega_{2}(x) p_{2}(x)
$$

Convex combination
The convex combination $\left\{\omega_{r}(x)\right\}$, must penalize the substencils S_{r} in which the $p_{r}(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils $S_{\text {, }}$ are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^{2}-norms of the Lagrange polynomials $p_{r}(x)$ to measure their regularity close to the reconstruction point x. The following smoothness indicators have been proposed by Jiang and Shu:

The average

If we note $p_{r}(x)$ the Lagrange polynomials, PWENO reconstruction reads

$$
p_{P W E N O}(x)=\omega_{0}(x) p_{0}(x)+\omega_{1}(x) p_{1}(x)+\omega_{2}(x) p_{2}(x)
$$

Convex combination.
The convex combination $\left\{\omega_{r}(x)\right\}_{r}$ must penalize the substencils \mathcal{S}_{r} in which the $p_{r}(x)$ have high derivatives.

Smoothness indicators
In order to decide which substencils $S_{\text {, }}$ are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^{2}-norms of the Lagrange polynomials $p_{r}(x)$ to measure their regularity close to the reconstruction point x. The following smoothness indicators have been proposed by Jiang and Shu:

The average

If we note $p_{r}(x)$ the Lagrange polynomials, PWENO reconstruction reads

$$
p_{P W E N O}(x)=\omega_{0}(x) p_{0}(x)+\omega_{1}(x) p_{1}(x)+\omega_{2}(x) p_{2}(x)
$$

Convex combination.
The convex combination $\left\{\omega_{r}(x)\right\}_{r}$ must penalize the substencils \mathcal{S}_{r} in which the $p_{r}(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils \mathcal{S}_{r} are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^{2}-norms of the Lagrange polynomials $p_{r}(x)$ to measure their regularity close to the reconstruction point x. The following smoothness indicators have been proposed by Jiang and Shu:

$$
\beta_{r}=\Delta x\left\|\frac{d p_{r}}{d x}\right\|_{L_{\left(x_{i}, x_{i+1}\right)}^{2}}+\Delta x^{3}\left\|\frac{d^{2} p_{r}}{d x^{2}}\right\|_{L_{\left(x_{i}, x_{i+1}\right)}^{2}}+\Delta x^{5}\left\|\frac{d^{3} p_{r}}{d x^{3}}\right\|_{L_{\left(x_{i}, x_{i+1}\right)}^{2}} .
$$

High order reconstruction

Admit for now that the convex combination is given by the normalization $\omega_{r}(x)=\frac{\tilde{\omega}_{r}(x)}{\sum_{s=0}^{2} \tilde{\omega}_{s}(x)}$ of the protoweights $\tilde{\omega}_{r}(x)$ defined this way:

$$
\tilde{\omega}_{r}(x)=\frac{d_{r}(x)}{\left(\epsilon+\beta_{r}\right)^{2}} .
$$

Regular reconstruction

Suppose that all the ρ_{r} are equal; then we have

$$
\omega_{r}(x)=d_{r}(x) .
$$

The optimal order is achieved by Lagrange reconstruction $p_{\text {Lagrange }}(x)$ in the whole stencil \mathcal{S}, so if we define $d_{r}(x)$ to be the polynomials such that

$$
p_{\text {Lagrange }}(x)=d_{0}(x) p_{0}(x)+d_{1}(x) p_{1}(x)+d_{2}(x) p_{2}(x),
$$

then we have achieved the optimal order because $p_{P W E N O}(x)=p_{\text {Lagrange }}(x)$.

High order reconstruction

Admit for now that the convex combination is given by the normalization $\omega_{r}(x)=\frac{\tilde{\omega}_{r}(x)}{\sum_{s=0}^{2} \tilde{\omega}_{s}(x)}$ of the protoweights $\tilde{\omega}_{r}(x)$ defined this way:

$$
\tilde{\omega}_{r}(x)=\frac{d_{r}(x)}{\left(\epsilon+\beta_{r}\right)^{2}}
$$

Regular reconstruction
Suppose that all the β_{r} are equal; then we have

$$
\omega_{r}(x)=d_{r}(x)
$$

The optimal order is achieved by Lagrange reconstruction $p_{\text {Lagrange }}(x)$ in the whole stencil \mathcal{S}, so if we define $d_{r}(x)$ to be the polynomials such that

$$
p_{\text {Lagrange }}(x)=d_{0}(x) p_{0}(x)+d_{1}(x) p_{1}(x)+d_{2}(x) p_{2}(x)
$$

then we have achieved the optimal order because $p_{\text {PWENO }}(x)=p_{\text {Lagrange }}(x)$.

High order reconstruction

Admit for now that the convex combination is given by the normalization $\omega_{r}(x)=\frac{\tilde{\omega}_{r}(x)}{\sum_{s=0}^{2} \tilde{\omega}_{s}(x)}$ of the protoweights $\tilde{\omega}_{r}(x)$ defined this way:

$$
\tilde{\omega}_{r}(x)=\frac{d_{r}(x)}{\left(\epsilon+\beta_{r}\right)^{2}}
$$

High gradients
Otherwise, suppose for instance that β_{0} is high order than the other ones: in this case \mathcal{S}_{0} is penalized and most of the reconstruction is carried by the other more "regular" substencils.

Outline

The model- Geometry
- Mathematical modelNumerical methods for the Schrödinger-Poisson block
- Iterative schemes
- Solvers for Schrödinger and PoissonSolvers for the BTE block
- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations
(4) Experiments
- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

Collision operator

Results are presented for the the DG MOSFET in the one-valley, parabolic-band approximation. Moreover, the complete collision operator is substituted by a simple relaxation-time operator:

$$
\mathcal{Q}_{p} f=\frac{1}{\tau}\left(\rho_{p} M-f_{p}\right)
$$

The goal of this work is just the setting up of numerical tools for a more profound and realistic simulation.
A parallel code in the most realistic case is being implemented.

Equilibria

Outline

(1) The model

- Geometry
- Mathematical model
(2) Numerical methods for the Schrödinger-Poisson block
- Iterative schemes
- Solvers for Schrödinger and Poisson
(3) Solvers for the BTE block
- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations
(4) Experiments
- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

Thermodynamical equilibrium: one-valley case

Outline

(1) The model

- Geometry
- Mathematical modelNumerical methods for the Schrödinger-Poisson block
- Iterative schemes
- Solvers for Schrödinger and PoissonSolvers for the BTE block
- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations
(4) Experiments
- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

Long-time behavior

We propose now some results relative to the long-time behavior of the system.

Outline

(1) The model

- Geometry
- Mathematical model
(2) Numerical methods for the Schrödinger-Poisson block
- Iterative schemes
- Solvers for Schrödinger and PoissonSolvers for the BTE block
- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations
(4) Experiments
- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

Number of iterations

Newton schemes require much less iterations than Gummel in order to compute the thermodynamical equilibrium.

sma oscillations

Outline

(1) The model

- Geometry
- Mathematical model
(2) Numerical methods for the Schrödinger-Poisson block
- Iterative schemes
- Solvers for Schrödinger and PoissonSolvers for the BTE block
- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations
(4) Experiments
- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

Mass and temperature oscillations

Numerically-computed oscillations

The plasma frequency is given by

$$
\omega_{p}=\sqrt{\frac{q^{2} N_{e}}{\varepsilon_{R} \varepsilon_{0} m_{*}}}
$$

$N_{D}^{\text {high }}$ $\left(\times 10^{26_{m}-3}\right)$	ε_{R}	m_{\star}	N_{e} $\left(\times 10^{26_{m}-3}\right)$	$\omega_{\text {num }}$ $\left(\times 10^{14} s^{-1}\right)$	ω_{p} $\left(\times 10^{14} s^{-1}\right)$	Ratio $\frac{\omega_{\text {num }}}{\omega_{\text {ref }}}$	Expected Ratio
1	11.7	0.5	.400	$\omega_{\text {ref }}=1.344$	1.475	1	$/$
2	11.7	0.5	.783	2.051	2.064	1.52	$\sqrt{2}$
4	11.7	0.5	1.544	2.813	2.899	2.09	2
1	5.85	0.5	.400	1.848	2.086	1.37	$\sqrt{ } 2$

