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Geometry

The model

We afford the simulation of a nanoscaled MOSFET.
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2SiO   layers drainsource

gate

gate

channel

x−dim

z−dim

Dimensional coupling

x-dimension is unconfined unlikez-dimension, therefore we adopt a different
description:

alongx-dimensionthe electrons behave likeparticles, their movement being
described by the Boltzmann Transport Equation;

alongz-dimensionthe electrons, confined in a potential well, behave like
waves; the equilibrium being reached much faster than transport (quasi-static
phenomenon), their state is given by the stationary-state Schrödinger equation.
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Geometry

The model

Subband decomposition

Due to the confinement, differentsub-bands (another name for theeigenvalues of the
Schrödinger equation) identify independent populations, which have to be
transported for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of
the electrostatic field in the expression of the total density.
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Geometry

Bandstructure

The three valleys

The Si bandstructure presents six minima in the first Brillouin zone:

The constant energy surfaces in the
wavevector space

m    = 0.19 m0t

m    = 0.91 m0l

x

y

z

valley of type 1

valley of type 1

valley of type 3

valley of type 3

valley of type 2

valley of type 2 x

y

z (outwards)

Projection on the (x,y)−plane

The valleys of type 1 have
effective masses:
m     along direction x

m     along direction z

The valleys of type 3 have 
effective masses:
m     along direction x
m     along direction y
m     along direction z

The valleys of type 2 have
effective masses:
m     along direction x
m     along direction y
m     along direction z

l

t

t

l

t

m     along direction yt

t

t

l

The axes of the ellipsoids are disposed along thex, y andz axes of the reciprocal
lattice. The three minima have the same value, therefore there is no gap.
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Geometry

Bandstructure

Coupling between subbands and valleys

The sub-bands as well as the valleys are coupled by the Poisson equationin the
expression of the total density and, if the case, by the scattering operator.

Non-parabolicity

The bandstructure around the three minima can be expanded following theKane
non-parabolic approximation (ν indexes the valley):

ǫ
kin
ν =

~
2

1+

√

1+ 2α̃ν~
2
(

k2
x

mx,ν
+

k2
y

my,ν

)

(

k2
x

mx,ν
+

k2
y

my,ν

)

,

wherem{x,y,z},ν are the axes of the ellispoids (calledeffective masses) of theνth

valley alongx, y andz directions, and thẽαν are known as Kane dispersion factors.
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Mathematical model

The model

BTE

The Boltzmann Transport Equation (one for each band and for each valley) reads

∂fν,p
∂t

+
1
~
∇kǫ

kin
ν · ∇xfν,p −

1
~
∇xǫ

pot
ν,p · ∇kfν,p = Qν,p[f ], fν,p(t = 0) = ρ

eq
ν,pMν .

Schrödinger-Poisson block

−~
2

2
d
dz

[

1
mz,ν

dχν,p[V]

dz

]

− q (V + Vc)χν,p[V] = ǫ
pot
ν,p[V]χν,p[V]

〈χν,p[V], χν,p′ [V]〉 = δp,p′

−div [εR∇V] = − q
ε0

(N[V]− ND)

N[V] =
∑

ν,p

ρν,p|χν,p[V]|2

These equations cannot be decoupled because we need theeigenfunctionsto compute
the potential (in the expression of thetotal density), and we need the potential to
compute the eigenfunctions.
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Mathematical model

The model

The collision operator

The collision operator takes into account the phonon scattering mechanism. It reads

Qν,p[f ] =
∑

s

Qs
ν,p[f ]

Qs
ν,p[f ] =

∑

ν′,p′

∫

R2

[

Ss
(ν′,p′,k′)→(ν,p,k)fν′,p′(k

′)− Ss
(ν,p,k)→(ν′,p′,k′)fν,p(k)

]

dk′ :

everySs represents a different interaction.

Structure of theSs

The missing dimension of the wave-vectork ∈ R
2, instead ofk ∈ R

3, is replaced by
an overlap integralW(ν,p),(ν′,p′):

Ss
(ν,p,k)→(ν′,p′,k′) = Cν→ν′

1
W(ν,p),(ν′,p′)

δ
(

ǫ
tot
ν′,p′(k

′)− ǫ
tot
ν,p(k)± some energy

)

1
W(ν,p),(ν′,p′)

=

∫ lz

0
|χν,p|2|χν′,p′ |2dz, [W] = m.
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Mathematical model

Boundary conditions

= Dirichlet

k
1

xx=0 x=L

=
to the equilibrium density
force the density to stay close

= Homogeneous Neumann

= homogeneous Neumann

x

z

kmax

−kmax
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Iterative schemes

The Newton scheme

The functional

Solving the Schrödinger-Poisson block

−~
2

2
d
dz

[

1
mz,ν

dχν,p[V]

dz

]

− q (V + Vc)χν,p[V] = ǫ
pot
ν,p[V]χν,p[V]

−div [εR∇V] = − q
ε0

(N[V]− ND)

is equivalt to minimizing, under the constraints of the Schrödinger equation, the
functionalP[V]

P[V] = −div (εR∇V) +
q
ε0

(N[V]− ND) ,

The scheme

which is achieved by means of a Newton-Raphson iterative scheme

dP(Vold
,Vnew − Vold) = −P[Vold].
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2
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Iterative schemes

The iterations

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

dǫν,p(V,U) = −q
∫

U(ζ)|χν,p[V](ζ)|2dζ

dχν,p(V,U) = −q
∑

p′ 6=p

∫

U(ζ)χν,p[V](ζ)χν,p′ [V](ζ)dζ

ǫν,p[V]− ǫν,p′ [V]
χν,p′ [V](z).

Iterations

After computing the Gâteaux-derivative of the density and developping calculations,
we are led to a Poisson-like equation

−div (εR∇Vnew) +

∫ lz

0
A[Vold](z, ζ)Vnew(ζ)dζ

= − q
ε0

(

N[Vold]− ND

)

+

∫ lz

0
A[Vold](z, ζ)Vold(ζ)dζ,

whereA[V] is essentially the Gâteaux-derivative of the functionalP[V].
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Iterative schemes

The Gummel scheme

The iteration

Solving the Schrödinger-Poisson block

−div (εR∇Vnew) +
q
ε0

N[Vold]
q

kBTL
Vnew

= − q
ε0

(

N[Vold]− ND

)

+
q
ε0

N[Vold]
q

kBTL
Vold

,

Comparison with Newton

We here repeat the Newton iteration:

−div (εR∇Vnew) +

∫ lz

0
A[Vold](z, ζ)Vnew(ζ)dζ

= − q
ε0

(

N[Vold]− ND

)

+

∫ lz

0
A[Vold](z, ζ)Vold(ζ)dζ,
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Iterative schemes

Framework

old old(N     , V      )         Vnew

update potential

diagonalize Schroedinger operator

V            Nnew new

update density

is convergence
constraint fulfilled?

N      =N
V      =V

new

new
old
old

set

introduce initial guess for the
potential Vold

diagonalize Schroedinger operator

compute the initial guess for the
density Nold

initialization

DSTEQR

use given
expression

yes

no

use given
expression

Newton−Raphson: takes into account Schroedinger eq.
(computation of Gateaux derivatives, matrix full)

Gummel: decoupled system (matrix is sparse)

"Poisson" solver: DGESV

step 0(i)

step 0(ii)

step 0(iii)

step 1

DSTEQR
step 2

step 3

step 4

step 5
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Solvers for Schrödinger and Poisson

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

−~
2

2
d
dz

[

1
mz,ν

dχν,p

dz

]

− q (V + Vc)χν,p = ǫν,pχν,p

is discretized by alternate finite differences for the derivatives then the symmetric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

−div [εR∇V] +

∫ lz

0
A(z, ζ)V(ζ)dζ = B(z).

The derivatives are discretized by finite differences in alternate directions, the
integral is computed via trapezoid rule and the linear system (full) is solved by means
of a LAPACK routine called DGESV.
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Adimensionalizations

Wave-vector space

Two different adimensionalizations are proposed for the wave-vectorspace.
Magnitudes with tilde are meant with dimension.

Cartesian coordinates

(k̃x, k̃y) =

√
meκBTL

~
(kx, ky) .

Ellipsoidal coordinated

The wave-vector for theν th valley reads:

(k̃x, k̃y) =

√
meκBTL

~

√

2w(1+ ανw)
(√

mx,ν cos(φ),
√

my,ν sin(φ)
)

.
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Adimensionalizations

BTE in cartesian coordinates

Let the flux coefficients

a1
ν(k) = CV vx,ν(k)

a2
ν,p(x) = −CV ∂ǫ

pot
x,ν

∂x
(x).

Transport form

The BTE in transport form reads

∂fν,p
∂t

+ a1
ν

∂fν,p
∂x

+ a2
ν,p

∂fν,p
∂k

= Qν,p[f ].

Conservation-law form

The BTE in conservation-law form reads

∂fν,p
∂t

+
∂

∂x

[

a1
ν fν,p

]

+
∂

∂k

[

a2
ν,pfν,p

]

= Qν,p[f ].
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Adimensionalizations

BTE in ellipsoidal coordinates

Let the flux coefficients

a1
ν(w, φ) = CV

√

2w(1+ ανw) cos(φ)
√

mx,ν

1
1+ 2ανw

a2
ν,p(x,w, φ) = −CV ∂ǫν,p

∂x
(x)

1
1+ 2ανw

√

2w(1+ ανw) cos(φ)
√

mx,ν

a3
ν,p(x,w, φ) = CV ∂ǫν,p

∂x
(x)

sin(φ)
√

mx,ν

√

2w(1+ ανw)
.

Conservation-law form

∂Φν,p

∂t
+

∂

∂x

[

a1
νΦν,p

]

+
∂

∂w

[

a2
ν,pΦν,p

]

+
∂

∂φ

[

a3
ν,pΦν,p

]

= Qν,p[Φ]s(w)
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Time discretization
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Time discretization

Runge-Kutta vs. splitting

We propose two discretizations for the time, following the choice between
conservation-law form and transport form.

Runge-Kutta

If the BTE is written in conservation-law form, then we advance in time by the third
order Total Variation Diminishing Runge-Kutta scheme: if the evolution equation

reads
df
dt

= H(t, f ), then

1 f (1) = ∆tHn(tn, f n)

2 f (2) = 3
4 f n + 1

4 f (1) + 1
4∆tH(1)(tn +∆t, f (1))

3 f n+1 = 1
3 f n + 2

3 f (2) + 2
3H(2)

(

tn + 1
2∆t, f (2)

)
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Time discretization

Splitting schemes

Time splitting

If the BTE is written in transport form, then we advance in time by time splitting
schemes:

∂fν,p
∂t

+ CV {
ǫ

tot
, fν,p

}

= 0

∂fν,p
∂t

= Qν,p[f ].
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Time discretization

Splitting schemes

Dimensional splitting

Apart from time splitting, we also split the phase-space:

∂fν,p
∂t

+ a1
ν

∂fν,p
∂x

= 0

∂fν,p
∂t

+ a2
ν,p

∂fν,p
∂k

= 0

The overall scheme is summarized in the following figure.
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Linear advection
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Linear advection

Linear advection

Flux Balance Method:

Total mass conservation is forced. It is based on the idea of following backward the
characteristics, but integral values are taken instead of point values:

tn+1

t n

x i−1
x i+1x i

i−1/2x i+1/2x

the average along the purple segment
plus the average along the blue segment

minus the average along the green segment

x x

the characteristics backward.

FLUX BALANCE METHOD means evualuating
the flux at time t       from a balance ofn+1

fluxes at previous time t   : n

The averages along the red segments
are the same, because we have followed
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PWENO interpolations
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PWENO interpolations

Motivation

We need aPointwise interpolation method which does not add spurious oscillations
when high gradients appear, e.g. when a jump has to be transported.
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Figure:Left: PWENO interpolation. Right: Lagrange interpolation.
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PWENO interpolations

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of
Lagrange polynomial reconstructions.
We describe the case of PWENO-6,4: we take a stencil of six points and divide it into
three substencils of four points:

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��

S0S1
S2

S

Lagrange polynomial interpolation
is performed on the three 
substencils made of four 
points each.

The smoothness of the Lagrange
polynomials is measured along 
this segment, between the
two central points.

We want to reconstruct
the value at this point: we
take the reconstruction
of the three Lagrange 
polynomials and compute a
sensible average of them, based 
on how smooth is each.

x x x xxxx i i+1 i+2 i+3i−1i−2i−3

PWENO−6,4
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PWENO interpolations

The average

If we notepr(x) the Lagrange polynomials, PWENO reconstruction reads

pPWENO(x) = ω0(x)p0(x) + ω1(x)p1(x) + ω2(x)p2(x).

Convex combination.

The convex combination{ωr(x)}r must penalize the substencilsSr in which the
pr(x) have high derivatives.

Smoothness indicators

In order to decide which substencilsSr are “regular” and which ones are not, we have
to introduce the smoothness indicators: we use a weighted sum of theL2-norms of the
Lagrange polynomialspr(x) to measure their regularity close to the reconstruction
point x. The following smoothness indicators have been proposed by Jiang andShu:

βr = ∆x

∥

∥

∥

∥

dpr

dx

∥

∥

∥

∥

L2
(xi,xi+1)

+∆x3

∥

∥

∥

∥

d2pr

dx2

∥

∥

∥

∥

L2
(xi,xi+1)

+∆x5

∥

∥

∥

∥

d3pr

dx3

∥

∥

∥

∥

L2
(xi,xi+1)
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PWENO interpolations
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PWENO interpolations

High order reconstruction

Admit for now that the convex combination is given by the normalization
ωr(x) =

ω̃r(x)
∑2

s=0 ω̃s(x)
of the protoweights̃ωr(x) defined this way:

ω̃r(x) =
dr(x)

(ǫ+ βr)2
.

Regular reconstruction

Suppose that all theβr are equal; then we have

ωr(x) = dr(x).

The optimal order is achieved by Lagrange reconstructionpLagrange(x) in the whole
stencilS, so if we definedr(x) to be the polynomials such that

pLagrange(x) = d0(x)p0(x) + d1(x)p1(x) + d2(x)p2(x),

then we have achieved the optimal order becausepPWENO(x) = pLagrange(x).
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PWENO interpolations

High order reconstruction

Admit for now that the convex combination is given by the normalization
ωr(x) =

ω̃r(x)
∑2

s=0 ω̃s(x)
of the protoweights̃ωr(x) defined this way:

ω̃r(x) =
dr(x)

(ǫ+ βr)2
.

High gradients

Otherwise, suppose for instance thatβ0 is high order than the other ones: in this case
S0 is penalized and most of the reconstruction is carried by the other more “regular”
substencils.
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Simplifying assumptions

Collision operator

Results are presented for the the DG MOSFET in the one-valley, parabolic-band
approximation. Moreover, the complete collision operator is substituted by asimple
relaxation-time operator:

Qpf =
1
τ
(ρpM − fp) .

The goal of this work is just the setting up of numerical tools for a more profound
and realistic simulation.
A parallel code in the most realistic case is being implemented.
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Equilibria
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Equilibria

Thermodynamical equilibrium: three-valley case
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Time-dependent simulations
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Time-dependent simulations

Long-time behavior

We propose now some results relative to the long-time behavior of the system.
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Newton vs. Gummel
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Newton vs. Gummel

Number of iterations

Newton schemes require much less iterations than Gummel in order to compute the
thermodynamical equilibrium.
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Plasma oscillations

Mass and temperature oscillations
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Plasma oscillations

Numerically-computed oscillations

The plasma frequency is given by

ωp =

√

q2Ne

εRε0m∗
.

Nhigh
D εR m⋆ Ne ωnum ωp Ratio Expected

( ×1026m−3) ( ×1026m−3) (×1014s−1) (×1014s−1)
ωnum
ωref

Ratio

1 11.7 0.5 .400 ωref = 1.344 1.475 1 /

2 11.7 0.5 .783 2.051 2.064 1.52
√

2
4 11.7 0.5 1.544 2.813 2.899 2.09 2
1 5.85 0.5 .400 1.848 2.086 1.37

√
2
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