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The model

We afford the simulation of a nanoscaled MOSFET.

dranDz layers

gate x—dim

z-dim ggte

source channel

Dimensional coupling

x-dimension is unconfined unlikedimension, therefore we adopt a different
description:

@ alongx-dimensiorthe electrons behave likearticles their movement being
described by the Boltzmann Transport Equation;

@ alongz-dimensiorthe electrons, confined in a potential well, behave like
waves the equilibrium being reached much faster than transport (quasi-stati
phenomenon), their state is given by the stationary-state Schrodinggiay
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The model

Subband decomposition

Due to the confinement, differeatb-bands (another name for theigenvalues of th
Schradinger equatigridentify independent populations, which have to be
transported for separate.
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The model

Subband decomposition

Due to the confinement, differeatb-bands (another name for theigenvalues of the
Schradinger equatigridentify independent populations, which have to be
transported for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for tpetedion of
the electrostatic field in the expression of the total density.
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Bandstructure

The three valleys
The Si bandstructure presents six minima in the first Brillouin zone:

. Projection on the (x,y)-plane
The constant energy surfaces in the

wavevector space Ay
z :

effectiye masses: effective masses:
" my  alpng direction x my¢  along direction x
] m, alpng direction y ' m, along direction

mt  alpng direction z | m; along direction {z

- valley of type 1

The valleys of type 1 have : The valleys of type 4 have
valley of type 3 .

i valley of type 2 Y i
| ! The valleys of type 3 have
: m, =0.19m 1\ effective masses
H m,  along direction x
. m = 0.91 n , m along direction y
valley of type 3 . m, along direction z

The axes of the ellipsoids are disposed alongxttyeandz axes of the reciprocal
lattice. The three minima have the same value, therefore there is no gap.
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Coupling between subbands and valleys

The sub-bands as well as the valleys are coupled by the Poisson edndtien
expression of the total density and, if the case, by the scattering operator
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Geometry

Bandstructure

Coupling between subbands and valleys

The sub-bands as well as the valleys are coupled by the Poisson edndtien
expression of the total density and, if the case, by the scattering operator

Non-parabolicity

The bandstructure around the three minima can be expanded followikgttee
non-parabolic approximation (indexes the valley):

eEn = e (n‘lf + k}% )7
2 v v
1+\/1+2ayh2(m%+%) v

wheremyy, ., are the axes of the ellispoids (calleffiective masses) of the i
valley alongx, y andz directions, and thé.,, are known as Kane dispersion factors.




The model
@000
Mathematical model

Outline

0 The model

@ Mathematical model



The model
] lele)
Mathematical model

The model

BTE
The Boltzmann Transport Equation (one for each band and for edigly)reads
of, 1 i 1

8t,p + ﬁvke’kl’n Vv — hv“% “Vidup = Quplf], fup(t=0) = plpMy.
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The model
BTE
The Boltzmann Transport Equation (one for each band and for edigly)reads
of, 1 i 1
at”’ + gvke',f” - Vnfup — ﬁvxeﬁ?‘p Vidp = Quplf],  fup(t=0) = pZM,.

v

Schrodinger-Poisson block

K d [id\,/pM

S 2dz|m, dz } =V + Vo) xuplV] = VXV

2 dz
(XvplV] X V]) = Gpp
—div [zrVV] = _E% (N[V] — Np)
NIVI =D puplxuplVIP
v,p

These equations cannot be decoupled because we needdhéuinctionto compute
the potential (in the expression of ttwal density, and we need the potential to
compute the eigenfunctions.
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The model

The collision operator
The collision operator takes into account the phonon scattering mechdhieads

5 Q2
S
> /]R2 (St sy o for i (K) = Supig ey frp (K)] 0K

vl p!

Quplf]

Qv olf]

everyS’ represents a different interaction.




The model
[e]e] o)
Mathematical model

The model

The collision operator
The collision operator takes into account the phonon scattering mechdhieads

5 Q2
S
> /]R2 (St sy o for i (K) = Supig ey frp (K)] 0K

vl p!

Quplf]

Qv olf]

everyS’ represents a different interaction.

Structure of thes®

The missing dimension of the wave-veckoe R?, instead ok € R?, is replaced by
an overlap integralV,, oy (7 py:

1
Wi p), (v 0

Iz
=/mm%M#u W] =m
0

Spk) s (v k) = Cosur § (e p (K) — €p(k) = some energy

1
W(v,p%(v’ P




The model
oooe
Mathematical model

Boundary conditions

13
_________ w_l________ AZ
}kmax | ‘
—— i B
x=0 w x=L  x
-~ 1 -~ ‘ T X
_kmax;

= Dirichlet

_ force the density to stay close - h N
to the equilibrium density 77 7 7 7 7 = homogeneous Neumann

______ = Homogeneous Neumann
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The Newton scheme

The functional
Solving the Schrédinger-Poisson block

ﬁz d 1 d\'//.yﬂVJ ) pot
| 2] (v v V) = VY]

—div[srVV] = ,Eﬂo (N[V] — Np)

is equivalt to minimizing, under the constraints of the Schrodinger equdkien
functionalP[V]

PIV] = —div (srVV) + ;qo (NV] = No),
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Iterative schemes

The Newton scheme

The functional
Solving the Schrédinger-Poisson block

Rd[ 1 dw,pV
24z [ & q —q(V+Ve) xuplV] —‘lfot)[v}\' p[V]

2 dz dz
—div[srVV] = 783 (N[V] — Np)
0

is equivalt to minimizing, under the constraints of the Schrodinger equdkien
functionalP[V]

PIV] = —div (srVV) + ;qo (NV] = No),

The scheme
which is achieved by means of a Newton-Raphson iterative scheme

dP(VOld, Vns/v _ Vold) — —P[VOId].
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The iterations

Derivatives
The Gateaux-derivatives of the eigenproperties are needed:

deyp(V,U) U(Q)[xwpVI(Q)PdC

= JUOxs MOy VIO
a2 euplV] — vy V]

|

\

o
—

dXVaP(Va U)

Xvp [VI(2).
p’'#p
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The iterations

Derivatives
The Gateaux-derivatives of the eigenproperties are needed:

deog(V,U) = =0 [ UQhwslVIQ)dC
_ JU©OxvpVI(©)xop [VI(C)dS ,
dup(V, V) N e M)
Iterations

After computing the Gateaux-derivative of the density and developg@Etmyiations,
we are led to a Poisson-like equation

Iz
—div (srVV™) + / ANV (2, OV™(C)de

3 (v o)+ [ A v o,

€0

whereA[V] is essentially the Gateaux-derivative of the functidrad].
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The Gummel scheme

The iteration
Solving the Schrédinger-Poisson block

_di new g od; g new
div (erVV™) + NV v
_ _4a oldy 9 \nyod; 9 jod
- 2 (Nvey ND)+€0N[V A
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The Gummel scheme

The iteration
Solving the Schrédinger-Poisson block

_di new g od; g new
div (erVV™) + NV v
_ _4a oldy 9 \nyod; 9 jod
- 2 (Nvey ND)+€0N[V A

Comparison with Newton
We here repeat the Newton iteration:

—div (srVV™) + /0 - ANV (z, OV(O)d¢

=~ (NV = No) + /OIZA[V""’MZ, OV,

€o




Numerical methods for the Schrédinger-Poisson block
[e]e]e]e] ]

Iterative schemes

Framework

introduce initial guess for the initialization
Step 0(|)
step O(ii) | diagonalize Schroedinger operator DSTEQR
[ compute the initial guess for the]  USE given
step O(ii) | density P4 expression

"Poisson" solvef: DGESV
° Newton-Raphson: takes into account Schroedinger eq.
(computation of Gateaux derivatives, matrix full)
o Gummel: decoupled systen (matrix is sparse)

update potential

step 1 (N, oy yew

set

diagonalize Schroedinger operatpr Nold "W | Step 5
new

v old 2y

DSTEQR
step 2

use given update density
expression | new__ \new
step 3

is convergence
constraint fulfilled?2

step 4
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We need to solve the Schrédinger eigenvalue problem and Poisson eguatio



Numerical methods for the Schrédinger-Poisson block
oe
Solvers for Schrodinger and Poisson

Numerical methods

We need to solve the Schrédinger eigenvalue problem and Poisson eguatio
The Schrédinger equation

Equation

1 dyxup
m,, dz

2 dz

Hd
[ } = q(V+Ve) Xvp = €upXup

is discretized by alternate finite differences for the derivatives therythengtric
matrix is diagonalized by a LAPACK routine called DSTEQR.
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Numerical methods

We need to solve the Schrédinger eigenvalue problem and Poisson eguatio

The Schrédinger equation
Equation

1 dy.,
M., ?p} = q(V+Ve) Xvp = €upXup

nd
2 dz

is discretized by alternate finite differences for the derivatives therythengtric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation
We need to solve equations like

iRV + [ Az OV = B2).
0

The derivatives are discretized by finite differences in alternate dires;tthe
integral is computed via trapezoid rule and the linear system (full) is solyeadans
of a LAPACK routine called DGESV.
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Wave-vector space

Two different adimensionalizations are proposed for the wave-vepte.
Magnitudes with tilde are meant with dimension.
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Adimensionalizations

Wave-vector space

Two different adimensionalizations are proposed for the wave-vepte.
Magnitudes with tilde are meant with dimension.

Cartesian coordinates

(RX, RY) =

T
7Vm°—h'm (ke Ky) .
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Adimensionalizations

Wave-vector space

Two different adimensionalizations are proposed for the wave-vepte.
Magnitudes with tilde are meant with dimension.

Cartesian coordinates

C o /MersT
(ke k) = TEEL (k)

Ellipsoidal coordinated

The wave-vector for the' valley reads:

(ke Ky) = 7Vmﬁ;BTL WL T W) (/i coS(6), /s sin(g))
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Adimensionalizations

BTE in cartesian coordinates

Let the flux coefficients

ay (k) = Clwu(k)
0€,
dp(x) = —C' ()

Transport form
The BTE in transport form reads

Ovp  10hp o O
ot TR ox Tk

= Qv,p[f]-
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Adimensionalizations

BTE in cartesian coordinates

Let the flux coefficients

a k) = C'w.(k)
o0 = —c 2y
Transport form
The BTE in transport form reads
8;:[”) +a, 8;1, P+ alzj pa(-f;kp Quplf].

Conservation-law form
The BTE in conservation-law form reads

agutp + a% [a f, } B [aﬁypfy,p] = Q,,[f].
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BTE in ellipsoidal coordinates

Let the flux coefficients

oV v2w(1 4 a,w) cog¢) 1
N 14 200, W
2 _ vOeup 1 v2w(1 4+ a,w) cog¢)
au,p(X7 W7 ¢) _C ax (X) 1 + Zayw \/m
oV O€vp ) sin(¢)

o i /WL T )




Solvers for the BTE block
[e]ele] ]
Adimensionalizations

BTE in ellipsoidal coordinates

Let the flux coefficients
2w(l+a,w)cos¢) 1
VMo 1+ 2a,w
v Z\N 1 v
oiwa) = 'O 1 VAVLE 0 Codd)

a(w¢) = C

ox 1+ 2a,W VM
apxwe) = 0 SO
Moo/ 2wW(1 4+ a,w)
Conservation-law form
0P, p 0 71 0 [ 0 .3 _
ot + X [ yq)u,p] + W |:au,p¢l/,pj| + % [au,p(bu,p:| = Qu,p[q)]s(w)
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Runge-Kutta vs. splitting

We propose two discretizations for the time, following the choice between
conservation-law form and transport form.
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Time discretization

Runge-Kutta vs. splitting

We propose two discretizations for the time, following the choice between
conservation-law form and transport form.

Runge-Kutta

If the BTE is written in conservation-law form, then we advance in time by tid th
order Total Variation Diminishing Runge-Kutta scheme: if the evolution ggna

reads% = H(t,f), then
Q M = AtH (1", ")
Q 1@ =34 W L IAHD (" + AL, D)

Q ™= 1f"4 2@ 4 2@ (t“+ gm,f@)
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Time discretization

Splitting schemes

Time splitting
If the BTE is written in transport form, then we advance in time by time splitting
schemes:
8f7/,p V tot
o TC {*fp} = 0
of,,
P = 9 olf]

ot~ TUhub )
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Time discretization

Splitting schemes

Dimensional splitting
Apart from time splitting, we also split the phase-space:

af’/qp al 8f’/7p _ 0
ot Y OX
Ofvp L Moo _
ot “P ok
collisions
o
8 32/1,@
t
1 4
6|At
At
4 k-advectio
L5 A
25 4

x—advection
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Time discretization

Splitting schemes

Dimensional splitting
Apart from time splitting, we also split the phase-space:

Oy  10Lp
a @ — ©

Do 5 Ofp
ot Tar g = O

The overall scheme is summarized in the following figure.

collisions

t

>

FJ‘

o s>

B

- O
e
»|

4 k-advectio

x—advection
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Linear advection

Linear advection

Flux Balance Method:
Total mass conservation is forced. It is based on the idea of followiokprd the

characteristics, but integral values are taken instead of point values:

Xiciz X i

Xig 0 X1 Xia
; [I’Hl
% j ¢

The averages along the red segments
are the same, because we have followed
the characteristics backward.

FLUX BALANCE METHOD means evualuating
the flux at time £ from a balance of
fluxes at previous time't :
—-.—.-.= the average along the purple segment
- - plus the average along the blue segment
.. minus the average along the green segment
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PWENO interpolations

Motivation

We need &ointwise interpolation method which does not add spurious oscillations
when high gradients appear, e.g. when a jump has to be transported.

0006060004

I
|
I
I
1 -
|
I
|
I
1

000600004 P0000000R0
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PWENO interpolations

Motivation

We need &ointwise interpolation method which does not add spurious oscillations
when high gradients appear, e.g. when a jump has to be transported.

15 T 15 T T
WENO-6,4 —----- Lagrange-6------
1+ $000-000004 1~ ?"@eeo«aoow
! !
| !
05 i . 05 ; .
i i
! !
ol ! 4 ol ! 4
|
| |
| 5
0.5 | = 05 ! =
| |
/ :’
14000000009 — -1 P0000000R0 —
v
-1.5 | -1.5 | | |
-1 0.5 0 05 1 -1 0.5 0 0.5 1

Figure:Left: PWENO interpolation. Right: Lagrange interpolation.



PWENO interpolations

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensibbgavei

Lagrange polynomial reconstructions.

PWENO-6,4

i
. . . X . .
Xi-gXj—2 Xi-1 % T x|+1 Xiv2 X3

Solvers for the BTE block
[o]e] lele]e]

. The smoothness of the Lagrange

\

D)

Lagrange polynomial mterpolatlo
is performed on the three
substencils made of four

points each.

N\

polynomials is measured along
this segment, between the
two central points.

\ We want to reconstruct
the value at this point: we
take the reconstruction
of the three Lagrange
polynomials and compute a
sensible average of them, bas
on how smooth is each.



PWENO interpolations

Non-oscillatory properties

Solvers for the BTE block
[o]e] lele]e]

Essentially Non Oscillatory (ENO) methods are based on on a sensibbgavei

Lagrange polynomial reconstructions.

We describe the case of PWENO-6,4: we take a stencil of six points giule dli into

three substencils of four points:

PWENO-6,4

1
|

Xi-gXj—2 Xi-1 % T x|+1 Xiv2 X3

= —

. The smoothness of the Lagran

je
polynomials is measured along
this segment, between the

two central points.

/)

Lagrange polynomial mterpolatlo
is performed on the three
substencils made of four

points each.

\ We want to reconstruct
the value at this point: we
take the reconstruction
of the three Lagrange
polynomials and compute a
sensible average of them, bas
on how smooth is each.
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The average

If we notepy (x) the Lagrange polynomials, PWENO reconstruction reads

Peweno(X) = wo(X)Po(X) + wi(X)Pr(X) + w2(X)P2(X)-
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PWENO interpolations

The average

If we notepy (x) the Lagrange polynomials, PWENO reconstruction reads
Prweno (X) = wo(X)Po(X) + wa(X)P1(X) + wa(X)P2(X).

Convex combination.

The convex combinatiofr (X) }, must penalize the substencsin which the
pr (X) have high derivatives.
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PWENO interpolations

The average

If we notepy (x) the Lagrange polynomials, PWENO reconstruction reads
Prweno (X) = wo(X)Po(X) + wa(X)P1(X) + wa(X)P2(X).

Convex combination.

The convex combinatiofr (X) }, must penalize the substencsin which the
pr (X) have high derivatives.

Smoothness indicators

In order to decide which substencifs are “regular” and which ones are not, we have
to introduce the smoothness indicators: we use a weighted sumlof-tims of the
Lagrange polynomialp; (x) to measure their regularity close to the reconstructio
pointx. The following smoothness indicators have been proposed by Jiarghand
2 3
+ax|9P + e |9
2 dx? 2 3
L L
4% 41) (4 %i41) )

dpr

Br = Ax dx
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High order reconstruction

Admit for now that the convex combination is given by the normalization
w(x) = "% of the protoweightsr (x) defined this way:
s=0 ™S

e Gi(%)
UJr(X) = 7(6+ﬁr)2.
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PWENO interpolations

High order reconstruction

Admit for now that the convex combination is given by the normalization

wr(X) = % of the protoweightsi (x) defined this way:
. dr (x)
X) = —
& (e+Br)?

Regular reconstruction
Suppose that all thg are equal; then we have

wr(X) = dr (X).

The optimal order is achieved by Lagrange reconstrugii@gange(X) in the whole
stencilS, so if we definel; (x) to be the polynomials such that

PLagrange(X) = do(X)Po(X) + du(X)P1(X) + d2(X)p2(x),

then we have achieved the optimal order becgsgeno(X) = PLagrange(X)-
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PWENO interpolations

High order reconstruction

Admit for now that the convex combination is given by the normalization

wr(X) = % of the protoweightss, (x) defined this way:
. d: (%)
X) = —~2
&) (€ + Br)?

High gradients

Otherwise, suppose for instance tf¥atis high order than the other ones: in this case
So is penalized and most of the reconstruction is carried by the other megalér”
substencils.
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Simplifying assumptions

Collision operator

Results are presented for the the DG MOSFET in the one-valley, pardizoiit-
approximation. Moreover, the complete collision operator is substitutecsbyiale
relaxation-time operator:

1
Qpf = = (ppM — ).

T
The goal of this work is just the setting up of numerical tools for a moréopirod

and realistic simulation.
A parallel code in the most realistic case is being implemented.
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Equilibria

Thermodynamical equilibrium: three-valley case

potential energy [

z[m]

epsev]

8e-09
7e-09
6e-09
50-09
4e-09
3e-09
2609
1609

potential energy

total vol. density

Laer2e
120426
1es26
Bes25
Ges25
425
20425
0

0 5609 108 15608 2608
x[m]
eigenvalues
08 T T T
o7t T R
[Ty e—— T
0s B
04t  er R S S B
XY R—— fa—

" o

PO,

[SGENNENTE
oe
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Time-dependent simulations

Long-time behavior

We propose now some results relative to the long-time behavior of thexsyste



[SGENNENTE
L Je]
Newton vs. Gummel

Outline

@ Experiments

@ Newton vs. Gummel



Newton vs. Gummel

Number of iterations

[SGENNENTE
o] ]

Newton schemes require much less iterations than Gummel in order tait®the
thermodynamical equilibrium.

convergence of the potential

Total number of iterations per time step

iteration

iteration

z ) w©
g Gummel —— —— Gummel ——
H 0,01 P Newton-Raphson - T 38 Newton-Raphson -
2 ok - — 0 GumEIN-R.
] — x 3
£ 1e06f e *o
g S . g
£ eosf R . *g
3 tew0 [ T x
5 senf x 1%
S tew| *.] 28
% e P it 2
3 0 s 1 15 2 2 w® » 4 6 8 10 12 1 16 18 2
feraion BTE solver step
_ convergence of the total volume densiy _ Convergence ofthe potenial _
£ 10000 2 g
£ S £ d
H NewonRaphson | 5 H
g
g oot p \\ g £ oo
£ 00001 e £ £ Tlevs
g 1e06f e 8 2 leos
2 teosf Raa oo
£ lewf M H S e
I ten2 L L : ; R by, (R 3 T leoo T
5 6 s 1 1 2 2 w® 3B 5 50 100 150 200 250 300 5 o 1 2z 3 4 s

iteration
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Plasma oscillations

Mass and temperature oscillations

mass and average temperature evolution
0 T T T 325

mass
temperature -

\ B

s 2T o {95 =
g iy g
"
g 3t W\’\ Jaw0 E
s \ﬂ g
S |V 3
g T >
> a4} U\JWV\ {305 E
\ 3

0 5e-13 le-12 1.5e-12 2e-12
time (in seconds)
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Plasma oscillations

Numerically-computed oscillations

The plasma frequency is given by

o?Ne
LUp = .
EREODM,

e R m, | Ne Whum wp Ratio | Expected
( x1028m—3) ( x10%%m—3) (x10M4s— 1 (x1014s—1) % Ratio

[ [117]05] 400 [we=1344[1475 [1 [/ |
2 117 | 0.5 | .783 2.051 2.064 1.52 V2
4 117 | 0.5 | 1.544 2.813 2.899 2.09 | 2
1 585 | 0.5 | .400 1.848 2.086 1.37 | V2
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