The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 0000000

Simulation of a Double Gate MOSFET through a hybrid quantum/classical model

Naoufel Ben Abdallah, María José Cáceres, José Antonio Carrillo, Francesco Vecil

PDEs in Engineering Nanoscience and Biology, Hammamet, May 2010

The model 000000000	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Outline

- Geometry
- Mathematical model
- 2 Numerical methods for the Schrödinger-Poisson block
 - Iterative schemes
 - Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations

4 Experiments

- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

The model		Solvers for the BTE block	Experiments
Geometry	0000000	000000000000000000000000000000000000000	00000000
oconteny			
Outline			

Geometry

- Mathematical model
- 2 Numerical methods for the Schrödinger-Poisson block
 - Iterative schemes
 - Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations

4 Experiments

- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
Geometry			
The model			

We afford the simulation of a nanoscaled MOSFET.

Dimensional coupling

x-dimension is unconfined unlike *z*-dimension, therefore we adopt a different description:

- along *x*-dimension the electrons behave like particles, their movement being described by the Boltzmann Transport Equation;
- along *z*-dimension the electrons, confined in a potential well, behave like waves; the equilibrium being reached much faster than transport (quasi-static phenomenon), their state is given by the stationary-state Schrödinger equation.

The model Numerical methods for the Schrödinger-Poisson block Solvers for the BTE block Exp	periments

Subband decomposition

Due to the confinement, different *sub-bands* (another name for the eigenvalues of the Schrödinger equation) identify independent populations, which have to be transported for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of the electrostatic field in the expression of the total density.

イロト 不得 トイヨト イヨト 三日

00000000 Geometry	0000000	000000000000000000000000000000000000000	00000000
The model			

Subband decomposition

Due to the confinement, different *sub-bands* (another name for the eigenvalues of the Schrödinger equation) identify independent populations, which have to be transported for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of the electrostatic field in the expression of the total density.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Bandstruct	ture		
Geometry			
00000000	000000	0000000000000000	00000000
The model	Numerical methods for the Schrödinger-Poisson block		Experiments

The three valleys

The Si bandstructure presents six minima in the first Brillouin zone:

The axes of the ellipsoids are disposed along the x, y and z axes of the reciprocal lattice. The three minima have the same value, therefore there is no gap.

Bandstru	cture	
Geometry		
00000000		
The model	Numerical methods for the Schrödinger-Poisson block	

Coupling between subbands and valleys

The sub-bands as well as the valleys are coupled by the Poisson equation in the expression of the total density and, if the case, by the scattering operator.

Non-parabolicity

The bandstructure around the three minima can be expanded following the Kane non-parabolic approximation (ν indexes the valley):

$$\epsilon_{\nu}^{kin} = \frac{\hbar^2}{1 + \sqrt{1 + 2\tilde{\alpha}_{\nu}\hbar^2 \left(\frac{k_x^2}{m_{x,\nu}} + \frac{k_y^2}{m_{y,\nu}}\right)}} \left(\frac{k_x^2}{m_{x,\nu}} + \frac{k_y^2}{m_{y,\nu}}\right),$$

where $m_{\{x,y,z\},\nu}$ are the axes of the ellispoids (called *effective masses*) of the ν^{th} valley along *x*, *y* and *z* directions, and the $\tilde{\alpha}_{\nu}$ are known as Kane dispersion factors.

Bandstruc	cture		
Geometry			
00000000	000000	0000000000000000	00000000
The model	Numerical methods for the Schrödinger-Poisson block		Experiments

Coupling between subbands and valleys

The sub-bands as well as the valleys are coupled by the Poisson equation in the expression of the total density and, if the case, by the scattering operator.

Non-parabolicity

The bandstructure around the three minima can be expanded following the Kane non-parabolic approximation (ν indexes the valley):

$$\epsilon_{\nu}^{kin} = \frac{\hbar^2}{1 + \sqrt{1 + 2\tilde{lpha}_{
u}\hbar^2\left(rac{k_x^2}{m_{x,
u}} + rac{k_y^2}{m_{y,
u}}
ight)}}\left(rac{k_x^2}{m_{x,
u}} + rac{k_y^2}{m_{y,
u}}
ight),$$

where $m_{\{x,y,z\},\nu}$ are the axes of the ellispoids (called *effective masses*) of the ν^{th} valley along *x*, *y* and *z* directions, and the $\tilde{\alpha}_{\nu}$ are known as Kane dispersion factors.

The model	Numerical methods for the Schrödinger-Poisson block	Experiments
000000000		
Mathematical model		
Outline		

Geometry

Mathematical model

- Numerical methods for the Schrödinger-Poisson block
 - Iterative schemes
 - Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations

4 Experiments

- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

The model	Numerical methods for the Schrödinger-Poisson block	Experiments
000000000		
Mathematical model		
The mode	1	

BTE

The Boltzmann Transport Equation (one for each band and for each valley) reads

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{1}{\hbar} \nabla_k \epsilon_{\nu}^{kin} \cdot \nabla_x f_{\nu,p} - \frac{1}{\hbar} \nabla_x \epsilon_{\nu,p}^{pot} \cdot \nabla_k f_{\nu,p} = \mathcal{Q}_{\nu,p}[f], \qquad f_{\nu,p}(t=0) = \rho_{\nu,p}^{eq} M_{\nu}.$$

Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{z,\nu}}\frac{d\chi_{\nu,p}[V]}{dz}\right] - q\left(V + V_c\right)\chi_{\nu,p}[V] = \epsilon_{\nu,p}^{pot}[V]\chi_{\nu,p}[V]$$
$$\langle\chi_{\nu,p}[V],\chi_{\nu,p'}[V]\rangle = \delta_{p,p'}$$
$$-\operatorname{div}\left[\varepsilon_R\nabla V\right] = -\frac{q}{\varepsilon_0}\left(N[V] - N_D\right)$$
$$N[V] = \sum_{\nu,p}\rho_{\nu,p}|\chi_{\nu,p}[V]|^2$$

These equations cannot be decoupled because we need the eigenfunctions to compute the potential (in the expression of the total density), and we need the potential to compute the eigenfunctions.

	Numercal methods for the Schrödinger-Poisson block	00000000
The model		

BTE

The Boltzmann Transport Equation (one for each band and for each valley) reads

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{1}{\hbar} \nabla_k \epsilon_{\nu}^{kin} \cdot \nabla_x f_{\nu,p} - \frac{1}{\hbar} \nabla_x \epsilon_{\nu,p}^{pot} \cdot \nabla_k f_{\nu,p} = \mathcal{Q}_{\nu,p}[f], \qquad f_{\nu,p}(t=0) = \rho_{\nu,p}^{eq} M_{\nu}.$$

Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{z,\nu}}\frac{d\chi_{\nu,p}[V]}{dz}\right] - q\left(V+V_c\right)\chi_{\nu,p}[V] = \epsilon_{\nu,p}^{pot}[V]\chi_{\nu,p}[V]$$
$$\langle\chi_{\nu,p}[V],\chi_{\nu,p'}[V]\rangle = \delta_{p,p'}$$
$$-\operatorname{div}\left[\varepsilon_R\nabla V\right] = -\frac{q}{\varepsilon_0}\left(N[V] - N_D\right)$$
$$N[V] = \sum_{\nu,p}\rho_{\nu,p}|\chi_{\nu,p}[V]|^2$$

These equations cannot be decoupled because we need the eigenfunctions to compute the potential (in the expression of the total density), and we need the potential to compute the eigenfunctions.

The model	Numerical methods for the Schrödinger-Poisson block		Experiments		
000000000					
Mathematical model					
The model					

The collision operator

The collision operator takes into account the phonon scattering mechanism. It reads

$$\begin{aligned} \mathcal{Q}_{\nu,p}[f] &= \sum_{s} \mathcal{Q}_{\nu,p}^{s}[f] \\ \mathcal{Q}_{\nu,p}^{s}[f] &= \sum_{\nu',p'} \int_{\mathbb{R}^{2}} \left[S_{(\nu',p',k')\to(\nu,p,k)}^{s} f_{\nu',p'}(k') - S_{(\nu,p,k)\to(\nu',p',k')}^{s} f_{\nu,p}(k) \right] dk': \end{aligned}$$

every S^s represents a different interaction.

Structure of the S^s

The missing dimension of the wave-vector $k \in \mathbb{R}^2$, instead of $k \in \mathbb{R}^3$, is replaced by an overlap integral $W_{(\nu,p),(\nu',p')}$:

$$S^{s}_{(\nu,p,k)\to(\nu',p',k')} = C_{\nu\to\nu'} \frac{1}{W_{(\nu,p),(\nu',p')}} \delta\left(\epsilon^{tot}_{\nu',p'}(k') - \epsilon^{tot}_{\nu,p}(k) \pm \text{some energy}\right)$$
$$\frac{1}{W_{(\nu,p),(\nu',p')}} = \int_{0}^{l_{z}} |\chi_{\nu,p}|^{2} |\chi_{\nu',p'}|^{2} dz, \qquad [W] = m.$$

The model		
Mathematical model		
000000000		00000000
The model	Numerical methods for the Schrödinger-Poisson block	

The collision operator

The collision operator takes into account the phonon scattering mechanism. It reads

$$\begin{aligned} \mathcal{Q}_{\nu,p}[f] &= \sum_{s} \mathcal{Q}_{\nu,p}^{s}[f] \\ \mathcal{Q}_{\nu,p}^{s}[f] &= \sum_{\nu',p'} \int_{\mathbb{R}^{2}} \left[S_{(\nu',p',k')\to(\nu,p,k)}^{s} f_{\nu',p'}(k') - S_{(\nu,p,k)\to(\nu',p',k')}^{s} f_{\nu,p}(k) \right] dk': \end{aligned}$$

every S^s represents a different interaction.

Structure of the S^s

The missing dimension of the wave-vector $k \in \mathbb{R}^2$, instead of $k \in \mathbb{R}^3$, is replaced by an overlap integral $W_{(\nu,p),(\nu',p')}$:

$$S^{s}_{(\nu,p,k)\to(\nu',p',k')} = C_{\nu\to\nu'} \frac{1}{W_{(\nu,p),(\nu',p')}} \delta\left(\epsilon^{tot}_{\nu',p'}(k') - \epsilon^{tot}_{\nu,p}(k) \pm \text{some energy}\right)$$
$$\frac{1}{W_{(\nu,p),(\nu',p')}} = \int_{0}^{l_{z}} |\chi_{\nu,p}|^{2} |\chi_{\nu',p'}|^{2} dz, \qquad [W] = m.$$

The model	Numerical methods for the Schrödinger-Poisson block	Experiments
000000000		00000000
Mathematical model		
D 1	1	

Boundary conditions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The model 00000000	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 00000000
Iterative schemes			
Outline			

The model

- Geometry
- Mathematical model

2 Numerical methods for the Schrödinger-Poisson block

Iterative schemes

Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations

4 Experiments

- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

	Numerical methods for the Schrödinger-Poisson block					
	000000					
Iterative schemes						
The New	The Newton scheme					

The functional

Solving the Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{\varepsilon,\nu}}\frac{d\chi_{\nu,p}[V]}{dz}\right] - q\left(V+V_c\right)\chi_{\nu,p}[V] = \epsilon_{\nu,p}^{pot}[V]\chi_{\nu,p}[V]$$
$$-\operatorname{div}\left[\varepsilon_R\nabla V\right] = -\frac{q}{\varepsilon_0}\left(N[V]-N_D\right)$$

is equivalt to minimizing, under the constraints of the Schrödinger equation, the functional P[V]

$$P[V] = -\operatorname{div}\left(\varepsilon_R \nabla V\right) + \frac{q}{\varepsilon_0} \left(N[V] - N_D \right),$$

The scheme

which is achieved by means of a Newton-Raphson iterative scheme

$$dP(V^{old}, V^{new} - V^{old}) = -P[V^{old}].$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

э

	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
	000000		
Iterative schemes			

The Newton scheme

The functional

Solving the Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{\varepsilon,\nu}}\frac{d\chi_{\nu,p}[V]}{dz}\right] - q\left(V+V_c\right)\chi_{\nu,p}[V] = \epsilon_{\nu,p}^{pot}[V]\chi_{\nu,p}[V]$$
$$-\operatorname{div}\left[\varepsilon_R\nabla V\right] = -\frac{q}{\varepsilon_0}\left(N[V]-N_D\right)$$

is equivalt to minimizing, under the constraints of the Schrödinger equation, the functional P[V]

$$P[V] = -\operatorname{div}\left(\varepsilon_R \nabla V\right) + \frac{q}{\varepsilon_0} \left(N[V] - N_D \right),$$

The scheme

which is achieved by means of a Newton-Raphson iterative scheme

$$dP(V^{old}, V^{new} - V^{old}) = -P[V^{old}].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

	Numerical methods for the Schrödinger-Poisson block		Experiments		
	000000				
Iterative schemes					
The iterations					

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

$$d\epsilon_{\nu,p}(V,U) = -q \int U(\zeta) |\chi_{\nu,p}[V](\zeta)|^2 d\zeta$$

$$d\chi_{\nu,p}(V,U) = -q \sum_{p' \neq p} \frac{\int U(\zeta) \chi_{\nu,p}[V](\zeta) \chi_{\nu,p'}[V](\zeta) d\zeta}{\epsilon_{\nu,p}[V] - \epsilon_{\nu,p'}[V]} \chi_{\nu,p'}[V](z).$$

Iterations

After computing the Gâteaux-derivative of the density and developping calculations, we are led to a Poisson-like equation

$$-\operatorname{div}\left(\varepsilon_{R}\nabla V^{new}\right) + \int_{0}^{l_{z}} \mathcal{A}[V^{old}](z,\zeta)V^{new}(\zeta)d\zeta$$
$$= -\frac{q}{\varepsilon_{0}}\left(N[V^{old}] - N_{D}\right) + \int_{0}^{l_{z}} \mathcal{A}[V^{old}](z,\zeta)V^{old}(\zeta)d\zeta,$$

where $\mathcal{A}[V]$ is essentially the Gâteaux-derivative of the functional P[V].

	Numerical methods for the Schrödinger-Poisson block		Experiments		
	000000				
Iterative schemes					
The iterations					

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

$$d\epsilon_{\nu,p}(V,U) = -q \int U(\zeta) |\chi_{\nu,p}[V](\zeta)|^2 d\zeta$$

$$d\chi_{\nu,p}(V,U) = -q \sum_{p' \neq p} \frac{\int U(\zeta) \chi_{\nu,p}[V](\zeta) \chi_{\nu,p'}[V](\zeta) d\zeta}{\epsilon_{\nu,p}[V] - \epsilon_{\nu,p'}[V]} \chi_{\nu,p'}[V](z).$$

Iterations

After computing the Gâteaux-derivative of the density and developping calculations, we are led to a Poisson-like equation

$$\begin{split} -\mathrm{div}\left(\varepsilon_{R}\nabla V^{new}\right) &+ \int_{0}^{l_{z}}\mathcal{A}[V^{old}](z,\zeta)V^{new}(\zeta)d\zeta \\ &= -\frac{q}{\varepsilon_{0}}\left(N[V^{old}]-N_{D}\right) + \int_{0}^{l_{z}}\mathcal{A}[V^{old}](z,\zeta)V^{old}(\zeta)d\zeta, \end{split}$$

where $\mathcal{A}[V]$ is essentially the Gâteaux-derivative of the functional P[V].

The Gur	nmel scheme	
Iterative schemes		
	000000	
	Numerical methods for the Schrödinger-Poisson block	Experiments

The iteration

Solving the Schrödinger-Poisson block

$$- ext{div}\left(arepsilon_R
abla V^{new}
ight) + rac{q}{arepsilon_0} N[V^{old}] rac{q}{k_B T_L} V^{new} \ = -rac{q}{arepsilon_0} \left(N[V^{old}] - N_D
ight) + rac{q}{arepsilon_0} N[V^{old}] rac{q}{k_B T_L} V^{old},$$

Comparison with Newton

We here repeat the Newton iteration:

$$-\operatorname{div}\left(\varepsilon_{R}\nabla V^{new}\right) + \int_{0}^{l_{z}} \mathcal{A}[V^{old}](z,\zeta)V^{new}(\zeta)d\zeta$$
$$= -\frac{q}{\varepsilon_{0}}\left(N[V^{old}] - N_{D}\right) + \int_{0}^{l_{z}} \mathcal{A}[V^{old}](z,\zeta)V^{old}(\zeta)d\zeta$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments			
Iterative schemes						
The Gum	The Gummel scheme					

The iteration

Solving the Schrödinger-Poisson block

$$- ext{div}\left(arepsilon_R
abla V^{new}
ight) + rac{q}{arepsilon_0} N[V^{old}] rac{q}{k_B T_L} V^{new} \ = -rac{q}{arepsilon_0} \left(N[V^{old}] - N_D
ight) + rac{q}{arepsilon_0} N[V^{old}] rac{q}{k_B T_L} V^{old},$$

Comparison with Newton

We here repeat the Newton iteration:

$$\begin{split} -\operatorname{div}\left(\varepsilon_{R}\nabla V^{new}\right) &+ \int_{0}^{l_{z}}\mathcal{A}[V^{old}](z,\zeta)V^{new}(\zeta)d\zeta \\ &= -\frac{q}{\varepsilon_{0}}\left(N[V^{old}]-N_{D}\right) + \int_{0}^{l_{z}}\mathcal{A}[V^{old}](z,\zeta)V^{old}(\zeta)d\zeta, \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
	0000000		
Iterative schemes			
Framework	C		

	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
	0000000		
Solvers for Schrödinger and Pois	sson		

Outline

The model

- Geometry
- Mathematical model

2 Numerical methods for the Schrödinger-Poisson block

Iterative schemes

Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations

4 Experiments

- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

	Numerical methods for the Schrödinger-Poisson block	Experiments
	000000	
Solvers for Schrödinger and Pois	sson	

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{z,\nu}}\frac{d\chi_{\nu,p}}{dz}\right] - q\left(V+V_c\right)\chi_{\nu,p} = \epsilon_{\nu,p}\chi_{\nu,p}$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

$$-\operatorname{div}\left[\varepsilon_{R}\nabla V\right] + \int_{0}^{l_{z}} \mathcal{A}(z,\zeta)V(\zeta)d\zeta = \mathcal{B}(z).$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system (full) is solved by means of a LAPACK routine called DGESV.

	Numerical methods for the Schrödinger-Poisson block	Experiments
	000000	
Solvers for Schrödinger	and Poisson	
ът ·	аа.а.	

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{z,\nu}}\frac{d\chi_{\nu,p}}{dz}\right] - q\left(V + V_c\right)\chi_{\nu,p} = \epsilon_{\nu,p}\chi_{\nu,p}$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

$$-\operatorname{div}\left[\varepsilon_{R}\nabla V\right] + \int_{0}^{l_{z}} \mathcal{A}(z,\zeta)V(\zeta)d\zeta = \mathcal{B}(z).$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system (full) is solved by means of a LAPACK routine called DGESV.

		Numerical me	thods for the Schrödinger-Poisson blo	ock Solvers for the BTE block	Experiments
		0000000			
Solvers for Schröding	ger and Poiss	on			
ът -	1	. 1	1		

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{z,\nu}}\frac{d\chi_{\nu,p}}{dz}\right] - q\left(V+V_c\right)\chi_{\nu,p} = \epsilon_{\nu,p}\chi_{\nu,p}$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

$$-\operatorname{div}\left[\varepsilon_{R}\nabla V\right]+\int_{0}^{l_{z}}\mathcal{A}(z,\zeta)V(\zeta)d\zeta=\mathcal{B}(z).$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system (full) is solved by means of a LAPACK routine called DGESV.

The model 000000000	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 00000000
Adimensionalizations			
Outline			

The model

- Geometry
- Mathematical model
- Numerical methods for the Schrödinger-Poisson block
 - Iterative schemes
 - Solvers for Schrödinger and Poisson

Solvers for the BTE block

Adimensionalizations

- Time discretization
- Linear advection
- PWENO interpolations

4 Experiments

- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block ○●○○○○○○○○○○○○○○○	Experiments
Adimensionalizations			
Wave-vec	tor space		

Two different adimensionalizations are proposed for the wave-vector space. Magnitudes with tilde are meant with dimension.

Cartesian coordinates

$$(\tilde{k}_x, \tilde{k}_y) = \frac{\sqrt{m_e \kappa_B T_L}}{\hbar} (k_x, k_y).$$

Ellipsoidal coordinated

The wave-vector for the ν^{th} valley reads:

$$(\tilde{k}_x, \tilde{k}_y) = \frac{\sqrt{m_e \kappa_B T_L}}{\hbar} \sqrt{2w(1 + \alpha_\nu w)} \left(\sqrt{m_{x,\nu}} \cos(\phi), \sqrt{m_{y,\nu}} \sin(\phi) \right)$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
Adimensionalizations			
Wave-vect	or space		

Two different adimensionalizations are proposed for the wave-vector space. Magnitudes with tilde are meant with dimension.

Cartesian coordinates

$$(\tilde{k}_x, \tilde{k}_y) = rac{\sqrt{m_e \kappa_B T_L}}{\hbar} (k_x, k_y).$$

Ellipsoidal coordinated

The wave-vector for the ν^{th} valley reads:

$$(\tilde{k}_x, \tilde{k}_y) = \frac{\sqrt{m_e \kappa_B T_L}}{\hbar} \sqrt{2w(1 + \alpha_\nu w)} \left(\sqrt{m_{x,\nu}} \cos(\phi), \sqrt{m_{y,\nu}} \sin(\phi)\right)$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block ○●○○○○○○○○○○○○○○○	Experiments
Adimensionalizations			
Wave-vect	cor space		

Two different adimensionalizations are proposed for the wave-vector space. Magnitudes with tilde are meant with dimension.

Cartesian coordinates

$$(\tilde{k}_x, \tilde{k}_y) = rac{\sqrt{m_e \kappa_B T_L}}{\hbar} (k_x, k_y).$$

Ellipsoidal coordinated

The wave-vector for the ν^{th} valley reads:

$$(\tilde{k}_x, \tilde{k}_y) = \frac{\sqrt{m_e \kappa_B T_L}}{\hbar} \sqrt{2w(1 + \alpha_\nu w)} \left(\sqrt{m_{x,\nu}} \cos(\phi), \sqrt{m_{y,\nu}} \sin(\phi)\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The model 000000000	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 00000000			
Adimensionalizations						
BTE in car	BTE in cartesian coordinates					

Let the flux coefficients

$$\begin{aligned} a_{\nu}^{1}(k) &= C^{V} v_{x,\nu}(k) \\ a_{\nu,p}^{2}(x) &= -C^{V} \frac{\partial \epsilon_{x,\nu}^{pot}}{\partial x}(x). \end{aligned}$$

Transport form

The BTE in transport form reads

$$\frac{\partial f_{\nu,p}}{\partial t} + a_{\nu}^{1} \frac{\partial f_{\nu,p}}{\partial x} + a_{\nu,p}^{2} \frac{\partial f_{\nu,p}}{\partial k} = \mathcal{Q}_{\nu,p}[f].$$

Conservation-law form

The BTE in conservation-law form reads

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{\partial}{\partial x} \left[a_{\nu}^{1} f_{\nu,p} \right] + \frac{\partial}{\partial k} \left[a_{\nu,p}^{2} f_{\nu,p} \right] = \mathcal{Q}_{\nu,p}[f].$$

BTE in c	artesian coordinates		
Adimensionalizations			
		000000000000000000000000000000000000000	
	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	

Let the flux coefficients

$$\begin{aligned} a_{\nu}^{1}(k) &= C^{V} v_{x,\nu}(k) \\ a_{\nu,p}^{2}(x) &= -C^{V} \frac{\partial \epsilon_{x,\nu}^{pot}}{\partial x}(x). \end{aligned}$$

Transport form

The BTE in transport form reads

$$\frac{\partial f_{\nu,p}}{\partial t} + a_{\nu}^{1} \frac{\partial f_{\nu,p}}{\partial x} + a_{\nu,p}^{2} \frac{\partial f_{\nu,p}}{\partial k} = \mathcal{Q}_{\nu,p}[f].$$

Conservation-law form

The BTE in conservation-law form reads

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{\partial}{\partial x} \left[a_{\nu}^{1} f_{\nu,p} \right] + \frac{\partial}{\partial k} \left[a_{\nu,p}^{2} f_{\nu,p} \right] = \mathcal{Q}_{\nu,p}[f].$$

ヘロト 人間 とくほ とくほとう

ж

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments			
Adimensionalizations						
BTE in ca	BTE in cartesian coordinates					

Let the flux coefficients

$$a_{\nu}^{1}(k) = C^{V}v_{x,\nu}(k)$$

$$a_{\nu,p}^{2}(x) = -C^{V}\frac{\partial\epsilon_{x,\nu}^{pot}}{\partial x}(x).$$

Transport form

The BTE in transport form reads

$$\frac{\partial f_{\nu,p}}{\partial t} + a_{\nu}^{1} \frac{\partial f_{\nu,p}}{\partial x} + a_{\nu,p}^{2} \frac{\partial f_{\nu,p}}{\partial k} = \mathcal{Q}_{\nu,p}[f].$$

Conservation-law form

The BTE in conservation-law form reads

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{\partial}{\partial x} \left[a_{\nu}^{1} f_{\nu,p} \right] + \frac{\partial}{\partial k} \left[a_{\nu,p}^{2} f_{\nu,p} \right] = \mathcal{Q}_{\nu,p}[f].$$

ヘロト 人間 とくほとくほとう

ж

The model

Numerical methods for the Schrödinger-Poisson block

Solvers for the BTE block

Experiments

Adimensionalizations

BTE in ellipsoidal coordinates

Let the flux coefficients

$$\begin{aligned} a_{\nu}^{1}(w,\phi) &= C^{V} \frac{\sqrt{2w(1+\alpha_{\nu}w)}\cos(\phi)}{\sqrt{m_{x,\nu}}} \frac{1}{1+2\alpha_{\nu}w} \\ a_{\nu,p}^{2}(x,w,\phi) &= -C^{V} \frac{\partial\epsilon_{\nu,p}}{\partial x}(x) \frac{1}{1+2\alpha_{\nu}w} \frac{\sqrt{2w(1+\alpha_{\nu}w)}\cos(\phi)}{\sqrt{m_{x,\nu}}} \\ a_{\nu,p}^{3}(x,w,\phi) &= C^{V} \frac{\partial\epsilon_{\nu,p}}{\partial x}(x) \frac{\sin(\phi)}{\sqrt{m_{x,\nu}}\sqrt{2w(1+\alpha_{\nu}w)}}. \end{aligned}$$

Conservation-law form

$$\frac{\partial \Phi_{\nu,p}}{\partial t} + \frac{\partial}{\partial x} \left[a_{\nu}^{1} \Phi_{\nu,p} \right] + \frac{\partial}{\partial w} \left[a_{\nu,p}^{2} \Phi_{\nu,p} \right] + \frac{\partial}{\partial \phi} \left[a_{\nu,p}^{3} \Phi_{\nu,p} \right] = \mathcal{Q}_{\nu,p} [\Phi] s(w)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The model

Numerical methods for the Schrödinger-Poisson block

Solvers for the BTE block

Experiments

Adimensionalizations

BTE in ellipsoidal coordinates

Let the flux coefficients

$$\begin{aligned} a_{\nu}^{1}(w,\phi) &= C^{V} \frac{\sqrt{2w(1+\alpha_{\nu}w)}\cos(\phi)}{\sqrt{m_{x,\nu}}} \frac{1}{1+2\alpha_{\nu}w} \\ a_{\nu,p}^{2}(x,w,\phi) &= -C^{V} \frac{\partial \epsilon_{\nu,p}}{\partial x}(x) \frac{1}{1+2\alpha_{\nu}w} \frac{\sqrt{2w(1+\alpha_{\nu}w)}\cos(\phi)}{\sqrt{m_{x,\nu}}} \\ a_{\nu,p}^{3}(x,w,\phi) &= C^{V} \frac{\partial \epsilon_{\nu,p}}{\partial x}(x) \frac{\sin(\phi)}{\sqrt{m_{x,\nu}}\sqrt{2w(1+\alpha_{\nu}w)}}. \end{aligned}$$

Conservation-law form

$$\frac{\partial \Phi_{\nu,p}}{\partial t} + \frac{\partial}{\partial x} \left[a_{\nu}^{1} \Phi_{\nu,p} \right] + \frac{\partial}{\partial w} \left[a_{\nu,p}^{2} \Phi_{\nu,p} \right] + \frac{\partial}{\partial \phi} \left[a_{\nu,p}^{3} \Phi_{\nu,p} \right] = \mathcal{Q}_{\nu,p} [\Phi] s(w)$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 000000000
Time discretization			
Outline			

The model

- Geometry
- Mathematical model
- Numerical methods for the Schrödinger-Poisson block
 - Iterative schemes
 - Solvers for Schrödinger and Poisson

Solvers for the BTE block

Adimensionalizations

Time discretization

- Linear advection
- PWENO interpolations

4 Experiments

- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

The model

Numerical methods for the Schrödinger-Poisson block

Solvers for the BTE block

Time discretization

Runge-Kutta vs. splitting

We propose two discretizations for the time, following the choice between conservation-law form and transport form.

Runge-Kutta

If the BTE is written in conservation-law form, then we advance in time by the third order Total Variation Diminishing Runge-Kutta scheme: if the evolution equation reads $\frac{df}{dt} = H(t, f)$, then

•
$$f^{(1)} = \Delta t H^n(t^n, f^n)$$

• $f^{(2)} = \frac{3}{4} f^n + \frac{1}{4} f^{(1)} + \frac{1}{4} \Delta t H^{(1)}(t^n + \Delta t, f^{(1)})$
• $f^{n+1} = \frac{1}{3} f^n + \frac{2}{3} f^{(2)} + \frac{2}{3} H^{(2)} \left(t^n + \frac{1}{2} \Delta t, f^{(2)} \right)$

The model

Numerical methods for the Schrödinger-Poisson block

Solvers for the BTE block

Time discretization

Runge-Kutta vs. splitting

We propose two discretizations for the time, following the choice between conservation-law form and transport form.

Runge-Kutta

If the BTE is written in conservation-law form, then we advance in time by the third order Total Variation Diminishing Runge-Kutta scheme: if the evolution equation reads $\frac{df}{dt} = H(t, f)$, then • $f^{(1)} = \Delta t H^n(t^n, f^n)$

$$f^{(2)} = \frac{3}{4}f^n + \frac{1}{4}f^{(1)} + \frac{1}{4}\Delta t H^{(1)}(t^n + \Delta t, f^{(1)})$$

a
$$f^{n+1} = \frac{1}{3}f^n + \frac{2}{3}f^{(2)} + \frac{2}{3}H^{(2)}\left(t^n + \frac{1}{2}\Delta t, f^{(2)}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへで

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 00000000
Time discretization			
Splitting so			

Time splitting

If the BTE is written in transport form, then we advance in time by time splitting schemes:

$$\frac{\partial f_{\nu,p}}{\partial t} + C^{V} \left\{ \epsilon^{tot}, f_{\nu,p} \right\} = 0$$
$$\frac{\partial f_{\nu,p}}{\partial t} = \mathcal{Q}_{\nu,p}[f].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 00000000
Time discretization			
Splitting s	chemes		

Dimensional splitting

Apart from time splitting, we also split the phase-space:

$$\frac{\partial f_{\nu,p}}{\partial t} + a_{\nu}^{1} \frac{\partial f_{\nu,p}}{\partial x} = 0$$
$$\frac{\partial f_{\nu,p}}{\partial t} + a_{\nu,p}^{2} \frac{\partial f_{\nu,p}}{\partial k} = 0$$

The overall scheme is summarized in the following figure.

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 00000000
Time discretization			
Splitting s	chemes		

Dimensional splitting

Apart from time splitting, we also split the phase-space:

$$\frac{\partial f_{\nu,p}}{\partial t} + a_{\nu}^{1} \frac{\partial f_{\nu,p}}{\partial x} = 0$$
$$\frac{\partial f_{\nu,p}}{\partial t} + a_{\nu,p}^{2} \frac{\partial f_{\nu,p}}{\partial k} = 0$$

The overall scheme is summarized in the following figure.

The model 000000000 Linear advection	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block ○○○○○○○○●○○○○○○○	Experiments
Outline			

The model

- Geometry
- Mathematical model
- Numerical methods for the Schrödinger-Poisson block
 - Iterative schemes
 - Solvers for Schrödinger and Poisson

Solvers for the BTE block

- Adimensionalizations
- Time discretization

Linear advection

PWENO interpolations

4 Experiments

- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

Linear ac	lvection		
Linear advection			
00000000	0000000	00000000000000000	00000000
	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	

Flux Balance Method:

Total mass conservation is forced. It is based on the idea of following backward the characteristics, but integral values are taken instead of point values:

The model 000000000 BWENO interpolations	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 000000000
Outline			

The mode

- Geometry
- Mathematical model
- Numerical methods for the Schrödinger-Poisson block
 - Iterative schemes
 - Solvers for Schrödinger and Poisson

Solvers for the BTE block

- Adimensionalizations
- Time discretization
- Linear advection

• PWENO interpolations

4 Experiments

- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

The model 000000000	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 000000000
PWENO interpolations			
Motivation			

We need a **Pointwise** interpolation method which does not add spurious oscillations when high gradients appear, e.g. when a jump has to be transported.

Figure: Left: PWENO interpolation. Right: Lagrange interpolation.

イロト 不得 とう アイロト

ж

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 000000000
PWENO interpolations			
Motivation			

We need a **Pointwise** interpolation method which does not add spurious oscillations when high gradients appear, e.g. when a jump has to be transported.

Figure: Left: PWENO interpolation. Right: Lagrange interpolation.

ヘロト 人間 とくほとくほとう

э

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of Lagrange polynomial reconstructions.

We describe the case of PWENO-6,4: we take a stencil of six points and divide it into three substencils of four points:

PWENO-6,4

The smoothness of the Lagrange polynomials is measured along this segment, between the two central points.

> We want to reconstruct the value at this point: we take the reconstruction of the three Lagrange polynomials and compute a sensible average of them, based on how smooth is each.

Experiments

	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
		000000000000000000000000000000000000000	
PWENO interpolations			

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of Lagrange polynomial reconstructions.

We describe the case of PWENO-6,4: we take a stencil of six points and divide it into three substencils of four points:

PWENO-6,4

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments		
PWENO interpolations					
The aver	The average				

If we note $p_r(x)$ the Lagrange polynomials, PWENO reconstruction reads

 $p_{PWENO}(x) = \omega_0(x)p_0(x) + \omega_1(x)p_1(x) + \omega_2(x)p_2(x).$

Convex combination.

The convex combination $\{\omega_r(x)\}_r$ must penalize the substencils S_r in which the $p_r(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils S_r are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^2 -norms of the Lagrange polynomials $p_r(x)$ to measure their regularity close to the reconstruction point *x*. The following smoothness indicators have been proposed by Jiang and Shu:

$$\beta_r = \Delta x \left\| \frac{dp_r}{dx} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^3 \left\| \frac{d^2 p_r}{dx^2} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^5 \left\| \frac{d^3 p_r}{dx^3} \right\|_{L^2_{(x_i, x_{i+1})}}.$$

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 00000000	
PWENO interpolations				
The average				

If we note $p_r(x)$ the Lagrange polynomials, PWENO reconstruction reads

$$p_{PWENO}(x) = \omega_0(x)p_0(x) + \omega_1(x)p_1(x) + \omega_2(x)p_2(x).$$

Convex combination.

The convex combination $\{\omega_r(x)\}_r$ must penalize the substencils S_r in which the $p_r(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils S_r are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^2 -norms of the Lagrange polynomials $p_r(x)$ to measure their regularity close to the reconstruction point *x*. The following smoothness indicators have been proposed by Jiang and Shu:

$$\beta_r = \Delta x \left\| \frac{dp_r}{dx} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^3 \left\| \frac{d^2 p_r}{dx^2} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^5 \left\| \frac{d^3 p_r}{dx^3} \right\|_{L^2_{(x_i, x_{i+1})}}.$$

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments 00000000	
PWENO interpolations				
The average				

If we note $p_r(x)$ the Lagrange polynomials, PWENO reconstruction reads

$$p_{PWENO}(x) = \omega_0(x)p_0(x) + \omega_1(x)p_1(x) + \omega_2(x)p_2(x).$$

Convex combination.

The convex combination $\{\omega_r(x)\}_r$ must penalize the substencils S_r in which the $p_r(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils S_r are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^2 -norms of the Lagrange polynomials $p_r(x)$ to measure their regularity close to the reconstruction point *x*. The following smoothness indicators have been proposed by Jiang and Shu:

$$\beta_r = \Delta x \left\| \frac{dp_r}{dx} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^3 \left\| \frac{d^2 p_r}{dx^2} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^5 \left\| \frac{d^3 p_r}{dx^3} \right\|_{L^2_{(x_i, x_{i+1})}}.$$

・ロト・日本・日本・日本・日本・日本

High order reconstruction						
PWENO interpolations	PWENO interpolations					
		000000000000000000000000000000000000000				
	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block				

Admit for now that the convex combination is given by the normalization $\omega_r(x) = \frac{\tilde{\omega}_r(x)}{\sum_{s=0}^2 \tilde{\omega}_s(x)}$ of the protoweights $\tilde{\omega}_r(x)$ defined this way:

$$\tilde{\omega}_r(x) = \frac{d_r(x)}{(\epsilon + \beta_r)^2}.$$

Regular reconstruction

Suppose that all the β_r are equal; then we have

$$\omega_r(x) = d_r(x).$$

The optimal order is achieved by Lagrange reconstruction $p_{Lagrange}(x)$ in the whole stencil S, so if we define $d_r(x)$ to be the polynomials such that

 $p_{Lagrange}(x) = d_0(x)p_0(x) + d_1(x)p_1(x) + d_2(x)p_2(x),$

then we have achieved the optimal order because $p_{PWENO}(x) = p_{Lagrange}(x)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

High ord	High order reconstruction					
PWENO interpolations						
		000000000000000000000000000000000000000				
	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block				

Admit for now that the convex combination is given by the normalization $\omega_r(x) = \frac{\tilde{\omega}_r(x)}{\sum_{s=0}^2 \tilde{\omega}_s(x)}$ of the protoweights $\tilde{\omega}_r(x)$ defined this way:

$$\tilde{\omega}_r(x) = \frac{d_r(x)}{(\epsilon + \beta_r)^2}.$$

Regular reconstruction

Suppose that all the β_r are equal; then we have

$$\omega_r(x) = d_r(x).$$

The optimal order is achieved by Lagrange reconstruction $p_{Lagrange}(x)$ in the whole stencil S, so if we define $d_r(x)$ to be the polynomials such that

$$p_{Lagrange}(x) = d_0(x)p_0(x) + d_1(x)p_1(x) + d_2(x)p_2(x),$$

then we have achieved the optimal order because $p_{PWENO}(x) = p_{Lagrange}(x)$.

High orde	er reconstruction		
PWENO interpolations			
		0000000000000000	
	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments

Admit for now that the convex combination is given by the normalization $\omega_r(x) = \frac{\tilde{\omega}_r(x)}{\sum_{r=0}^2 \tilde{\omega}_s(x)}$ of the protoweights $\tilde{\omega}_r(x)$ defined this way:

$$\tilde{\omega}_r(x) = \frac{d_r(x)}{(\epsilon + \beta_r)^2}.$$

High gradients

Otherwise, suppose for instance that β_0 is high order than the other ones: in this case S_0 is penalized and most of the reconstruction is carried by the other more "regular" substencils.

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
Simplifying assumptions			
Outling			

Outline

The model

- Geometry
- Mathematical model
- 2 Numerical methods for the Schrödinger-Poisson block
 - Iterative schemes
 - Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations

Experiments

Simplifying assumptions

- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

Simplifying assumptions	0000000	0000000000000000	0000000
Collision operator			

Results are presented for the the DG MOSFET in the one-valley, parabolic-band approximation. Moreover, the complete collision operator is substituted by a simple relaxation-time operator:

$$\mathcal{Q}_p f = rac{1}{ au} \left(
ho_p M - f_p
ight).$$

The goal of this work is just the setting up of numerical tools for a more profound and realistic simulation.

A parallel code in the most realistic case is being implemented.

Т

The model 000000000	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
Equilibria			
Outline			

The model

- Geometry
- Mathematical model
- 2 Numerical methods for the Schrödinger-Poisson block
 - Iterative schemes
 - Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations

Experiments

• Simplifying assumptions

Equilibria

- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
Equilibria			

Thermodynamical equilibrium: three-valley case

< ∃→

€ 990

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
Time-dependent simulations			
0 11			

Outline

The model

- Geometry
- Mathematical model
- 2 Numerical methods for the Schrödinger-Poisson block
 - Iterative schemes
 - Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations

Experiments

- Simplifying assumptions
- Equilibria

• Time-dependent simulations

- Newton vs. Gummel
- Plasma oscillations

The model	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
Time-dependent simulations			
Long-time	behavior		

We propose now some results relative to the long-time behavior of the system.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

The model 000000000 Newton vs. Gummel	Numerical methods for the Schrödinger-Poisson block	Solvers for the BTE block	Experiments
Outline			

The model

- Geometry
- Mathematical model
- 2 Numerical methods for the Schrödinger-Poisson block
 - Iterative schemes
 - Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations

Experiments

- Simplifying assumptions
- Equilibria
- Time-dependent simulations

Newton vs. Gummel

Plasma oscillations

Number o	of iterations		
Newton vs. Gummel			
00000000	0000000	0000000000000000	0000000
	Numerical methods for the Schrödinger-Poisson block		Experiments

Newton schemes require much less iterations than Gummel in order to compute the thermodynamical equilibrium.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Outline		
Plasma oscillations		
		00000000
	Numerical methods for the Schrödinger-Poisson block	Experiments

The model

- Geometry
- Mathematical model
- 2 Numerical methods for the Schrödinger-Poisson block
 - Iterative schemes
 - Solvers for Schrödinger and Poisson

3 Solvers for the BTE block

- Adimensionalizations
- Time discretization
- Linear advection
- PWENO interpolations

Experiments

- Simplifying assumptions
- Equilibria
- Time-dependent simulations
- Newton vs. Gummel
- Plasma oscillations

	Numerical methods for the Schrödinger-Poisson block	Experimen
Plasma oscillations		

Mass and temperature oscillations

Plasma oscillations	
000000000	000000
The model	Numerical methods for the Schrödinger-Poisson block

Solvers for the BTE block

Experiments

Numerically-computed oscillations

The plasma frequency is given by

$$\omega_p = \sqrt{rac{q^2 N_e}{arepsilon_R arepsilon_0 m_*}}.$$

N_D^{high}	ε_R	<i>m</i> *	N _e	ω_{num}	ω_p	Ratio	Expected
$(\times 10^{26}m^{-3})$			$(\times 10^{26}m^{-3})$	$(\times 10^{14} s^{-1})$	$(\times 10^{14} s^{-1})$	$\frac{\omega_{num}}{\omega_{ref}}$	Ratio
1	11.7	0.5	.400	$\omega_{ref} = 1.344$	1.475	1	/
2	11.7	0.5	.783	2.051	2.064	1.52	$\sqrt{2}$
4	11.7	0.5	1.544	2.813	2.899	2.09	2
1	5.85	0.5	.400	1.848	2.086	1.37	$\sqrt{2}$

▲□▶▲□▶▲□▶▲□▶ ■ のへの