					Work in progress
000000	000000000000	0000000000	0000000000	00	

VLADG

Nicolas Crouseilles, Michel Mehrenberger, Éric Sonnendrücker, Francesco Vecil

Luminy, 19 July - 27 August 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

		Work in progress

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outline

- Goal
- Strategy

- 1D linear advection
- Numerical scheme
- Experiments
- 3 2D linear advection
 - Numerical scheme
 - Experiments
- 4 1D nonlinear advection
 - Numerical scheme
 - Experiments
- 3 2D nonlinear advection
 - Numerical scheme

Work in progress

	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00	work in progress
Outline				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Strategy

- 1D linear advection
 - Numerical scheme
 - Experiments
- 3 2D linear advection
 - Numerical scheme
 - Experiments
- 4 1D nonlinear advection
 - Numerical scheme
 - Experiments
- 2D nonlinear advectionNumerical scheme
 - 6 Work in progress

The gu	iding-cente	er model		
Goal				
00000	000000000000	0000000000	00000000000	
Introduction				

We plan to simulate the guiding-center model through a Discontinuous Galerkin discretization.

The transport equation

$$\frac{\partial f}{\partial t} + \operatorname{div}_{x_1, x_2}(Ef) = 0$$

for $(t, x_1, x_2) \in [0, +\infty[\times[0, 2\pi] \times [0, 2\pi]]$, with periodic boundary conditions.

The electric field

The electric field is given by $E = -\nabla_{x_1, x_2} \Phi$, Φ being the potential given by

$$-\Delta_{x_1,x_2}\Phi=f,$$

with periodic boundary conditions.

Introduction			Work in progress
000000			
Strategy			
Outline	د		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Goal

Strategy

- 2 11
 - 1D linear advection
 - Numerical scheme
 - Experiments
- 3 2D linear advection
 - Numerical scheme
 - Experiments
- 4 1D nonlinear advection
 - Numerical scheme
 - Experiments
- 2D nonlinear advectionNumerical scheme
 - 6 Work in progress

Introduction	1D linear advection	2D linear advection	1D nonlinear advection	2D nonlinear advection	
Strategy					
Linear a	advection				

The first steps towards the goal are the solution and testing of the linear advection problems:

The 1D linear advection

$$\frac{\partial f}{\partial t} + a \frac{\partial f}{\partial x} = 0,$$

with periodic boundary conditions.

The 2D linear advection

$$\frac{\partial f}{\partial t} + a_1 \frac{\partial f}{\partial x_1} + a_2 \frac{\partial f}{\partial x_2} = 0,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

with periodic boundary conditions.

A good benchmark for the 2D linear advection is the simulation of the Landau damping, which requires the coupling of the transport equation

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + E \frac{\partial f}{\partial v} = 0,$$

to the Poisson equation for the computation of the force field

$$-\frac{d^2\Phi}{dx^2} = 1 - \int f dv,$$

where the border conditions are taken periodic for both the transport equation and the Poisson equation.

Nonlin	ear advecti	on		
Strategy				
00000	000000000000	0000000000	00000000000	
Introduction				

The next steps are the solution and testing of the nonlinear advection problems:

The 1D nonlinear advection

$$\frac{\partial f}{\partial t} + \frac{\partial (af)}{\partial x} = 0,$$

with periodic boundary conditions.

The 2D nonlinear advection

$$\frac{\partial f}{\partial t} + \frac{\partial (a_1 f)}{\partial x_1} + \frac{\partial (a_2 f)}{\partial x_2} = 0.$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

with periodic boundary conditions.

	1D linear advection		Work in progress
	•00000000000		
Numerical scheme			
Outline			

(日) (個) (注) (注) (三)

- Goal
- Strategy

- 1D linear advection
- Numerical scheme
- Experiments
- 3 2D linear advection
 - Numerical scheme
 - Experiments
- 4 1D nonlinear advection
 - Numerical scheme
 - Experiments
- 2D nonlinear advectionNumerical scheme
 - 6 Work in progress

	1D linear advection		Work in progress
	000000000000000000000000000000000000000		
Numerical scheme			
Discreti	zation		

Partition of the computational domain

The computational domain $\Omega = [0, 1]$ is partitioned into N cells of size Δx :

$$\Omega = \bigcup_{i=0}^{N-1} I_i, \qquad I_i = [x_{i-1/2}, x_{i+1/2}].$$

Discontinuous Galerkin space

Let V^d the discontinuous finite elements space:

$$V^d = \left\{\psi \in L^2(\Omega) : \psi \in \mathbb{R}_d[X](I_i), \qquad i = 0, ..., N-1
ight\}$$

Introduction	1D linear advection	2D linear advection	1D nonlinear advection	2D nonlinear advection	
000000	000000000000	0000000000	00000000000	00	
Numerical scheme					
Choice	of the basi	S			

Lagrange polynomials

We choose to use the Lagrange polynomials at the Gauß points as basis.

000000 Numerical scheme	000000000000000000000000000000000000000	0000000000	000000000000000000000000000000000000000	00	work in progress
Choice	of the basi	s			

The Gauß points on the interval [-1, 1]

The Gauß points $\{\alpha_r\}_{r=0}^d$ and the Gauß weights $\{\omega_r\}_{r=0}^d$ are quadrature points determined by imposing

$$\int_{-1}^{1} f(x) dx = \sum_{r=0}^{d} \omega_r f(\alpha_r)$$

for all polynomials $f \in \mathbb{R}_{2d+1}[X]$.

Distributing the Gauß points

We can now introduce the notation $x_{i,j}$ for the *j*-th Gauß point inside the interval I_i ; more precisely

$$x_{i,j} = x_{i-1/2} + \frac{\Delta x}{2} \alpha_j.$$

Introduction	1D linear advection	2D linear advection	1D nonlinear advection	2D nonlinear advection	
Numerical scheme					
Choice	of the basi	S			

Orthogonality of the basis

As the Lagrange polynomials at the Gauß points are defined by

$$\varphi_{i,j} = \prod_{l=0, l\neq j}^d \frac{x - x_{i,l}}{x_{i,j} - x_{i,l}},$$

it is easy to check that

$$\int_{I_i} \varphi_{i,j_1}(x)\varphi_{i,j_2}(x) = \frac{\Delta x}{2} \sum_{r=0}^d \omega_r \varphi_{i,j_1}(\alpha_r)\varphi_{i,j_2}(\alpha_r) = \frac{\Delta x}{2} \omega_{j_1} \delta_{j_1,j_2}.$$

Notation for the future

We shall denote by $\{\tilde{\varphi}^j\}_{j=0}^d$ and $\{\tilde{\alpha}_j\}_{j=0}^d$ the Lagrange polynomials and the Gauß points on the interval [0, 1].

	1D linear advection		Work in progress
	0000000000000		
Numerical scheme			

Starting point

Test f^{n+1} over the interval I_i :

$$\int_{x_{i-1/2}}^{x_{i+1/2}} f^{n+1}(x)\varphi(x)dx$$

use the solution given by the characteristics

•

$$\int_{x_{i-1/2}}^{x_{i+1/2}} f^{n+1}(x)\varphi(x)dx = \int_{x_{i-1/2}}^{x_{i+1/2}} f^n(x - a\Delta t)\varphi(x)dx$$

change variables $x \to x - a\Delta t$

$$\int_{x_{i-1/2}}^{x_{i+1/2}} f^{n+1}(x)\varphi(x)dx = \int_{x_{i-1/2}-a\Delta t}^{x_{i+1/2}-a\Delta t} f^n(x)\varphi(x+a\Delta t)dx.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

	1D linear advection		Work in progress
	0000000000000		
Numerical scheme			

Representation of f(x)

The representation of *f* in the DG basis is
$$f(x) \approx \sum_{i'=0}^{N-1} \sum_{j'=0}^{d} f_{i',j'} \varphi_{i',j'}(x)$$

Developing the scheme

Inject the representation of f(x) into the scheme $\int_{x_{i-1/2}}^{x_{i+1/2}} f^{n+1}(x)\varphi(x)dx = \int_{x_{i-1/2}-a\Delta t}^{x_{i+1/2}-a\Delta t} f^n(x)\varphi(x+a\Delta t)dx \text{ and test on } \varphi_{i,j}(x):$

$$f_{i,j}^{n+1} \frac{\Delta x}{2} \omega_j = \sum_{i',j'} f_{i',j'}^n \int_{x_{i-1/2} - a\Delta t}^{x_{i+1/2} - a\Delta t} \varphi_{i',j'}(x) \varphi_{i,j}(x + a\Delta t).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Classes at					
Numerical scheme					
000000		00000000000	000000000000000000000000000000000000000	00	work in progress
Introduction	1D linear advaction	2D linear advaction	1D nonlinear advaction	2D nonlinear advection	Work in prograss

Treating the right hand side

$$\begin{aligned} &\int_{x_{i-1/2}-a\Delta t}^{x_{i+1/2}-a\Delta t} \varphi_{i',j'}(x)\varphi_{i,j}(x+a\Delta t) \\ &= \int_{x_{i^*-1/2}+a\Delta x}^{x_{i^*+1/2}+a\Delta x} \varphi_{i',j'}(x)\varphi_{i,j}(x+a\Delta t) \\ &= \int_{x_{i^*-1/2}+a\Delta x}^{x_{i^*+1/2}} \varphi_{i',j'}(x)\varphi_{i,j}(x+a\Delta t) + \int_{x_{i^*+1/2}}^{x_{i^*+1/2}+a\Delta x} \varphi_{i',j'}(x)\varphi_{i,j}(x+a\Delta t) \end{aligned}$$

	1D linear advection		Work in progress
	000000000000000000000000000000000000000		
Numerical scheme			

Changing variables

We change variables (and divide by $\frac{\Delta x}{2}$) in order to reduce to integrating on [0, 1]:

$$\begin{aligned} f_{i,j}^{n+1} &= \frac{1}{\omega_j} \sum_{j'} f_{i^*,j'}^n (1-\alpha) \int_{u=0}^1 \tilde{\varphi}^{j'} (\alpha + u(1-\alpha)) \tilde{\varphi}^j (u(1-\alpha)) du \\ &+ \frac{1}{\omega_j} \sum_{j'} f_{i^*+1,j'}^n \alpha \int_{u=0}^1 \tilde{\varphi}^{j'} (\alpha u) \tilde{\varphi}^j (\alpha (u-1)+1) du \end{aligned}$$

Gauß quadrature

Finally we integrate using the Gauß quadrature:

$$f_{i,j}^{n+1} = \frac{1}{\omega_j} \sum_{j'} f_{i^*,j'}^n (1-\alpha) \sum_{r=0}^d \omega_r \tilde{\varphi}^{j'} (\alpha + \tilde{\alpha}_r (1-\alpha)) \tilde{\varphi}^j (\tilde{\alpha}_r (1-\alpha)) + \frac{1}{\omega_j} \sum_{j'} f_{i^*+1,j'}^n \alpha \sum_{r=0}^d \omega_r \tilde{\varphi}^{j'} (\alpha \tilde{\alpha}_r) \tilde{\varphi}^j (\alpha (\tilde{\alpha}_r - 1) + 1).$$

000

Outline	`		
Experiments			
	0000000000000		
	1D linear advection		Work in progress

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Goal
- Strategy

1D linear advection

- Numerical scheme
- Experiments
- 3) 2D linear advection
 - Numerical scheme
 - Experiments
- 4 1D nonlinear advection
 - Numerical scheme
 - Experiments
- 2D nonlinear advectionNumerical scheme
 - 6 Work in progress

	1D linear advection		Work in progress
	000000000000000		
Experiments			
Order i	in space		

●●● 画 → 画 → 画 → ▲ 画 → → ●●

	1D linear advection		Work in progress
	0000000000000		
Experiments			
Order i	n time		

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Introduction 000000	1D linear advection	2D linear advection	1D nonlinear advection	2D nonlinear advection	Work in progress
Numerical scheme					
Outline	2				

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨー

- Goal
- Strategy

- Numerical scheme
- Experiments
- 3

2D linear advection

- Numerical scheme
- Experiments
- 4 1D nonlinear advection
 - Numerical scheme
 - Experiments
- 2D nonlinear advectionNumerical scheme
 - 6 Work in progress

		2D linear advection			
000000	000000000000	000000000	0000000000	00	
Numerical scheme					
Discreti	zation				

Partition of the computational domain

The computational domain $\Omega = [0, 1] \times [0, 1]$ is partitioned into $N_{x_1} \times N_{x_2}$ cells of size $\Delta x_1 \times \Delta x_2$:

$$\Omega = \bigcup_{i,k} I_i \times J_k, \qquad I_i = [(x_1)_{i-1/2}, (x_1)_{i+1/2}], \qquad J_k = [(x_2)_{k-1/2}, (x_2)_{k+1/2}].$$

Discontinuous Galerkin space

Let V^d be the discontinuous finite elements space as tensor product of the spaces for each variable:

$$V^{d} = \left\{ v \in L^{2}(\Omega) : v(x_{1}, x_{2}) = \varphi(x_{1})\psi(x_{2}), \varphi \in \mathbb{R}_{d}[X](I_{i}), \psi \in \mathbb{R}_{d}[X](J_{k}) \right\}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

		2D linear advection		Work in progress
		000000000		
Numerical scheme				
Discreti	ization			

Time discretization

Instead of solving the true 2D problem, we split the (x_1, x_2) -domain into advection along x_1 and advection along x_2 using Strang splitting:

Outline	ב			
Experiments				
		0000000000		
		2D linear advection		Work in progress

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Goal
- Strategy

- Numerical scheme
- Experiments

2D linear advection

- Numerical scheme
- Experiments

- Numerical scheme
- Experiments
- 2D nonlinear advectionNumerical scheme
 - 6 Work in progress

Experiments	1 •		
Landau	damning		

A 2D linear advection

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + E \frac{\partial f}{\partial v} = 0$$

is coupled to a Poisson equation for the computation of the electric field:

$$\frac{\partial E}{\partial x} = \rho - 1.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Landau	a damping			
Experiments				
000000	000000000000	0000000000	00000000000	
		2D linear advection		Work in progress

Integration of the Poisson equation

Use Green kernel for the Poisson equation to obtain

$$E(x) = \frac{1}{L} \int_0^L y \rho(y) dy - \int_x^L \rho(y) dy + \frac{L}{2} - x.$$

Inject the representations of $E(x) \approx \sum_{i,j} E_{i,j} \varphi_{i,j}(x)$ and $\rho(x) \approx \sum_{i,j} \rho_{i,j} \varphi_{i,j}(x)$, use orthogonality of the basis, the same changes of variables as before and quadrature formulae to get

$$E_{i,j} \approx \frac{\Delta x_1}{2L} \sum_{i',j'} x_{i',j'} \omega_{j'} \rho_{i',j'} - \frac{\Delta x_1}{2} (1 - \tilde{\alpha}_j) \sum_{j'} \rho_{i,j'} \sum_{r=0}^d \omega_r \tilde{\varphi}^{j'} (\tilde{\alpha}_j + \tilde{\alpha}_r (1 - \tilde{\alpha}_j)) - \frac{\Delta x_1}{2} \sum_{i'=i+1}^{N-1} \sum_{j'=0}^d \omega_{j'} \rho_{i',j'} + \frac{L}{2} - x_{i,j}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへで

Landa	u damping			
Experiments				
000000	000000000000	0000000000	0000000000	
		2D linear advection		Work in progress

Period and decay

Set the problem
$$f_0(x, v) = \frac{1}{\sqrt{2\pi}}e^{-\frac{v^2}{2}}(1 + \alpha \cos(kx)).$$

k	$\alpha = 0.001$ (linear)	$\alpha = 0.5$ (nonlinear)
0.2	$\pm 1.07154 + 6.81267 \times 10^{-5}i$	$\pm 1.09402 - 0.00107607i$
	$(\pm 1.0640 - 5.51 \times 10^{-5}i)$	
0.3	$\pm 1.16209 - 0.0124224i$	$\pm 1.30507 - 0.128511i$
	$(\pm 1.1598 - 0.0126i)$	
0.4	$\pm 1.28645 - 0.0659432i$	$\pm 1.3581 - 0.205133i$
	$(\pm 1.2850 - 0.0661i)$	
0.5	$\pm 1.41696 - 0.152849i$	$\pm 1.47343 - 0.279512i$
	$(\pm 1.4156 - 0.1533i)$	

Table: **1D Landau damping.** The decay rate and period of the oscillations of the electric field in the Landau damping problem. Here, d = 4, $N_x \times N_y = 30 \times 30$.

Introduction 000000	1D linear advection 000000000000	2D linear advection	1D nonlinear advection	2D nonlinear advection	
Experiments					
Landau	ı damping				

Nonlinear Landau damping

Introduction 000000	1D linear advection	2D linear advection	1D nonlinear advection	2D nonlinear advection OO	
Experiments					
Landau	a damping				

Filamentation of the phase-space

200

		2D linear advection		Work in progress
		000000000		
Experiments				
Bump-	On-Tail			

By using
$$f_0(x, v) = \frac{9}{10\sqrt{2\pi}}e^{-\frac{v^2}{2}} + \frac{2}{10\sqrt{2\pi}}e^{-2|v-4.5|^2}(1+0.03\cos(0.3x))$$
 as initial condition, we expect to observe some vortices.

0.4 0.35 0.25 0.2 0.15 0.1 0.06

æ

		1D nonlinear advection	Work in progress
		• 00000 00000	
Numerical scheme			
Outline			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Goal
- Strategy

- Numerical scheme
- Experiments
- 3 2D linear advection
 - Numerical scheme
 - Experiments
- ID nonlinear advection
 Numerical scheme
 - Experiments
- 2D nonlinear advectionNumerical scheme
 - Work in progress

Introduction 000000	1D linear advection	2D linear advection	1D nonlinear advection	2D nonlinear advection OO	Work in progress
Charact	teristics-ba	sed metho	d		

The strategy follows that of the 1D linear advection.

Starting point

Test f^{n+1} over the interval I_i :

$$\int_{x_{i-1/2}}^{x_{i+1/2}} f^{n+1}(x)\varphi(x)dx$$

use the solution given by the characteristics

$$\int_{x_{i-1/2}}^{x_{i+1/2}} f^{n+1}(x)\varphi(x)dx = \int_{x_{i-1/2}}^{x_{i+1/2}} f^n(\mathcal{X}(t^n;t^{n+1},x))J(t^n;t^{n+1},x)\varphi(x)dx$$

change variables $x \to \mathcal{X}(t^n; t^{n+1}, x)$

$$\int_{x_{i-1/2}}^{x_{i+1/2}} f(t^{n+1}, x)\varphi(x)dx = \int_{\mathcal{X}(t^n; t^{n+1}, x_{i+1/2})}^{\mathcal{X}(t^n; t^{n+1}, x_{i+1/2})} f(t^n, x)\varphi(\mathcal{X}(t^{n+1}; t^n, x))dx.$$

・ロト・日本・日本・日本・日本・日本・日本

		1D nonlinear advection	Work in progress
		0000000000	
Numerical scheme			

Developing the scheme

Inject the representation of f(x) into the scheme and test on $\varphi_{i,j}(x)$:

$$\int_{x_{i-1/2}}^{x_{i+1/2}} f(t^{n+1}, x)\varphi_{i,j}(x)dx = \sum_{i',j'} f_{i',j'}^n \int_{\mathcal{X}(t^n; t^{n+1}, x_{i-1/2})}^{\mathcal{X}(t^n; t^{n+1}, x_{i+1/2})} \varphi_{i',j'}(x)\varphi_{i,j}(\mathcal{X}(t^{n+1}; t^n, x))dx.$$

Some notations

Let
$$i_{start} = i_{start}(i)$$
, $\alpha_{start} = \alpha_{start}(i) \in [0, 1]$ and $i_{start} = i_{end}(i)$,
 $\alpha_{end} = \alpha_{end}(i) \in [0, 1]$ such that

		1D nonlinear advection	Work in progress
		0000000000	
Numerical scheme			

Treating the right hand side

The integral is decomposed into three pieces:

$$\begin{split} f_{i,j}^{n+1} \omega_j \frac{\Delta x}{2} &= \sum_{i',j'} f_{i',j'}^n \int_{x_{istart}-1/2}^{x_{istart}+1/2} \varphi_{i',j'}(x) \varphi_{i,j}(\mathcal{X}(t^{n+1};t^n,x)) dx \\ &+ \sum_{i',j'} f_{i',j'}^n \sum_{i''=istar+1}^{i_{end}-1} \int_{x_{i''-1/2}}^{x_{i''+1/2}} \varphi_{i',j'}(x) \varphi_{i,j}(\mathcal{X}(t^{n+1};t^n,x)) dx \\ &+ \sum_{i',j'} f_{i',j'}^n \int_{x_{iend}-1/2}^{x_{iend}-1/2+\alpha_{end}\Delta x} \varphi_{i',j'}(x) \varphi_{i,j}(\mathcal{X}(t^{n+1};t^n,x)) dx. \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction 000000	1D linear advection 0000000000000	2D linear advection	1D nonlinear advection	2D nonlinear advection	
Numerical scheme					
Charact	teristics-ba	sed metho	od		

The scheme

By changing variables to reduce to integrating on [0, 1] and using Gauß quadrature (the same strategy as before) we are led to

$$\begin{split} f_{i,j}^{n+1} &= \frac{1}{\omega_j} \sum_{j'=0}^d f_{i_{start},j'}^n (1-\alpha_{start}) \sum_{r=0}^d \omega_r \tilde{\varphi}^{j'} (\alpha_{start} + \tilde{\alpha}_r (1-\alpha_{start})) \\ &\times \varphi_{i,j} (\mathcal{X}(t^{n+1};t^n, x_{i_{start}-1/2} + (\alpha_{start} + \tilde{\alpha}_r (1-\alpha_{start}))\Delta x)) \\ &+ \frac{1}{\omega_j} \sum_{i''=i_{start}-1}^{i_{end}-1} \sum_{j'=0}^d f_{i'',j'}^n \sum_{r=0}^d \omega_r \tilde{\varphi}^{j'} (\tilde{\alpha}_r) \varphi_{i,j} (\mathcal{X}(t^{n+1};t^n, x_{i''-1/2} + \tilde{\alpha}_r \Delta x)) \\ &+ \frac{1}{\omega_j} \sum_{j'=0}^d f_{i_{end},j'}^n \alpha_{end} \sum_{r=0}^d \omega_r \tilde{\varphi}^{j'} (\alpha_{end} \tilde{\alpha}_r) \varphi_{i,j} (\mathcal{X}(t^{n+1};t^n, x_{i_{end}-1/2} + \alpha_{end} \tilde{\alpha}_r \Delta x)). \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Introduction 000000	1D linear advection 000000000000	2D linear advection	1D nonlinear advection ○○○○○○○○○○	2D nonlinear advection	
Numerical scheme					
01		1 .1	1		

Case of compression

In case a compression should happen

then the formula reduces to just one integral:

$$f_{i,j}^{n+1} = \frac{1}{\omega_j} \sum_{j'=0}^d f_{i_{start,j'}}^n (\alpha_{end} - \alpha_{start}) \sum_{r=0}^d \omega_r \varphi^{j'} ((\alpha_{end} - \alpha_{start})\tilde{\alpha}_r + \alpha_{start}) \\ \times \varphi_{i,j} (\mathcal{X}(t^{n+1}; t^n, x_{i_{start}-1/2} + \Delta x((\alpha_{end} - \alpha_{start})\tilde{\alpha}_r + \alpha_{start}))).$$

Numerical scheme								
000000	000000000000	0000000000	00000000000					
			1D nonlinear advection		Work in progress			

Solving the characteristics

In order to write the scheme, we still need to solve the characteristics, both forward and backward. In order to do this, we shall use an explicit formula if it is available, otherwise Runge-Kutta methods of order 1 to 4.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outlin	۵			
Experiments				
000000	000000000000	0000000000	000000000000000000000000000000000000000	
			1D nonlinear advection	Work in progress

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Goal
- Strategy
- 1D linear advectio
 - Numerical scheme
 - Experiments
- 3 2D linear advection
 - Numerical scheme
 - Experiments
- 4

1D nonlinear advection

- Numerical scheme
- Experiments
- 2D nonlinear advectionNumerical scheme
- Work in progress

000000 Experiments	000000000000	000000000	00000000000	00			
Benchmark test							

We take as test case

$$\frac{\partial f}{\partial t} + \frac{\partial (\sin(x)f)}{\partial x} = 0,$$

which has explicit characteristics and solution:

$$\mathcal{X}(s;t,x) = 2 \arctan\left(\tan\left(\frac{x}{2}\right)e^{s-t}\right) + 2\pi \left\lfloor\frac{x+\pi}{2\pi}\right\rfloor$$
$$f(t,x) = \frac{1}{1+\left(\tan\left(\frac{x}{2}\right)e^{-t}\right)^2}\frac{1}{\cos^2\left(\frac{x}{2}\right)}e^{-t}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Introduction 000000	ID linear advection	2D linear advection	ID nonlinear advection	2D nonlinear advection	Work in progress
Rencht	nark test				

Order in space

Introduction 000000	1D linear advection 000000000000	2D linear advection 0000000000	1D nonlinear advection ○○○○○○○○○○○	2D nonlinear advection OO	Work in progress		
Experiments							
Benchmark test							

Order in time

Outline			
Numerical scheme			
		•0	
		2D nonlinear advection	Work in progress

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Goal
- Strategy
- 1D linear advectio
 - Numerical scheme
 - Experiments
- 3 2D linear advection
 - Numerical scheme
 - Experiments
- 4 1D nonlinear advection
 - Numerical scheme
 - Experiments
- D nonlinear advectionNumerical scheme

Work in progress

			2D nonlinear advection	Work in progress
			00	
Numerical scheme				
Splittin	g strategy			

As well as the 1D linear advection solver could be exploited to solve 2D linear advection through Strang splitting, the 2D nonlinear advection can be solved by splitting the (x_1, x_2) -space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Introduction					Work in progress
000000	00000000000	000000000	0000000000	00	

The main problem which is still work in progress is the solution of the potential for the guiding-center problem, namely solving

$$-\Delta_{x_1,x_2}\Phi=f.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The strategy which we are following consists in switching to the Fourier-space, solving the electric field there and anti-transform to obtain it in the (x_1, x_2) -space.