
Introduction 1D linear advection 2D linear advection 1D nonlinear advection 2D nonlinear advection Work in progress

VLADG

Nicolas Crouseilles, Michel Mehrenberger, Éric Sonnendrücker,
Francesco Vecil

Luminy, 19 July - 27 August 2010



Introduction 1D linear advection 2D linear advection 1D nonlinear advection 2D nonlinear advection Work in progress

Outline

1 Introduction
Goal
Strategy

2 1D linear advection
Numerical scheme
Experiments

3 2D linear advection
Numerical scheme
Experiments

4 1D nonlinear advection
Numerical scheme
Experiments

5 2D nonlinear advection
Numerical scheme

6 Work in progress



Introduction 1D linear advection 2D linear advection 1D nonlinear advection 2D nonlinear advection Work in progress

Goal

Outline

1 Introduction
Goal
Strategy

2 1D linear advection
Numerical scheme
Experiments

3 2D linear advection
Numerical scheme
Experiments

4 1D nonlinear advection
Numerical scheme
Experiments

5 2D nonlinear advection
Numerical scheme

6 Work in progress



Introduction 1D linear advection 2D linear advection 1D nonlinear advection 2D nonlinear advection Work in progress

Goal

The guiding-center model

We plan to simulate the guiding-center model through a Discontinuous Galerkin
discretization.

The transport equation

∂f
∂t

+ divx1,x2(Ef ) = 0

for (t, x1, x2) ∈ [0,+∞[×[0, 2π]× [0, 2π], with periodic boundary conditions.

The electric field

The electric field is given byE = −∇x1,x2Φ, Φ being the potential given by

−∆x1,x2Φ = f ,

with periodic boundary conditions.
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Strategy

Linear advection

The first steps towards the goal are the solution and testing of the linear advection
problems:

The 1D linear advection

∂f
∂t

+ a
∂f
∂x

= 0,

with periodic boundary conditions.

The 2D linear advection

∂f
∂t

+ a1
∂f
∂x1

+ a2
∂f
∂x2

= 0,

with periodic boundary conditions.
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Strategy

Landau damping

A good benchmark for the 2D linear advection is the simulation of the Landau
damping, which requires the coupling of the transport equation

∂f
∂t

+ v
∂f
∂x

+ E
∂f
∂v

= 0,

to the Poisson equation for the computation of the force field

−d2Φ

dx2
= 1−

∫

fdv,

where the border conditions are taken periodic for both the transport equation and the
Poisson equation.
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Strategy

Nonlinear advection

The next steps are the solution and testing of the nonlinear advection problems:

The 1D nonlinear advection

∂f
∂t

+
∂(af )
∂x

= 0,

with periodic boundary conditions.

The 2D nonlinear advection

∂f
∂t

+
∂(a1f )
∂x1

+
∂(a2f )
∂x2

= 0.

with periodic boundary conditions.
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Numerical scheme

Discretization

Partition of the computational domain

The computational domainΩ = [0, 1] is partitioned intoN cells of size∆x:

Ω =

N−1
⋃

i=0

Ii, Ii = [xi−1/2, xi+1/2].

Discontinuous Galerkin space

Let Vd the discontinuous finite elements space:

Vd =
{

ψ ∈ L2(Ω) : ψ ∈ Rd[X](Ii), i = 0, ...,N − 1
}

.
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Numerical scheme

Choice of the basis

Lagrange polynomials

We choose to use the Lagrange polynomials at the Gauß points as basis.
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Numerical scheme

Choice of the basis

The Gauß points on the interval[−1, 1]

The Gauß points{αr}d
r=0 and the Gauß weights{ωr}d

r=0 are quadrature points
determined by imposing

∫ 1

−1
f (x)dx =

d
∑

r=0

ωrf (αr)

for all polynomialsf ∈ R2d+1[X].

Distributing the Gauß points

We can now introduce the notationxi,j for thej-th Gauß point inside the intervalIi;
more precisely

xi,j = xi−1/2 +
∆x
2
αj.
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Numerical scheme

Choice of the basis

Orthogonality of the basis

As the Lagrange polynomials at the Gauß points are defined by

ϕi,j =

d
∏

l=0,l 6=j

x − xi,l

xi,j − xi,l
,

it is easy to check that

∫

Ii

ϕi,j1(x)ϕi,j2(x) =
∆x
2

d
∑

r=0

ωrϕi,j1(αr)ϕi,j2(αr) =
∆x
2
ωj1δj1,j2.

Notation for the future

We shall denote by{ϕ̃j}d
j=0 and{α̃j}d

j=0 the Lagrange polynomials and the Gauß
points on the interval[0, 1].
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Numerical scheme

Characteristics-based method

Starting point

Testf n+1 over the intervalIi:
∫ xi+1/2

xi−1/2

f n+1(x)ϕ(x)dx

use the solution given by the characteristics
∫ xi+1/2

xi−1/2

f n+1(x)ϕ(x)dx =

∫ xi+1/2

xi−1/2

f n(x − a∆t)ϕ(x)dx

change variablesx → x − a∆t

∫ xi+1/2

xi−1/2

f n+1(x)ϕ(x)dx =

∫ xi+1/2−a∆t

xi−1/2−a∆t
f n(x)ϕ(x + a∆t)dx.
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Numerical scheme

Characteristics-based method

Representation off (x)

The representation off in the DG basis isf (x) ≈
N−1
∑

i′=0

d
∑

j′=0

fi′,j′ϕi′,j′(x).

Developing the scheme

Inject the representation off (x) into the scheme
∫ xi+1/2

xi−1/2

f n+1(x)ϕ(x)dx =

∫ xi+1/2−a∆t

xi−1/2−a∆t

f n(x)ϕ(x + a∆t)dx and test onϕi,j(x):

f n+1
i,j

∆x
2
ωj =

∑

i′,j′

f n
i′,j′

∫ xi+1/2−a∆t

xi−1/2−a∆t
ϕi′,j′(x)ϕi,j(x + a∆t).
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Numerical scheme

Characteristics-based method

Treating the right hand side

x i−1/2 x i+1/2

x x
i −1/2 i +1/2∗ ∗

α α

∫ xi+1/2−a∆t

xi−1/2−a∆t

ϕi′,j′(x)ϕi,j(x + a∆t)

=

∫ xi∗+1/2+α∆x

xi∗−1/2+α∆x

ϕi′,j′(x)ϕi,j(x + a∆t)

=

∫ xi∗+1/2

xi∗−1/2+α∆x
ϕi′,j′(x)ϕi,j(x + a∆t) +

∫ xi∗+1/2+α∆x

xi∗+1/2

ϕi′,j′(x)ϕi,j(x + a∆t)
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Numerical scheme

Characteristics-based method

Changing variables

We change variables (and divide by∆x
2 ) in order to reduce to integrating on[0, 1]:

f n+1
i,j =

1
ωj

∑

j′

f n
i∗,j′(1− α)

∫ 1

u=0
ϕ̃

j′(α+ u(1− α))ϕ̃j(u(1− α))du

+
1
ωj

∑

j′

f n
i∗+1,j′α

∫ 1

u=0
ϕ̃

j′(αu)ϕ̃j(α(u − 1) + 1)du

Gauß quadrature

Finally we integrate using the Gauß quadrature:

f n+1
i,j =

1
ωj

∑

j′

f n
i∗,j′(1− α)

d
∑

r=0

ωrϕ̃
j′(α+ α̃r(1− α))ϕ̃j(α̃r(1− α))

+
1
ωj

∑

j′

f n
i∗+1,j′α

d
∑

r=0

ωrϕ̃
j′(αα̃r)ϕ̃

j(α(α̃r − 1) + 1).
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Experiments
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Experiments
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Numerical scheme
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Numerical scheme

Discretization

Partition of the computational domain

The computational domainΩ = [0, 1]× [0, 1] is partitioned intoNx1 × Nx2 cells of
size∆x1 ×∆x2:

Ω =
⋃

i,k

Ii × Jk, Ii = [(x1)i−1/2, (x1)i+1/2], Jk = [(x2)k−1/2, (x2)k+1/2].

Discontinuous Galerkin space

Let Vd be the discontinuous finite elements space as tensor product of the spaces for
each variable:

Vd =
{

v ∈ L2(Ω) : v(x1, x2) = ϕ(x1)ψ(x2), ϕ ∈ Rd[X](Ii), ψ ∈ Rd[X](Jk)
}

.
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Numerical scheme

Discretization

Time discretization

Instead of solving the true 2D problem, we split the(x1, x2)-domain into advection
alongx1 and advection alongx2 using Strang splitting:

x

x

1

2

0.5∆t

∆ t

0.5∆t
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Experiments

Landau damping

A 2D linear advection
∂f
∂t

+ v
∂f
∂x

+ E
∂f
∂v

= 0

is coupled to a Poisson equation for the computation of the electric field:

∂E
∂x

= ρ− 1.
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Experiments

Landau damping

Integration of the Poisson equation

Use Green kernel for the Poisson equation to obtain

E(x) =
1
L

∫ L

0
yρ(y)dy −

∫ L

x
ρ(y)dy +

L
2
− x.

Inject the representations ofE(x) ≈ ∑

i,j Ei,jϕi,j(x) andρ(x) ≈ ∑

i,j ρi,jϕi,j(x), use
orthogonality of the basis, the same changes of variables as before andquadrature
formulae to get

Ei,j ≈ ∆x1

2L

∑

i′,j′

xi′,j′ωj′ρi′,j′ −
∆x1

2
(1− α̃j)

∑

j′

ρi,j′

d
∑

r=0

ωrϕ̃
j′(α̃j + α̃r(1− α̃j))

−∆x1

2

N−1
∑

i′=i+1

d
∑

j′=0

ωj′ρi′,j′ +
L
2
− xi,j.
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Experiments

Landau damping

Period and decay

Set the problemf0(x, v) =
1√
2π

e−
v2
2 (1+ α cos(kx)).

k α = 0.001 (linear) α = 0.5 (nonlinear)

0.2 ±1.07154+ 6.81267× 10−5i ±1.09402− 0.00107607i
(±1.0640− 5.51× 10−5i)

0.3 ±1.16209− 0.0124224i ±1.30507− 0.128511i
(±1.1598− 0.0126i)

0.4 ±1.28645− 0.0659432i ±1.3581− 0.205133i
(±1.2850− 0.0661i)

0.5 ±1.41696− 0.152849i ±1.47343− 0.279512i
(±1.4156− 0.1533i)

Table:1D Landau damping. The decay rate and period of the oscillations of the
electric field in the Landau damping problem. Here,d = 4, Nx × Nv = 30× 30.
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Experiments

Landau damping

Nonlinear Landau damping

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  20  40  60  80  100

(L
2 (E

))
2

time

discrete electric energy

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  20  40  60  80  100

va
ria

tio
n 

(r
at

io
)

time

conservation of mass and norms

mass
L1

L2



Introduction 1D linear advection 2D linear advection 1D nonlinear advection 2D nonlinear advection Work in progress

Experiments

Landau damping

Filamentation of the phase-space
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Experiments

Bump-On-Tail

By usingf0(x, v) =
9

10
√

2π
e−

v2
2 +

2

10
√

2π
e−2|v−4.5|2(1+ 0.03 cos(0.3x)) as initial

condition, we expect to observe some vortices.
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Numerical scheme

Characteristics-based method

The strategy follows that of the 1D linear advection.

Starting point

Testf n+1 over the intervalIi:
∫ xi+1/2

xi−1/2

f n+1(x)ϕ(x)dx

use the solution given by the characteristics
∫ xi+1/2

xi−1/2

f n+1(x)ϕ(x)dx =

∫ xi+1/2

xi−1/2

f n(X (tn; tn+1
, x))J(tn; tn+1

, x)ϕ(x)dx

change variablesx → X (tn; tn+1, x)

∫ xi+1/2

xi−1/2

f (tn+1
, x)ϕ(x)dx =

∫ X (tn;tn+1,xi+1/2)

X (tn;tn+1,xi−1/2)

f (tn
, x)ϕ(X (tn+1; tn

, x))dx.
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Numerical scheme

Characteristics-based method

Developing the scheme

Inject the representation off (x) into the scheme and test onϕi,j(x):

∫ xi+1/2

xi−1/2

f (tn+1
, x)ϕi,j(x)dx =

∑

i′,j′

f n
i′,j′

∫ X (tn;tn+1,xi+1/2)

X (tn;tn+1,xi−1/2)

ϕi′,j′(x)ϕi,j(X (tn+1; tn
, x))dx.

Some notations

Let istart = istart(i), αstart = αstart(i) ∈ [0, 1] andistart = iend(i),
αend = αend(i) ∈ [0, 1] such that

x i−1/2 x i+1/2

αstart αend

x
i       −1/2start x

i       −1/2end
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Numerical scheme

Characteristics-based method

Treating the right hand side

The integral is decomposed into three pieces:

f n+1
i,j ωj

∆x
2

=
∑

i′,j′

f n
i′,j′

∫ xistart+1/2

xistart−1/2+αstart∆x
ϕi′,j′(x)ϕi,j(X (tn+1; tn

, x))dx

+
∑

i′,j′

f n
i′,j′

iend−1
∑

i′′=istart+1

∫ xi′′+1/2

xi′′−1/2

ϕi′,j′(x)ϕi,j(X (tn+1; tn
, x))dx

+
∑

i′,j′

f n
i′,j′

∫ xiend−1/2+αend∆x

xiend−1/2

ϕi′,j′(x)ϕi,j(X (tn+1; tn
, x))dx.
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Numerical scheme

Characteristics-based method

The scheme

By changing variables to reduce to integrating on[0, 1] and using Gauß quadrature
(the same strategy as before) we are led to

f n+1
i,j =

1
ωj

d
∑

j′=0

f n
istart,j′(1− αstart)

d
∑

r=0

ωrϕ̃
j′(αstart + α̃r(1− αstart))

×ϕi,j(X (tn+1; tn
, xistart−1/2 + (αstart + α̃r(1− αstart))∆x))

+
1
ωj

iend−1
∑

i′′=istart+1

d
∑

j′=0

f n
i′′,j′

d
∑

r=0

ωrϕ̃
j′(α̃r)ϕi,j(X (tn+1; tn

, xi′′−1/2 + α̃r∆x))

+
1
ωj

d
∑

j′=0

f n
iend,j′αend

d
∑

r=0

ωrϕ̃
j′(αendα̃r)ϕi,j(X (tn+1; tn

, xiend−1/2 + αendα̃r∆x)).



Introduction 1D linear advection 2D linear advection 1D nonlinear advection 2D nonlinear advection Work in progress

Numerical scheme

Characteristics-based method

Case of compression

In case a compression should happen

x i−1/2 x i+1/2

x
i       −1/2start

x
i       −1/2end

=

α
start

αend

then the formula reduces to just one integral:

f n+1
i,j =

1
ωj

d
∑

j′=0

f n
istart,j′(αend − αstart)

d
∑

r=0

ωrϕ
j′((αend − αstart)α̃r + αstart)

×ϕi,j(X (tn+1; tn
, xistart−1/2 +∆x((αend − αstart)α̃r + αstart))).
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Numerical scheme

Characteristics-based method

Solving the characteristics

In order to write the scheme, we still need to solve the characteristics, both forward
and backward. In order to do this, we shall use an explicit formula if it is available,
otherwise Runge-Kutta methods of order 1 to 4.
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Experiments

Benchmark test

We take as test case
∂f
∂t

+
∂(sin(x)f )

∂x
= 0,

which has explicit characteristics and solution:

X (s; t, x) = 2 arctan
(

tan
( x

2

)

es−t
)

+ 2π
⌊ x + π

2π

⌋

f (t, x) =
1

1+
(

tan
(

x
2

)

e−t
)2

1

cos2
(

x
2

) e−t
.
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Experiments

Benchmark test
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Experiments

Benchmark test

Order in time
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Numerical scheme

Outline
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Numerical scheme

Splitting strategy

As well as the 1D linear advection solver could be exploited to solve 2D linear
advection through Strang splitting, the 2D nonlinear advection can be solvedby
splitting the(x1, x2)-space.
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The main problem which is still work in progress is the solution of the potential for
the guiding-center problem, namely solving

−∆x1,x2Φ = f .

The strategy which we are following consists in switching to the Fourier-space,
solving the electric field there and anti-transform to obtain it in the(x1, x2)-space.
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