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Kinetic equations

General idea

How do kinetic equations look like?

Kinetic equations are hyperbolic partial differential equations: the unknown function
f is a probabilistic description of some magnitude which depends on the variables of
the phase space,(x, v), (x, p) or (x, k): the choice of the problem may make more
suitable the use of the velocityv instead of the impulsionp or the wave vectork.

Why do kinetic equations arise in physics?

Kinetic equations arise when the simulations of the individual-based models become
unaffordable due to the huge amount of agents, like the electrons in an electronic
device, the ions in a plasma or the fish in the sea.

Example.

An example is given by the following PDE
{

d
dt x = v
d
dt v = F

↔ ∂f
∂t

+ v
∂f
∂x

+ F
∂f
∂v

= 0

which describes how a set of “particles” evolves under the free motion and the
presence of a force fieldF(t, x).
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Kinetic equations in carrier transport

Aim

Introduction

Electronic devices are physical solid state devices which exploit the electronic
properties of semiconductor materials (silicon) by manipulating their conductivity
via thedoping. The dynamics in semiconductor devices are due to the displacement
of electric charges, which is described by kinetic equations.

The DG MOSFET
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Kinetic equations in carrier transport

Aim

About the scaling

In 1971, the Intel 4004 processor had 1000 transistors, whose channel length was
10000 nm. In 1974, the Intel 8008 processor had 6-7 thousand. In 2003 the Intel
Pentium IV had 50 million. Nowadays processors may have 400 million transistors,
whose channel is 28 nm long.

Why is it important?

Smaller MOSFETs allow for the construction of smaller devices with better
performances; moreover, they allow silicon and energy saving, due tothe lower
source-drain potential drop needed to switch on or off the transistor.
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Kinetic equations in carrier transport

Equations

Test case: the 1D Vlasov-Poisson system

Carriers move under the free motion and are driven by a self-consistent (i.e. created
by the particles themselves) electric field:

∂f
∂t

+ v
∂f
∂x

− ∂Φ

∂x
∂f
∂v

= 0

∂2Φ

∂x2
= 1−

∫

R

fdv.
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Kinetic equations in carrier transport

Equations

The Boltzmann equation

Scatterings are taken into account, as well as the band-structure of silicon:

∂f
∂t

+
1
~
∇kε · ∇xf −

q
~

E · ∇kf = Q[f ]

∆Φ =
q
ǫ0

[ρ[f ]− ND] , E = −∇xΦ

f0(x, k) = ND(x)M(k)

ε(k) =
~

2|k|2
2m∗

Q[f ] =
∫

R3

[

S(k′, k)f (t, x, k′)− S(k, k′)f (t, x, k)
]

dk′.
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Kinetic equations in carrier transport

Equations

The sub-bands model

Quantum effetcs are taken into account due to the confinement: The Boltzmann
Transport Equation (one for each band) reads

∂fν,p
∂t

+
1
~
∇kǫ

kin
ν,p · ∇kfν,p −

1
~
∇xǫ

pot
ν,p · ∇kfν,p = Qν,p [f ]

−~
2

2
d
dz

[

1
mν,z

dχν,p

dz

]

− q (V + Vc)χν,p = ǫ
pot
ν,pχν,p

{χν,p}ν,p ⊆ H1
o(0, lz) orthonormal basis

−∇x,z · [εR∇x,zV] = − q
ε0

(N[V]− ND)

N[V](x, z) =
∑

ν,p

∫

R2
f (x, k)dk |χν,p(x, z)|2
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Kinetic equations in plasma physics

Introduction

Plasmas are ionized gases: positive and negative charges dissociate.Plasma physics
is of great interest in fusion energy research.
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Kinetic equations in plasma physics

Laser-plasma interaction

The force field is given by the Lorentz force, i.e. by solving the Maxwellequations:

∂f
∂t

+ v(p) · ∇xf − q (E + v ∧ B) · ∇pf = 0

curl(E) = −∂B
∂t

curl(B) = µ0

∫

R

v(p)fdp + µ0ε0
∂E
∂t

div(E) =
ρ

ε0

div(B) = 0

B = ∇∧ A

E = −∂A
∂t

−∇Φ,

wherev is the velocity given in terms of the impulsionp:

v(p) =











p

me

√

1+ |p|2

m2
e c2

relativistic

p
me

non-relativistic.
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Kinetic equations in collective behaviour models

Introduction

In some contexts a large number of “agents” interacting through microscopic rules
gives rise to macroscopically observable patterns without the presenceof a leader.
Examples: bird flocks, fish schools, stock exchanges, the evolution oflanguages in
primitive societies.
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Kinetic equations in collective behaviour models

Equations

Cucker-Smale model

The Cucker-Smale model is an alignment model: particles try to copy the velocity
from the other ones. It reads

∂f
∂t

+ v · ∇xf − divv

[

f
(

v ∗v Uφ
0 ∗x f

)]

= 0

Uφ
0 (x; v) =

1
(1+ |x|2

Rd )γ
χ [cos(x, v) ≥ cos(φ)] .

Attractive/repulsive models

Particles do not copy the velocity from the other ones, rather they try to stayneither
too close not too far: this conditions aims to copy the animal behaviour. Themodel
reads

∂f
∂t

+ v · ∇xf + divv

[

(α− β‖v‖2)vf + (∇U ∗ ρ)f
]

= 0.
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Introduction

We shall propose three methods for the solution of transport problems.

Finite Differences methods

They are based on a Runge-Kutta discretization in time. The approximation of the
PDE is realized via non-oscillatory techniques.

Semi-Lagrangian methods

They are based on following the characteristics backward. Need coupling to a
reconstruction technique at the foot of characteristics. With respect to Finite
Differences methods, they allow for larger time steps, but loose precision in the
asymptotic behaviour.

Semi-Lagrangian Discontinuous Galerkin methods

They are based on a discontinuous representation of the distribution function, which
can be well resolved by local refinement of the mesh, without constraining the time
step.
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PWENO interpolations

Motivation

We need aPointwise interpolation method which does not add spurious oscillations
when high gradients appear, e.g. when a jump has to be transported.
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Figure:Left: PWENO interpolation. Right: Lagrange interpolation.
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PWENO interpolations

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of
Lagrange polynomial reconstructions.
We describe the case of PWENO-6,4: we take a stencil of six points and divide it into
three substencils of four points:

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��

S0S1
S2

S

Lagrange polynomial interpolation
is performed on the three 
substencils made of four 
points each.

The smoothness of the Lagrange
polynomials is measured along 
this segment, between the
two central points.

We want to reconstruct
the value at this point: we
take the reconstruction
of the three Lagrange 
polynomials and compute a
sensible average of them, based 
on how smooth is each.

x x x xxxx i i+1 i+2 i+3i−1i−2i−3

PWENO−6,4
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PWENO interpolations

The average

If we notepr(x) the Lagrange polynomials, PWENO reconstruction reads

pPWENO(x) = ω0(x)p0(x) + ω1(x)p1(x) + ω2(x)p2(x).

Convex combination.

The convex combination{ωr(x)}r must penalize the substencilsSr in which the
pr(x) have high derivatives.

Smoothness indicators

In order to decide which substencilsSr are “regular” and which ones are not, we have
to introduce the smoothness indicators: we use a weighted sum of theL2-norms of the
Lagrange polynomialspr(x) to measure their regularity close to the reconstruction
point x. The following smoothness indicators have been proposed by Jiang andShu:

βr = ∆x

∥

∥

∥

∥

dpr

dx

∥

∥

∥

∥

L2
(xi,xi+1)

+∆x3

∥

∥

∥

∥

d2pr

dx2

∥

∥

∥

∥

L2
(xi,xi+1)

+∆x5

∥

∥

∥

∥

d3pr

dx3

∥

∥

∥

∥

L2
(xi,xi+1)

.
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PWENO interpolations

High order reconstruction

Admit for now that the convex combination is given by the normalization
ωr(x) =

ω̃r(x)
∑2

s=0 ω̃s(x)
of the protoweights̃ωr(x) defined this way:

ω̃r(x) =
dr(x)

(ǫ+ βr)2
.

Regular reconstruction

Suppose that all theβr are equal; then we have

ωr(x) = dr(x).

The optimal order is achieved by Lagrange reconstructionpLagrange(x) in the whole
stencilS, so if we definedr(x) to be the polynomials such that

pLagrange(x) = d0(x)p0(x) + d1(x)p1(x) + d2(x)p2(x),

then we have achieved the optimal order becausepPWENO(x) = pLagrange(x).
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PWENO interpolations

High order reconstruction

Admit for now that the convex combination is given by the normalization
ωr(x) =

ω̃r(x)
∑2

s=0 ω̃s(x)
of the protoweights̃ωr(x) defined this way:

ω̃r(x) =
dr(x)

(ǫ+ βr)2
.

High gradients

Otherwise, suppose for instance thatβ0 is high order than the other ones: in this case
S0 is penalized and most of the reconstruction is carried by the other more “regular”
substencils.
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Splitting techniques

Motivation

In this work, splitting techniques are used at different levels, namely:

to split the Boltzmann Transport Equation into the solution of thetransport part
and thecollisional partfor separate, i.e. theTime Splitting:

∂f
∂t

+ v · ∇xf + F · ∇vf = Q[f ]

splits into

∂f
∂t

+ v · ∇xf + F · ∇vf = 0,
∂f
∂t

= Q[f ];

to split the(x, v)-phase space (Dimensional Splitting):

∂f
∂t

+ v · ∇xf + F · ∇vf = 0

splits into

∂f
∂t

+ v · ∇xf = 0,
∂f
∂t

+ F · ∇vf = 0.
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and thecollisional partfor separate, i.e. theTime Splitting:

∂f
∂t

+ v · ∇xf + F · ∇vf = Q[f ]

splits into

∂f
∂t

+ v · ∇xf + F · ∇vf = 0,
∂f
∂t

= Q[f ];

to split the(x, v)-phase space (Dimensional Splitting):

∂f
∂t

+ v · ∇xf + F · ∇vf = 0

splits into

∂f
∂t

+ v · ∇xf = 0,
∂f
∂t

+ F · ∇vf = 0.
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Splitting techniques

General framework

The (formal) exact solution of the linear PDE

∂f
∂t

= Lf , f (t = 0) = f 0

is

f (t) = eLtf 0
.

If we can write the linear operatorL as the sum of two linear operators,

L = L1 + L2,

then we may approximate the exact solution by solving for separate

∂f
∂t

= L1f and
∂f
∂t

= L2f .

Several schemes are proposed for reconstructing the solution of the original PDE
from the solution of either blocks; a first order (in time) scheme is given by

f̃ (t +∆t) = eL2∆teL1∆tf (t),

while a second order (in time) scheme is given by

f̃ (t +∆t) = eL1
∆t
2 eL2∆teL1

∆t
2 f (t).
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Semi-Lagrangian methods

Linear advection

We propose two schemes for solving the 1D advection

∂f
∂t

+
∂(af )
∂x

= 0 :

direct: directly integrate backward in the characteristic
f n+1(x) = f n(X (tn; tn+1, x))J(tn; tn+1, x):

tn+1

t n

x i−1
x i+1

x i+1x i−1

x i

x i

n n+1X(t    ;t      ,x   )i

Flux Balance Method: total mass conservation is enforced:

tn+1

t n

x i−1
x i+1x i

i−1/2x i+1/2x

x x

the characteristics backward.

FLUX BALANCE METHOD means evualuating

The averages along the red segments
are the same, because we have followed
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Semi-Lagrangian DG methods
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Semi-Lagrangian DG methods

Discretization

Partition of the computational domain

The computational domainΩ = [0, 1] is partitioned intoN cells of size∆x:

Ω =

N−1
⋃

i=0

Ii, Ii = [xi−1/2, xi+1/2].

Discontinuous Galerkin space

Let Vd the discontinuous finite elements space:

Vd =
{

ψ ∈ L2(Ω) : ψ ∈ Rd[X](Ii), i = 0, ...,N − 1
}

.
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Semi-Lagrangian DG methods

Choice of the basis

Lagrange polynomials

We choose to use the Lagrange polynomials at the Gauß points as basis.

-1

-0.5

 0

 0.5

 1

 1.5

x-1/2x0,0 x0,1 x0,2x1/2x1,0 x1,1 x1,2x3/2x2,0 x2,1 x2,2x5/2

φ

x1
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Semi-Lagrangian DG methods

Choice of the basis

The Gauß points on the interval[−1, 1]

The Gauß points{αr}d
r=0 and the Gauß weights{ωr}d

r=0 are quadrature points
determined by imposing

∫ 1

−1
f (x)dx =

d
∑

r=0

ωrf (αr)

for all polynomialsf ∈ R2d+1[X].

Distributing the Gauß points

We can now introduce the notationxi,j for thej-th Gauß point inside the intervalIi;
more precisely

xi,j = xi−1/2 +
∆x
2
αj.
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Semi-Lagrangian DG methods

Choice of the basis

Orthogonality of the basis

As the Lagrange polynomials at the Gauß points are defined by

ϕi,j =

d
∏

l=0,l 6=j

x − xi,l

xi,j − xi,l
,

it is easy to check that

∫

Ii

ϕi,j1(x)ϕi,j2(x) =
∆x
2

d
∑

r=0

ωrϕi,j1(αr)ϕi,j2(αr) =
∆x
2
ωj1δj1,j2.

Notation for the future

We shall denote by{ϕ̃j}d
j=0 and{α̃j}d

j=0 the Lagrange polynomials and the Gauß
points on the interval[0, 1].
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Semi-Lagrangian DG methods

Characteristics-based method

The strategy follows that of the 1D linear advection.

Starting point

Testf n+1 over the intervalIi:
∫ xi+1/2

xi−1/2

f n+1(x)ϕ(x)dx

use the solution given by the characteristics
∫ xi+1/2

xi−1/2

f n+1(x)ϕ(x)dx =

∫ xi+1/2

xi−1/2

f n(X (tn; tn+1
, x))J(tn; tn+1

, x)ϕ(x)dx

change variablesx → X (tn; tn+1, x)

∫ xi+1/2

xi−1/2

f (tn+1
, x)ϕ(x)dx =

∫ X (tn;tn+1,xi+1/2)

X (tn;tn+1,xi−1/2)

f (tn
, x)ϕ(X (tn+1; tn

, x))dx.
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Semi-Lagrangian DG methods

Characteristics-based method

Developing the scheme

Inject the representation off (x) into the scheme and test onϕi,j(x):

∫ xi+1/2

xi−1/2

f (tn+1
, x)ϕi,j(x)dx =

∑

i′,j′

f n
i′,j′

∫ X (tn;tn+1,xi+1/2)

X (tn;tn+1,xi−1/2)

ϕi′,j′(x)ϕi,j(X (tn+1; tn
, x))dx.

Some notations

Let istart = istart(i), αstart = αstart(i) ∈ [0, 1] andistart = iend(i),
αend = αend(i) ∈ [0, 1] such that

x i−1/2 x i+1/2

αstart αend

x
i       −1/2start x

i       −1/2end
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Semi-Lagrangian DG methods

Characteristics-based method

Treating the right hand side

The integral is decomposed into three pieces:

f n+1
i,j ωj

∆x
2

=
∑

i′,j′

f n
i′,j′

∫ xistart+1/2

xistart−1/2+αstart∆x
ϕi′,j′(x)ϕi,j(X (tn+1; tn

, x))dx

+
∑

i′,j′

f n
i′,j′

iend−1
∑

i′′=istart+1

∫ xi′′+1/2

xi′′−1/2

ϕi′,j′(x)ϕi,j(X (tn+1; tn
, x))dx

+
∑

i′,j′

f n
i′,j′

∫ xiend−1/2+αend∆x

xiend−1/2

ϕi′,j′(x)ϕi,j(X (tn+1; tn
, x))dx.
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Semi-Lagrangian DG methods

Characteristics-based method

The scheme

By changing variables to reduce to integrating on[0, 1] and using Gauß quadrature
we are led to

f n+1
i,j =

1
ωj

d
∑

j′=0

f n
istart,j′(1− αstart)

d
∑

r=0

ωrϕ̃
j′(αstart + α̃r(1− αstart))

×ϕi,j(X (tn+1; tn
, xistart−1/2 + (αstart + α̃r(1− αstart))∆x))

+
1
ωj

iend−1
∑

i′′=istart+1

d
∑

j′=0

f n
i′′,j′

d
∑

r=0

ωrϕ̃
j′(α̃r)ϕi,j(X (tn+1; tn

, xi′′−1/2 + α̃r∆x))

+
1
ωj

d
∑

j′=0

f n
iend,j′αend

d
∑

r=0

ωrϕ̃
j′(αendα̃r)ϕi,j(X (tn+1; tn

, xiend−1/2 + αendα̃r∆x)).
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Semi-Lagrangian DG methods

Characteristics-based method

Case of compression

In case a compression should happen

x i−1/2 x i+1/2

x
i       −1/2start

x
i       −1/2end

=

α
start

αend

then the formula reduces to just one integral:

f n+1
i,j =

1
ωj

d
∑

j′=0

f n
istart,j′(αend − αstart)

d
∑

r=0

ωrϕ
j′((αend − αstart)α̃r + αstart)

×ϕi,j(X (tn+1; tn
, xistart−1/2 +∆x((αend − αstart)α̃r + αstart))).
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Semi-Lagrangian DG methods

Characteristics-based method

Solving the characteristics

In order to write the scheme, we still need to solve the characteristics, both forward
and backward. In order to do this, we shall use an explicit formula if it is available,
otherwise Runge-Kutta methods of order 1 to 4.
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SL methods

Order-in-space of the methods







pts SL − Lagr−6 SL − WENO−6,4
40 4.543e − 05 − − − 1.594e − 04 − − −
80 6.660e − 07 6.091 2.330e − 06 6.095
160 1.005e − 08 6.050 3.336e − 08 6.126
320 1.542e − 10 6.026 3.248e − 10 6.682
640 2.391e − 12 6.011 2.674e − 12 6.924













pts FBM − Lagr−6 FBM − WENO−6,4 FBM − PFC−3
40 4.543e − 05 − − − 1.179e − 04 − − − 7.724e − 01 − − −
80 6.660e − 07 6.091 1.281e − 06 6.523 7.494e − 03 6.687
160 1.005e − 08 6.050 1.124e − 08 6.832 1.866e − 03 2.005
320 1.543e − 10 6.025 1.543e − 10 6.187 4.650e − 04 2.005
640 3.687e − 12 5.386 3.006e − 12 5.682 3.247e − 04 0.518






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SL methods

Total variation control

1.8
2

2.2
2.4
2.6
2.8

3
3.2

0 1 2 3 4 5 6 7 8 9 10 11

SL-WENO-6,4
SL-Lagrange-6

1.8
2

2.2
2.4
2.6
2.8

3
3.2

0 1 2 3 4 5 6 7 8 9 10 11

FBM-WENO-6,4
FBM-Lagrange-6

FBM-PFC-3

Figure:The evolution of Discrete Total Variation against time. In this test,N = 100,
x ∈ [−π, π], ∆t = 0.1, tmax = 10, f0(x) = f step(x).
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SL methods

Two-stream instability

SL-WENO-6,4 behaves properly, while SL-WENO-5,3 does not.
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DG scheme

1D linear advection
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DG scheme

1D linear advection
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DG scheme

Landau damping

Period and decay

Set the problemf0(x, v) =
1√
2π

e−
v2
2 (1+ α cos(kx)).

k α = 0.001 (linear) α = 0.5 (nonlinear)

0.2 ±1.07154+ 6.81267× 10−5i ±1.09402− 0.00107607i
(±1.0640− 5.51× 10−5i)

0.3 ±1.16209− 0.0124224i ±1.30507− 0.128511i
(±1.1598− 0.0126i)

0.4 ±1.28645− 0.0659432i ±1.3581− 0.205133i
(±1.2850− 0.0661i)

0.5 ±1.41696− 0.152849i ±1.47343− 0.279512i
(±1.4156− 0.1533i)

Table:1D Landau damping. The decay rate and period of the oscillations of the
electric field in the Landau damping problem. Here,d = 4, Nx × Nv = 30× 30.
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DG scheme

Landau damping

Nonlinear Landau damping
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DG scheme

Landau damping

Filamentation of the phase-space
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DG scheme

Bump-On-Tail

By usingf0(x, v) =
9

10
√

2π
e−

v2
2 +

2

10
√

2π
e−2|v−4.5|2(1+ 0.03 cos(0.3x)) as initial

condition, we expect to observe some vortices.
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DG scheme

1D nonlinear advection

We take as test case
∂f
∂t

+
∂(sin(x)f )

∂x
= 0,

which has explicit characteristics and solution:

X (s; t, x) = 2 arctan
(

tan
( x

2

)

es−t
)

+ 2π
⌊ x + π

2π

⌋

f (t, x) =
1

1+
(

tan
(

x
2

)

e−t
)2

1

cos2
(

x
2

) e−t
.
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DG scheme

1D nonlinear advection

Order in space
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DG scheme

1D nonlinear advection

Order in time
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Introduction

The model

We afford the simulation of a nanoscaled MOSFET.
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2SiO   layers drainsource

gate

gate

channel

x−dim

z−dim

Dimensional coupling

x-dimension is unconfined unlikez-dimension, therefore we adopt a different
description:

alongx-dimensionthe electrons behave likeparticles, their movement being
described by the Boltzmann Transport Equation;

alongz-dimensionthe electrons, confined in a potential well, behave like
waves; the equilibrium being reached much faster than transport (quasi-static
phenomenon), their state is given by the stationary-state Schrödinger equation.
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Introduction

The model

Subband decomposition

Due to the confinement, differentsub-bands (another name for theeigenvalues of the
Schrödinger equation) identify independent populations, which have to be
transported for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of
the electrostatic field in the expression of the total density.
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Introduction

Bandstructure

The three valleys

The Si bandstructure presents six minima in the first Brillouin zone:

The constant energy surfaces in the
wavevector space

m    = 0.19 m0t

m    = 0.91 m0l

x

y

z

valley of type 1

valley of type 1

valley of type 3

valley of type 3

valley of type 2

valley of type 2 x

y

z (outwards)

Projection on the (x,y)−plane

The valleys of type 1 have
effective masses:
m     along direction x

m     along direction z

The valleys of type 3 have 
effective masses:
m     along direction x
m     along direction y
m     along direction z

The valleys of type 2 have
effective masses:
m     along direction x
m     along direction y
m     along direction z

l

t

t

l

t

m     along direction yt

t

t

l

The axes of the ellipsoids are disposed along thex, y andz axes of the reciprocal
lattice. The three minima have the same value, therefore there is no gap.
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Introduction

Bandstructure

Coupling between subbands and valleys

The sub-bands as well as the valleys are coupled by the Poisson equationin the
expression of the total density and, if the case, by the scattering operator.

Non-parabolicity

The bandstructure around the three minima can be expanded following theKane
non-parabolic approximation (ν indexes the valley):

ǫ
kin
ν =

~
2

1+

√

1+ 2α̃ν~
2
(

k2
x

mx,ν
+

k2
y

my,ν

)

(

k2
x

mx,ν
+

k2
y

my,ν

)

,

wherem{x,y,z},ν are the axes of the ellispoids (calledeffective masses) of theνth

valley alongx, y andz directions, and thẽαν are known as Kane dispersion factors.
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Introduction

The model

BTE

The Boltzmann Transport Equation (one for each band and for each valley) reads

∂fν,p
∂t

+
1
~
∇kǫ

kin
ν · ∇xfν,p −

1
~
∇xǫ

pot
ν,p · ∇kfν,p = Qν,p[f ], fν,p(t = 0) = ρ

eq
ν,pMν .

Schrödinger-Poisson block

−~
2

2
d
dz

[

1
mz,ν

dχν,p[V]

dz

]

− q (V + Vc)χν,p[V] = ǫ
pot
ν,p[V]χν,p[V]

〈χν,p[V], χν,p′ [V]〉 = δp,p′

−div [εR∇V] = − q
ε0

(N[V]− ND)

N[V] =
∑

ν,p

ρν,p|χν,p[V]|2

These equations cannot be decoupled because we need theeigenfunctionsto compute
the potential (in the expression of thetotal density), and we need the potential to
compute the eigenfunctions.
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Introduction

The model

The collision operator

The collision operator takes into account the phonon scattering mechanism. It reads

Qν,p[f ] =
∑

s

Qs
ν,p[f ]

Qs
ν,p[f ] =

∑

ν′,p′

∫

R2

[

Ss
(ν′,p′,k′)→(ν,p,k)fν′,p′(k

′)− Ss
(ν,p,k)→(ν′,p′,k′)fν,p(k)

]

dk′ :

everySs represents a different interaction.

Structure of theSs

The missing dimension of the wave-vectork ∈ R
2, instead ofk ∈ R

3, is replaced by
an overlap integralW(ν,p),(ν′,p′):

Ss
(ν,p,k)→(ν′,p′,k′) = Cν→ν′

1
W(ν,p),(ν′,p′)

δ
(

ǫ
tot
ν′,p′(k

′)− ǫ
tot
ν,p(k)± some energy

)

1
W(ν,p),(ν′,p′)

=

∫ lz

0
|χν,p|2|χν′,p′ |2dz, [W] = m.
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Introduction

Boundary conditions

= Dirichlet

k
1

xx=0 x=L

=
to the equilibrium density
force the density to stay close

= Homogeneous Neumann

= homogeneous Neumann

x

z

kmax

−kmax
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Numerical methods

The Newton-Raphson scheme

The functional

Solving the Schrödinger-Poisson block

−~
2

2
d
dz

[

1
mz,ν

dχν,p[V]

dz

]

− q (V + Vc)χν,p[V] = ǫ
pot
ν,p[V]χν,p[V]

−div [εR∇V] = − q
ε0

(N[V]− ND)

is equivalt to minimizing, under the constraints of the Schrödinger equation, the
functionalP[V]

P[V] = −div (εR∇V) +
q
ε0

(N[V]− ND) ,

The scheme

which is achieved by means of a Newton-Raphson iterative scheme

dP(Vold
,Vnew − Vold) = −P[Vold].
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Numerical methods

The iterations

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

dǫν,p(V,U) = −q
∫

U(ζ)|χν,p[V](ζ)|2dζ

dχν,p(V,U) = −q
∑

p′ 6=p

∫

U(ζ)χν,p[V](ζ)χν,p′ [V](ζ)dζ

ǫν,p[V]− ǫν,p′ [V]
χν,p′ [V](z).

Iterations

After computing the Gâteaux-derivative of the density and developping calculations,
we are led to a Poisson-like equation

−div (εR∇Vnew) +

∫ lz

0
A[Vold](z, ζ)Vnew(ζ)dζ

= − q
ε0

(

N[Vold]− ND

)

+

∫ lz

0
A[Vold](z, ζ)Vold(ζ)dζ,

whereA[V] is essentially the Gâteaux-derivative of the functionalP[V].
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Numerical methods

The Gummel scheme

The iteration

Solving the Schrödinger-Poisson block

−div (εR∇Vnew) +
q
ε0

N[Vold]
q

kBTL
Vnew

= − q
ε0

(

N[Vold]− ND

)

+
q
ε0

N[Vold]
q

kBTL
Vold

,

Comparison with Newton

We here repeat the Newton iteration:

−div (εR∇Vnew) +

∫ lz

0
A[Vold](z, ζ)Vnew(ζ)dζ

= − q
ε0

(

N[Vold]− ND

)

+

∫ lz

0
A[Vold](z, ζ)Vold(ζ)dζ,
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Numerical methods

Framework

old old(N     , V      )         Vnew

update potential

diagonalize Schroedinger operator

V            Nnew new

update density

is convergence
constraint fulfilled?

N      =N
V      =V

new

new
old
old

set

introduce initial guess for the
potential Vold

diagonalize Schroedinger operator

compute the initial guess for the
density Nold

initialization

DSTEQR

use given
expression

yes

no

use given
expression

Newton−Raphson: takes into account Schroedinger eq.
(computation of Gateaux derivatives, matrix full)

Gummel: decoupled system (matrix is sparse)

"Poisson" solver: DGESV

step 0(i)

step 0(ii)

step 0(iii)

step 1

DSTEQR
step 2

step 3

step 4

step 5
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Numerical methods

Solver for the Schrödinger and the Poisson equations

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

−~
2

2
d
dz

[

1
mz,ν

dχν,p

dz

]

− q (V + Vc)χν,p = ǫν,pχν,p

is discretized by alternate finite differences for the derivatives then the symmetric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

−div [εR∇V] +

∫ lz

0
A(z, ζ)V(ζ)dζ = B(z).

The derivatives are discretized by finite differences in alternate directions, the
integral is computed via trapezoid rule and the linear system (full) is solved by means
of a LAPACK routine called DGESV.
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Numerical methods

Adimensionalization

Adimensionalization is needed in order to improve numerical precision andto exploit
the structure of the collision operator.

Wave vector

The wave-vector for theν th valley reads:

(k̃x, k̃y) =

√
meκBTL

~

√

2w(1+ ανw)
(√

mx,ν cos(φ),
√

my,ν sin(φ)
)

.

BTE

∂Φν,p

∂t
+

∂

∂x

[

a1
νΦν,p

]

+
∂

∂w

[

a2
ν,pΦν,p

]

+
∂

∂φ

[

a3
ν,pΦν,p

]

= Qν,p[Φ]s(w)
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Numerical methods

Time discretizaion

Runge-Kutta

If the BTE is written in conservation-law form, then we advance in time by the third
order Total Variation Diminishing Runge-Kutta scheme: if the evolution equation

reads
df
dt

= H(t, f ), then

1 f (1) = ∆tHn(tn, f n)

2 f (2) = 3
4 f n + 1

4 f (1) + 1
4∆tH(1)(tn +∆t, f (1))

3 f n+1 = 1
3 f n + 2

3 f (2) + 2
3H(2)

(

tn + 1
2∆t, f (2)

)
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Experiments

Thermodynamical equilibrium
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Experiments

Newton vs. Gummel

Newton schemes require much less iterations than Gummel in order to compute the
thermodynamical equilibrium.
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Plasma oscillations
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The plasma frequency is given by


	Introduction
	Kinetic equations
	Kinetic equations in carrier transport
	Kinetic equations in plasma physics
	Kinetic equations in collective behaviour models

	Numerical methods
	PWENO interpolations
	Splitting techniques
	Semi-Lagrangian methods
	Semi-Lagrangian DG methods

	Benchmark tests
	SL methods
	DG scheme

	The DG MOSFET
	Introduction
	Numerical methods
	Experiments


