Some applications of kinetic equations

Francesco Vecil

Universitat de Valéncia

Universitat de Valéncia, 16/02/11



Outline

ﬂ Introduction
@ Kinetic equations
@ Kinetic equations in carrier transport
@ Kinetic equations in plasma physics
@ Kinetic equations in collective behaviour models

© Numerical methods
@ PWENQO interpolations
@ Splitting techniques
@ Semi-Lagrangian methods
@ Semi-Lagrangian DG methods

© Benchmark tests
@ SL methods
@ DG scheme

© The DG MOSFET
@ Introduction
@ Numerical methods
@ Experiments



Introduction
e0
Kinetic equations

Outline

ﬂ Introduction
@ Kinetic equations



Introduction
oe
Kinetic equations

General idea

How do kinetic equationslook like?

Kinetic equations are hyperbolic partial differential equations: the uwkrfanction
f is a probabilistic description of some magnitude which depends on the lesriaib
the phase spacéx, v), (x, p) or (x,K): the choice of the problem may make more
suitable the use of the velocityinstead of the impulsiop or the wave vectok.
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Kinetic equations arise when the simulations of the individual-based moeetsrie
unaffordable due to the huge amount of agents, like the electrons incroeie
device, the ions in a plasma or the fish in the sea.
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General idea

How do kinetic equationslook like?

Kinetic equations are hyperbolic partial differential equations: the uwkrfanction
f is a probabilistic description of some magnitude which depends on the lesriaib
the phase spacéx, v), (x, p) or (x,K): the choice of the problem may make more
suitable the use of the velocityinstead of the impulsiop or the wave vectok.

Why do kinetic equations arisein physics?

Kinetic equations arise when the simulations of the individual-based moeetsrie
unaffordable due to the huge amount of agents, like the electrons incroeie
device, the ions in a plasma or the fish in the sea.

Example.
An example is given by the following PDE

o o V- +F-=0

%x: v of of of
SV=F ot ox o ov

which describes how a set of “particles” evolves under the free motidritee
presence of a force fiel(t, x).
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Aim

Introduction

Electronic devices are physical solid state devices which exploit the aetéctro
properties of semiconductor materials (silicon) by manipulating their octivaly

via thedoping. The dynamics in semiconductor devices are due to the displacement
of electric charges, which is described by kinetic equations.

z—-dim gate

source channel drain SiO3 layers

gate x—dim
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Aim

Introduction

Electronic devices are physical solid state devices which exploit the aetéctro
properties of semiconductor materials (silicon) by manipulating their octivaly
via thedoping. The dynamics in semiconductor devices are due to the displacement
of electric charges, which is described by kinetic equations.

v

TheDG MOSFET

z—dim gate
source channel drain SiO3 layers
ggte x=dim

Figure: A Double-GateM etal Oxide SemiconductofField Effect Transistor.
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Aim

About the scaling

In 1971, the Intel 4004 processor had 1000 transistors, whoseehangth was
10000 nm. In 1974, the Intel 8008 processor had 6-7 thousan@0 the Intel
Pentium IV had 50 million. Nowadays processors may have 400 millionistans,
whose channel is 28 nm long.

Why isit important?

Smaller MOSFETSs allow for the construction of smaller devices with better
performances; moreover, they allow silicon and energy saving, dihe tower
source-drain potential drop needed to switch on or off the transistor.
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Equations

Test case: the 1D Vlasov-Poisson system

Carriers move under the free motion and are driven by a self-cons{g® created
by the particles themselves) electric field:

o o000t
ot X  Oxov

5P

0
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Equations

The Boltzmann equation
Scatterings are taken into account, as well as the band-structure of silicon

of 1 q —
a =+ %VkE . fo — %E . ka - Q[f]
A= L [plf] ~No),  E=-Vxb
0
fo(x, k) = No(x)M(K)
_ h2|k|2
sk = Zm,

Qlf] = / [S(K, K)f (t, %, K') — S(k, K)f (t,x, k)] dk’.

R3
y
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Equations

The sub-bands model
Quantum effetcs are taken into account due to the confinement: The Boltzm
Transport Equation (one for each band) reads

of, 1 i 1
o+ ﬁvkef,”p Vidup = 3 Vaelh - Vidup = Qup ]
RdJ 1 dy.,

{Xv.p},p € Ho(0, 1) orthonormal basis

*vx,z . [ERVX,ZV} = 7&% (N[V} - ND)

NVI2) = 3 [ focRidk (D
l/,p R
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Introduction

Plasmas are ionized gases: positive and negative charges dissBlzatea physics
is of great interest in fusion energy research.
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Laser-plasma interaction

The force field is given by the Lorentz force, i.e. by solving the Maxwgliations:

— +V(p) - Vxf —q(E+VAB)-V,f=0

_oB
ot

OE
curl(B) = uo/v(p)fder fog0 o

R

curl(E) =

(E) = 2
div(E) = -
div(B) =0
B=VAA

oA
E=-2_vo
v

wherev is the velocity given in terms of the impulsign

p relativistic

vp) = ™y

non-relativistic.

e



Introduction
@00
Kinetic equations in collective behaviour models

Outline

ﬂ Introduction

@ Kinetic equations in collective behaviour models



Introduction
oeo
Kinetic equations in collective behaviour models

Introduction

In some contexts a large number of “agents” interacting through micpascules

gives rise to macroscopically observable patterns without the preséadeader.

Examples: bird flocks, fish schools, stock exchanges, the evolutiamgdiages in
primitive societies.
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Equations

Cucker-Smale model

The Cucker-Smale model is an alignment model: particles try to copy theitye
from the other ones. It reads

M v W —dive [f (v*vug’ *f)] =0

ot
U(?("? V) = mX [cos(x, V) > cog¢)] .
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Equations

Cucker-Smale model

The Cucker-Smale model is an alignment model: particles try to copy theitye
from the other ones. It reads

o . . B
S H V-V — divy [f (V*VUO *f)] =0
1
UZ(%V) = ————x [cos(x, V) > cog¢)] .

Attractive/repulsive models

Particles do not copy the velocity from the other ones, rather they try tosigyer
too close not too far: this conditions aims to copy the animal behaviourmitiuk|
reads

of

S+ v, [(@ = BIVIP)VE + (VU « p)f| = 0.
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Introduction

We shall propose three methods for the solution of transport problems.

Finite Differences methods

They are based on a Runge-Kutta discretization in time. The approximdtiba o
PDE is realized via non-oscillatory techniques.

Semi-L agrangian methods

They are based on following the characteristics backward. Need cguplan
reconstruction technique at the foot of characteristics. With respeatite F
Differences methods, they allow for larger time steps, but loose pradisithe
asymptotic behaviour.

Semi-L agrangian Discontinuous Galerkin methods

They are based on a discontinuous representation of the distributiaiofunghich
can be well resolved by local refinement of the mesh, without constrathe time
step.
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PWENO interpolations

Motivation

We need &ointwise interpolation method which does not add spurious oscillations
when high gradients appear, e.g. when a jump has to be transported.

0006060004

I
|
I
I
1 -
|
I
|
I
1

000600004 P0000000R0
Y




Numerical methods
[¢] leJe]e]e]

PWENO interpolations

Motivation

We need &ointwise interpolation method which does not add spurious oscillations
when high gradients appear, e.g. when a jump has to be transported.
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Figure:Left: PWENO interpolation. Right: Lagrange interpolation.



Numerical methods
[e]e] le]e]e]
PWENO interpolations

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensibbgavei

Lagrange polynomial reconstructions.

PWENO-6,4

i
Xi-gXj—2 Xi-1 % T x|+1 Xiv2 X3

. The smoothness of the Lagrange

\

D)

Lagrange polynomial mterpolatlo
is performed on the three
substencils made of four

points each.

N\

polynomials is measured along
this segment, between the
two central points.

\ We want to reconstruct
the value at this point: we
take the reconstruction
of the three Lagrange
polynomials and compute a
sensible average of them, bas
on how smooth is each.
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PWENO interpolations

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensibbgavei

Lagrange polynomial reconstructions.

We describe the case of PWENO-6,4: we take a stencil of six points giule dli into

three substencils of four points:

PWENO-6,4

1
|

Xi-gXj—2 Xi-1 % T x|+1 Xiv2 X3

= —

. The smoothness of the Lagran

je
polynomials is measured along
this segment, between the

two central points.

/)

Lagrange polynomial mterpolatlo
is performed on the three
substencils made of four

points each.

\ We want to reconstruct
the value at this point: we
take the reconstruction
of the three Lagrange
polynomials and compute a
sensible average of them, bas
on how smooth is each.
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The average

If we notepy (x) the Lagrange polynomials, PWENO reconstruction reads

Peweno(X) = wo(X)Po(X) + wi(X)Pr(X) + w2(X)P2(X)-
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The average

If we notepy (x) the Lagrange polynomials, PWENO reconstruction reads
Prweno (X) = wo(X)Po(X) + wa(X)P1(X) + wa(X)P2(X).

Convex combination.

The convex combinatiofr (X) }, must penalize the substencsin which the
pr (X) have high derivatives.
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The average

If we notepy (x) the Lagrange polynomials, PWENO reconstruction reads
Prweno (X) = wo(X)Po(X) + wa(X)P1(X) + wa(X)P2(X).

Convex combination.

The convex combinatiofr (X) }, must penalize the substencsin which the
pr (X) have high derivatives.

Smoothness indicators

In order to decide which substencifs are “regular” and which ones are not, we have
to introduce the smoothness indicators: we use a weighted sumlof-tims of the
Lagrange polynomialp; (x) to measure their regularity close to the reconstructio
pointx. The following smoothness indicators have been proposed by Jiarghand
2 3
+ax|9P + e |9
2 dx? 2 3
L L
4% 41) (4 %i41) )

dpr

Br = Ax dx
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High order reconstruction

Admit for now that the convex combination is given by the normalization
w(x) = "% of the protoweightsr (x) defined this way:
s=0 ™S

e Gi(%)
UJr(X) = 7(6+ﬁr)2.
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High order reconstruction

Admit for now that the convex combination is given by the normalization

wr(X) = % of the protoweightsi (x) defined this way:
. dr (x)
X) = —
& (e+Br)?

Regular reconstruction
Suppose that all thg are equal; then we have

wr(X) = dr (X).

The optimal order is achieved by Lagrange reconstrugii@gange(X) in the whole
stencilS, so if we definel; (x) to be the polynomials such that

PLagrange(X) = do(X)Po(X) + du(X)P1(X) + d2(X)p2(x),

then we have achieved the optimal order becgsgeno(X) = PLagrange(X)-
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High order reconstruction

Admit for now that the convex combination is given by the normalization

wr(X) = % of the protoweightss, (x) defined this way:
. d: (%)
X) = —~2
&) (€ + Br)?

High gradients

Otherwise, suppose for instance tf¥atis high order than the other ones: in this case
So is penalized and most of the reconstruction is carried by the other megalér”
substencils.
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@ to split the Boltzmann Transport Equation into the solution oftthasport part
and thecollisional partfor separate, i.e. th€me Splitting:

Qf+v.vxf+F'va:Qm
ot
splits into
I ovwd+r-wi=o T _ g

ot ot
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Motivation

In this work, splitting techniques are used at different levels, namely:

@ to split the Boltzmann Transport Equation into the solution oftthasport part
and thecollisional partfor separate, i.e. th€me Splitting:

Qf+v.vxf+F'va = Qff]
ot
splits into
&+V-fo+F-va—0, 5*9[”7

@ to split the(x, v)-phase spacd{mensional Splitting):

of
SpHV VT =0

splits into

of of
SHVVE=0 S 4F-Vi=0
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=L ft=0) =f
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General framework

The (formal) exact solution of the linear PDE

%:Lf, f(t=0)=f°
is
f(t) = 'f°.
If we can write the linear operatdaras the sum of two linear operators,
L =1Ly + Lo,
then we may approximate the exact solution by solving for separate
o _ L.f and o _ Lof.

ot ot
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General framework

The (formal) exact solution of the linear PDE

%:u, f(t=0)=f°
is
f(t) = 'f°.
If we can write the linear operatdaras the sum of two linear operators,
L =1Ly + Lo,
then we may approximate the exact solution by solving for separate
% = Laf and % = Lof.

Several schemes are proposed for reconstructing the solution afigieabPDE
from the solution of either blocks; a first order (in time) scheme is giwen b

f(t+ At) = 2218 (1),
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Splitting techniques

General framework

The (formal) exact solution of the linear PDE

%:u, f(t=0)=f°
is
f(t) = 'f°.
If we can write the linear operatdaras the sum of two linear operators,
L =1Ly + Lo,
then we may approximate the exact solution by solving for separate
% = Laf and % = Lof.

Several schemes are proposed for reconstructing the solution afigieabPDE
from the solution of either blocks; a first order (in time) scheme is giwen b

f(t+ At) = 2218 (1),

while a second order (in time) scheme is given by

f(t+ At) = 12 221 3¢ (1),
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Linear advection

We propose two schemes for solving the 1D advection
of | o(af)
ot ox

o direct: directly integrate backward in the characteristic
T (x) = (X ("t %)) It x):

=0:

X X, Xir1
i-1 I I+, tn+1
Qt n ;tn+1 ’& )
"
Xi-1 X Xirg

@ Flux Balance Method: total mass conservation is enforced:

Xicae Xisi

Xig 0 X X
/ j -
| | n

The averages along the red segments
are the same, because we have followed
the characteristics backward.

Cl1IY RAI ANCE METHOD meanc aviialiiatinn
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Discretization

Partition of the computational domain

The computational domai? = [0, 1] is partitioned intaN cells of sizeAx:

N-1
Q= U li, li = [Xi—1/2, Xit1/2]-
i=0

Discontinuous Galerkin space

Let V¢ the discontinuous finite elements space:

Ve = {w e L2(Q): ¢ e RgX|(1), i=0,..,N— 1} .
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Choice of the basis

Lagrange polynomials
We choose to use the Lagrange polynomials at the GauR points as basis.

15 7

U - I L I L I I
X.112%0,0 Xo.1 Xo.2%112%1,0 X11 X1,2%312%2,0 X21 X2.2%512
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Choice of the basis

The Gaufl? points on the interviat 1, 1]

The GauR point§ar }°_, and the GauR weightgu }¥_, are quadrature points
determined by imposing

1 d
/df(x)dx =3 wif(an)

for all polynomialsf € Rog11[X].

Distributing the Gaul points

We can now introduce the notatiary for thej-th Gauf? point inside the intervh|
more precisely

AX
Xij=X_1/2 -+ TCMJ'.
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Choice of the basis

Orthogonality of the basis
As the Lagrange polynomials at the Gaul3 points are defined by

d
X — X
ij = H o
1Z0)14 X0 T X
it is easy to check that
AX & AX
/l‘PiJl(X)S@i,iz(X) =5 > " wrgiy (on)pij, (ar) = = Winliziz:
i r=0

Notation for the future

We shall denote by@'}L, and{a; }{_, the Lagrange polynomials and the GauR
points on the intervel, 1].

v
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Characteristics-based method

The strategy follows that of the 1D linear advection.
Starting point
Testf"*! over the interval;:
Xi41/2
/ £ (%) p(X)dx
Xi—1/2
use the solution given by the characteristics
Xi+1/2 Xi+1/2
[ emo= [ @ e 009 e

X—1/2 %i—1/2

change variables — X (t"; "%, x)

%i+1/2 2 x4 1)0)
[ e oeme= | F(E, (A (17, X)) ok
%_1/2 X (L /5)
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Characteristics-based method

Developing the scheme

Inject the representation 6fx) into the scheme and test ¢n;(x):

Xi+1/2 25X 4 0)
/ f(t n+1 X)¢1 (X)X = Zf / (pizyj/(X)Lpi’j(X(t”—o—l;t”,X))dX.
X—1/2 X (L X1 0)

Some notations

Letisart = istart(i), astart = astart(i) € [0, 1] andisart = ienal(i),
aend = aend(i) € [0, 1] such that

) Xj- -1/2 |+1/2 ,
- / \ :
Ostart
X
istart —1/2 X'end ~1/2
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Characteristics-based method

Treating the right hand side
The integral is decomposed into three pieces:

f{jﬁlw, > = > iy /

i Xigart —1/27+ Ostart AX

fend—1 %11 41/2 il
+Zf./, > [ e )

i/ =igan+1" %" ~1/2

Yigtart +1/2
i jr (X) i (X (117, %)) dx

Xigng —1/2T Ctend AX
+Zfi9,i'/ ir i (Qepi i (X (517, %)) dx.

Xigng—1/2
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Characteristics-based method

The scheme
By changing variables to reduce to integrating[@si] and using Gaul® quadrature
we are led to
d
A Z i (1= asat) Y wr @ (asart + Gr (1 — agart))
r=0
><<Pi,j()(( e Xigan—l/z + (asart + ér (1 — asart)) AX))

1 iend—1

=+ Z Zf//' Zwrgo O{r S0|7] X( n+l;tn7)(i//71/2 +drAX))

“i l”—lstart+1l =0

1 n ~j’ ~ n+1_4n ~
+ ;J._Zfiend,j'aend ZWP (cvenadur )i j (X ("5 17, Xigy—1/2 + Qenair AX)).

4
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Characteristics-based method

Case of compression
In case a compression should happen

Xi=1/2 Xis1/2

+
a a,
I start end

X . =
it 1127 Xj g -1/2

then the formula reduces to just one integral:

d d
1 i’ -
filjjJrl = - E fizan,j/(Oéend - Oés(an) E wrSDJ ((Oéend - Olstan)ar + Otslan)
j’=0 r=0

X1 (XA X172 + AX((Qend — Qstart)Gr + Qitart)))-
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Characteristics-based method

Solving the characteristics

In order to write the scheme, we still need to solve the characteristics, drothrd
and backward. In order to do this, we shall use an explicit formula if waslable,
otherwise Runge-Kutta methods of order 1 to 4.
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Order-in-space of the methods

pts | SL— Lagr—6 S — WENO—6,4

40 | 4.54% — 05 — — — | 1.59% — 04 - — =

80 | 6.660e — 07 6.091 2.330e — 06 6.095

160 | 1.00% — 08 6.050 3.336e — 08 6.126

320 | 1.54% — 10 6.026 3.248 — 10 6.682

640 | 2.39% — 12 6.011 2.674e — 12 6.924
pts | FBM — Lagr—6 FBM — WENO—6,4 FBM — PFC—3
40 | 4.54% — 05 — — — | 117% — 04 ——— | 7726 — 01 —— =
80 | 6.660e — 07 6.091 1.281e — 06 6.523 7.494% — 03 6.687
160 | 1.00% — 08 6.050 1.124e — 08 6.832 1.866e — 03 2.005
320 | 1.54% — 10 6.025 1.54% — 10 6.187 4.650e — 04 2.005

640 | 3.687e — 12 5.386 3.006e — 12 5.682 3.247e — 04 0.518
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Total variation control

32 = = g 7 T T

3 T T el T SLWENO=64 - B
28 7 SC-Lagrange-6-==--- —|
261 / B

/

241/ 4
22}/ B

2 B
18 | | | | | | | | | |

o 1 2 3 4 5 6 7 8 9 10 1

T _J T T
Tt~ TTRBM-WENO6.4,
FBM-Lagrange-
FBM-PFC-3

Figure: The evolution of Discrete Total Variation against time. In this thst: 100,
X € [—m, 7], At = 0.1, trex = 10,fo(X) = F¥P(x).
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Two-stream instability

SL-WENO-6,4 behaves properly, while SL-WENO-5,3 does not.
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1D linear advection

error (in log-scale)

error (inlog-scale)

log-scale)

ermor i

0.0001
1006
1008
1e10
1e12

1e14

116
1

00001
1606
1008
1e10
1e12

114

1e16
1

L™.error

Benchmark tests
0@00000000

points (in log-scale)

1000

10 100
points (in log-scale)

Lerror

10 100
points (in log-scale)

1000
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1D linear advection

error (in log-scale)

Benchmark tests

error af time 1

00e0000000

1e-06 T
—_——
1e-07
1e-08 | 4
1e-09 . L L
1e-05 0.0001 0.001 0.01 0.1

time step (in log-scale)
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Landau damping

Period and decay
2
2

Set the problenfo(x,v) = \/%e‘ (14 acogkx)).
[k ] o=0.001 (inear) | o = 0.5 (nonlinear) |

0.2 || £1.07154+ 6.81267x 10 °i | +1.09402— 0.00107607
(£1.0640— 5.51 x 107%)

0.3 || £1.16209— 0.0124224 +1.30507— 0.128511
(+1.1598— 0.0128)

0.4 || +1.28645— 0.0659432 +1.3581— 0.205133
(1.2850— 0.0661)

05 || +£1.41696— 0.152849 147343~ 0.279512

(+£1.4156— 0.1533)

Table: 1D Landau damping. The decay rate and period of the oscillations of the
electric field in the Landau damping problem. Hatdes 4, Ny x Ny, = 30 x 30.




DG scheme

Landau damping

Nonlinear Landau damping

(KOS

variation (ratio)

Benchmark tests
[o]e]e]e] lelelele]e}

discrete electric energy
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conservation of mass and norms
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Landau damping

Filamentation of the phase-space
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DG scheme

Bump-On-Tall
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1D nonlinear advection

We take as test case .
of  ad(sin(x)f)

z =0
ot + OX ’
which has explicit characteristics and solution:
. o § S—t X+
X(st,x) = 2arctan(tan(2) € ) +2n { . J
ft,x) = 1 1 ot
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1D nonlinear advection

Order in space

L.error (i log:scale)

LZ.error (i log-scale)

LZ-error in log-scale)
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1D nonlinear advection

Order in time

error (inlog-scale) error (n log-scale)

error (inlog-scale)

LLerror
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The model

We afford the simulation of a nanoscaled MOSFET.

dranDz layers

gate x—dim

z-dim ggte

source channel

Dimensional coupling

x-dimension is unconfined unlikedimension, therefore we adopt a different
description:

@ alongx-dimensiorthe electrons behave likearticles their movement being
described by the Boltzmann Transport Equation;

@ alongz-dimensiorthe electrons, confined in a potential well, behave like
waves the equilibrium being reached much faster than transport (quasi-stati
phenomenon), their state is given by the stationary-state Schrodinggiay

C
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The model

Subband decomposition

Due to the confinement, differeatb-bands (another name for theigenvalues of th
Schradinger equatigridentify independent populations, which have to be
transported for separate.
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The model

Subband decomposition

Due to the confinement, differeatb-bands (another name for theigenvalues of the
Schradinger equatigridentify independent populations, which have to be
transported for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for tpetedion of
the electrostatic field in the expression of the total density.

y
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Bandstructure

The three valleys
The Si bandstructure presents six minima in the first Brillouin zone:

. Projection on the (x,y)-plane
The constant energy surfaces in the

wavevector space Ay
z :

effectiye masses: effective masses:
" my  alpng direction x my¢  along direction x
] m, alpng direction y ' m, along direction

mt  alpng direction z | m; along direction {z

- valley of type 1

The valleys of type 1 have : The valleys of type 4 have
valley of type 3 .

i valley of type 2 Y i
| ! The valleys of type 3 have
: m, =0.19m 1\ effective masses
H m,  along direction x
. m = 0.91 n , m along direction y
valley of type 3 . m, along direction z

The axes of the ellipsoids are disposed alongxttyeandz axes of the reciprocal
lattice. The three minima have the same value, therefore there is no gap.
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Bandstructure

Coupling between subbands and valleys

The sub-bands as well as the valleys are coupled by the Poisson edndtien
expression of the total density and, if the case, by the scattering operator
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Bandstructure

Coupling between subbands and valleys

The sub-bands as well as the valleys are coupled by the Poisson edndtien
expression of the total density and, if the case, by the scattering operator

Non-parabolicity

The bandstructure around the three minima can be expanded followikgttee
non-parabolic approximation (indexes the valley):

eEn = e (n‘lf + k}% )7
2 v v
1+\/1+2ayh2(m%+%) v

wheremyy, ., are the axes of the ellispoids (calleffiective masses) of the i
valley alongx, y andz directions, and thé.,, are known as Kane dispersion factors.
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The model
BTE
The Boltzmann Transport Equation (one for each band and for edigly)reads
of, 1 i 1
at”’ + gvke',f” - Vnfup — hvxeﬁ?‘p Vidp = Quplf],  fup(t=0) = pZM,.
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The model

BTE
The Boltzmann Transport Equation (one for each band and for edigly)reads
of, 1 i 1

8t,p + ﬁvke’kl’n Vv — ﬁv“% “Vidup = Quplf], fup(t=0) = plpMy.

v

Schrodinger-Poisson block

K d [id\,/pM

S 2dz|m, dz } =V + Vo) xuplV] = VXV

2 dz
(XvplV] X V]) = Gpp
—div [zrVV] = _E% (N[V] — Np)
NIVI =D puplxuplVIP
v,p

These equations cannot be decoupled because we needdhéuinctionto compute
the potential (in the expression of ttwal density, and we need the potential to
compute the eigenfunctions.
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The model

The collision operator
The collision operator takes into account the phonon scattering mechdhieads

5 Q2
S
> /]R2 (St sy o for i (K) = Supig ey frp (K)] 0K

vl p!

Quplf]

Qv olf]

everyS’ represents a different interaction.
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The model

The collision operator
The collision operator takes into account the phonon scattering mechdhieads

5 Q2
S
> /R2 (St sy o for i (K) = Supig ey frp (K)] 0K

vl p!

Quplf]

Qv olf]

everyS’ represents a different interaction.

Structure of thes®

The missing dimension of the wave-veckoe R?, instead ok € R?, is replaced by
an overlap integralV,, oy (7 py:

1
Wi p), (v 0

Iz
=/mm%M#m W] =m
0

Spk) s (v k) = Cosur § (e p (K) — €p(k) = some energy

1
W(v,m,(v’ P
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Boundary conditions

13
_________ w_l________ AZ
}kmax | ‘
—— i B
x=0 w x=L  x
-~ 1 -~ ‘ T X
_kmax;

= Dirichlet

_ force the density to stay close - h N
to the equilibrium density 77 7 7 7 7 = homogeneous Neumann

______ = Homogeneous Neumann
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Numerical methods

The Newton-Raphson scheme

The functional
Solving the Schrédinger-Poisson block

ﬁz d 1 d\'//.yﬂVJ ) pot
| 2] (v v V) = VY]

—div[srVV] = ,Eﬂo (N[V] — Np)

is equivalt to minimizing, under the constraints of the Schrodinger equdkien
functionalP[V]

PIV] = —div (srVV) + ;qo (NV] = No),
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Numerical methods

The Newton-Raphson scheme

The functional
Solving the Schrédinger-Poisson block

Rd[ 1 dw,pV i
_77[ & q —q(V+Ve) xuplV :‘—E?:)[V}\w-www

2dz|{my,, dz
—div[erVV] = 783 (N]V] — Np)
0

is equivalt to minimizing, under the constraints of the Schrodinger equdkien
functionalP[V]

PIV] = —div (srVV) + ;qo (NV] = No),

The scheme
which is achieved by means of a Newton-Raphson iterative scheme

dP(VOld, Vns/v _ Vold) — —P[VOId].
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The iterations

Derivatives
The Gateaux-derivatives of the eigenproperties are needed:

dop(V,U) = —q / OlxplVI(O)[2dC

fU )Xv,p[V Xup [VI(€)d¢

dXVaP(V’ U) = q Z €y p[V] — €y N [V}

X [VI(2)-
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Numerical methods

The iterations

Derivatives
The Gateaux-derivatives of the eigenproperties are needed:

deog(V,U) = =0 [ UQhwslVIQ)dC
_ JU©OxvpVI(©)xop [VI(C)dS ,
dup(V, V) N e M)
Iterations

After computing the Gateaux-derivative of the density and developg@Etmyiations,
we are led to a Poisson-like equation

Iz
—div (srVV™) + / ANV (2, OV™(C)de

3 (v o)+ [ A v o,

€0

whereA[V] is essentially the Gateaux-derivative of the functidrad].
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The Gummel scheme

The iteration
Solving the Schrédinger-Poisson block

_di new g od; g new
div (erVV™) + NV v
_ _4a oldy 9 \nyod; 9 jod
- 2 (Nvey ND)+€0N[V A
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The Gummel scheme

The iteration
Solving the Schrédinger-Poisson block

_di new g od; 0 new
div (erVV'™Y) + - N[V KeTo \Y
q

- _4a (N[V"'d] - ND) n E%N[V"'d]

q Vo|d7
€0

keTL

Comparison with Newton
We here repeat the Newton iteration:

—div (srVV™) + /0 - ANV (z, OV(O)d¢

=~ (NV = No) + /OIZA[V""’MZ, OV,

€o
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Framework

introduce initial guess for the initialization
Step 0(|)
step O(ii) | diagonalize Schroedinger operator DSTEQR
[ compute the initial guess for the]  USE given
step O(ii) | density P4 expression

"Poisson" solvef: DGESV
° Newton-Raphson: takes into account Schroedinger eq.
(computation of Gateaux derivatives, matrix full)
o Gummel: decoupled systen (matrix is sparse)

update potential

step 1 (N, oy yew

set

diagonalize Schroedinger operatpr Nold "W | Step 5
new

v old 2y

DSTEQR
step 2

use given update density
expression | new__ \new
step 3

is convergence
constraint fulfilled?2

step 4
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We need to solve the Schrédinger eigenvalue problem and Poisson eguatio
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Numerical methods

Solver for the Schrédinger and the Poisson equations

We need to solve the Schrédinger eigenvalue problem and Poisson eguatio

The Schrédinger equation
Equation

K d [ 1 dyup

T2z m dz } = q(V+Ve) Xvp = €upXup

2 dz

is discretized by alternate finite differences for the derivatives therythengtric
matrix is diagonalized by a LAPACK routine called DSTEQR.
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Numerical methods

Solver for the Schrédinger and the Poisson equations

We need to solve the Schrédinger eigenvalue problem and Poisson eguatio

The Schrédinger equation
Equation

K d [ 1 dyup

T2z m dz } = q(V+Ve) Xvp = €upXup

2 dz

is discretized by alternate finite differences for the derivatives therythengtric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation
We need to solve equations like

iRV + [ Az OV = B2).
0

The derivatives are discretized by finite differences in alternate dires;tthe
integral is computed via trapezoid rule and the linear system (full) is solyeadans
of a LAPACK routine called DGESV.
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Numerical methods

Adimensionalization

Adimensionalization is needed in order to improve numerical precisionaexploit
the structure of the collision operator.

Wave vector

The wave-vector for the' valley reads:

(ke k) = 7Vm3h"BTH/2w(1 F auW) (/M COS6), /My sin(e)) .

BTE

s 2 o] 2y ] o
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Time discretizaion

Runge-Kutta

If the BTE is written in conservation-law form, then we advance in time by tid th
order Total Variation Diminishing Runge-Kutta scheme: if the evolution 8gna

reads% = H(t,f), then

Q W = AtH (", ")
Q @ =3f"4 W L IAHD (1" + AL, fD)

Q M= 1" 2{® 4 2@ (t”+ %At,f(z))
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Thermodynamical equilibrium
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Newton vs. Gummel

The DG MOSFET

Newton schemes require much less iterations than Gummel in order tait®the
thermodynamical equilibrium.

Lintdifierence (in rescaled units)

Linfdiference (in rescaled units)

convergence of the potential

Total number of iterations per time step
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1e10 haas =
ez x 1%
te1a [ w] 2
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iteration BTE solver step
convergence of the tota volume density _ Convergence of the polential _
) 2
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g
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Plasma oscillations

variation (percentage)

mass and average temperature evolution

The DG MOSFET
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