Introduction

Numerical methods

Benchmark tests

The DG MOSFET

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Some applications of kinetic equations

Francesco Vecil

Universitat de València

Universitat de València, 16/02/11

Numerical methods

Benchmark tests

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Outline

Introduction

- Kinetic equations
- Kinetic equations in carrier transport
- Kinetic equations in plasma physics
- Kinetic equations in collective behaviour models

Numerical methods

- PWENO interpolations
- Splitting techniques
- Semi-Lagrangian methods
- Semi-Lagrangian DG methods

3 Benchmark tests

- SL methods
- DG scheme
- 4

The DG MOSFET

- Introduction
- Numerical methods
- Experiments

Introduction
•••••
Kinetic equations

Numerical methods

Benchmark tests

イロト イポト イヨト イヨト

3

The DG MOSFET

Outline

Introduction

Kinetic equations

- Kinetic equations in carrier transport
- Kinetic equations in plasma physics
- Kinetic equations in collective behaviour models

Numerical methods

- PWENO interpolations
- Splitting techniques
- Semi-Lagrangian methods
- Semi-Lagrangian DG methods

3 Benchmark tests

- SL methods
- DG scheme
- 4 The DG MOSFE
 - Introduction
 - Numerical methods
 - Experiments

Introduction			The DG MOSFET
000000000000	000000000000000000000000000000000000000	0000000000000	000000000000
Kinetic equations			
General idea			

How do kinetic equations look like?

Kinetic equations are hyperbolic partial differential equations: the unknown function f is a probabilistic description of some magnitude which depends on the variables of the phase space, (x, v), (x, p) or (x, k): the choice of the problem may make more suitable the use of the velocity v instead of the impulsion p or the wave vector k.

Why do kinetic equations arise in physics?

Kinetic equations arise when the simulations of the individual-based models become unaffordable due to the huge amount of agents, like the electrons in an electronic device, the ions in a plasma or the fish in the sea.

Example.

An example is given by the following PDE

$$\begin{cases} \frac{d}{dt}x = v \\ \frac{d}{dt}v = F \end{cases} \leftrightarrow \frac{\partial f}{\partial t} + v\frac{\partial f}{\partial x} + F\frac{\partial f}{\partial v} = 0 \end{cases}$$

which describes how a set of "particles" evolves under the free motion and the presence of a force field F(t, x).

General idea			
Kinetic equations			
00000000000000000	000000000000000000000000000000000000000	00000000000000	0000000000
Introduction			The DG MOSFET

How do kinetic equations look like?

Kinetic equations are hyperbolic partial differential equations: the unknown function f is a probabilistic description of some magnitude which depends on the variables of the phase space, (x, v), (x, p) or (x, k): the choice of the problem may make more suitable the use of the velocity v instead of the impulsion p or the wave vector k.

Why do kinetic equations arise in physics?

Kinetic equations arise when the simulations of the individual-based models become unaffordable due to the huge amount of agents, like the electrons in an electronic device, the ions in a plasma or the fish in the sea.

Example.

An example is given by the following PDE

$$\begin{cases} \frac{d}{dt}x = v \\ \frac{d}{dt}v = F \end{cases} \leftrightarrow \frac{\partial f}{\partial t} + v\frac{\partial f}{\partial x} + F\frac{\partial f}{\partial v} = 0 \end{cases}$$

which describes how a set of "particles" evolves under the free motion and the presence of a force field F(t, x).

	Numerical methods	Benchmark tests	The DG MOSFET
General idea			

How do kinetic equations look like?

Kinetic equations are hyperbolic partial differential equations: the unknown function f is a probabilistic description of some magnitude which depends on the variables of the phase space, (x, v), (x, p) or (x, k): the choice of the problem may make more suitable the use of the velocity v instead of the impulsion p or the wave vector k.

Why do kinetic equations arise in physics?

Kinetic equations arise when the simulations of the individual-based models become unaffordable due to the huge amount of agents, like the electrons in an electronic device, the ions in a plasma or the fish in the sea.

Example.

An example is given by the following PDE

$$\begin{cases} \frac{d}{dt}x = v \\ \frac{d}{dt}v = F \end{cases} \leftrightarrow \frac{\partial f}{\partial t} + v\frac{\partial f}{\partial x} + F\frac{\partial f}{\partial v} = 0 \end{cases}$$

which describes how a set of "particles" evolves under the free motion and the presence of a force field F(t, x).

Introduction	
000000000000	
Kinetic equations in carrier transport	

Outline

Introduction

Kinetic equations

Kinetic equations in carrier transport

- Kinetic equations in plasma physics
- Kinetic equations in collective behaviour models

- PWENO interpolations
- Splitting techniques
- Semi-Lagrangian methods
- Semi-Lagrangian DG methods

- SL methods
- DG scheme
- - Introduction
 - Numerical methods
 - Experiments

Introduction			The DG MOSFET
000000000000	000000000000000000000000000000000000000	0000000000000	00000000000000000
Kinetic equations in carrier transport			
Aim			

Introduction

Electronic devices are physical solid state devices which exploit the electronic properties of semiconductor materials (silicon) by manipulating their conductivity via the *doping*. The dynamics in semiconductor devices are due to the displacement of electric charges, which is described by kinetic equations.

Figure: A Double-Gate Metal Oxide Semiconductor Field Effect Transistor.

Introduction		The DG MOSFET
000000000000000000000000000000000000000		
Kinetic equations in carrier transport		
Aim		

Introduction

Electronic devices are physical solid state devices which exploit the electronic properties of semiconductor materials (silicon) by manipulating their conductivity via the doping. The dynamics in semiconductor devices are due to the displacement of electric charges, which is described by kinetic equations.

Figure: A Double-Gate Metal Oxide Semiconductor Field Effect Transistor.

on		ΤI
00000000		
mations in carrier transport		

About the scaling

Introduction 0000000 Kinetic equat

In 1971, the Intel 4004 processor had 1000 transistors, whose channel length was 10000 nm. In 1974, the Intel 8008 processor had 6-7 thousand. In 2003 the Intel Pentium IV had 50 million. Nowadays processors may have 400 million transistors, whose channel is 28 nm long.

Why is it important?

Smaller MOSFETs allow for the construction of smaller devices with better performances; moreover, they allow silicon and energy saving, due to the lower source-drain potential drop needed to switch on or off the transistor.

Introduction		The DG MOSFET
000000000000000000000000000000000000000		000000000000
Kinetic equations in carrier transport		
Equations		

Test case: the 1D Vlasov-Poisson system

Carriers move under the free motion and are driven by a self-consistent (i.e. created by the particles themselves) electric field:

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} - \frac{\partial \Phi}{\partial x} \frac{\partial f}{\partial v} = 0$$
$$\frac{\partial^2 \Phi}{\partial x^2} = 1 - \int_{\mathbb{R}} f dv.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction		The DG MOSFET
000000000000		
Kinetic equations in carrier transport		
Equations		

The Boltzmann equation

Scatterings are taken into account, as well as the band-structure of silicon:

$$\begin{split} \frac{\partial f}{\partial t} &+ \frac{1}{\hbar} \nabla_k \varepsilon \cdot \nabla_x f - \frac{q}{\hbar} E \cdot \nabla_k f = \mathcal{Q}[f] \\ \Delta \Phi &= \frac{q}{\epsilon_0} \left[\rho[f] - N_D \right], \qquad E = -\nabla_x \Phi \\ f_0(x,k) &= N_D(x) M(k) \\ \varepsilon(k) &= \frac{\hbar^2 |k|^2}{2m_*} \\ \mathcal{Q}[f] &= \int_{\mathbb{R}^3} \left[S(k',k) f(t,x,k') - S(k,k') f(t,x,k) \right] dk'. \end{split}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

Introduction		The DG MOSFET
000000000000		000000000000
Kinetic equations in carrier transport		
Equations		

The sub-bands model

Quantum effetcs are taken into account due to the confinement: The Boltzmann Transport Equation (one for each band) reads

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{1}{\hbar} \nabla_k \epsilon_{\nu,p}^{kin} \cdot \nabla_k f_{\nu,p} - \frac{1}{\hbar} \nabla_x \epsilon_{\nu,p}^{pot} \cdot \nabla_k f_{\nu,p} = \mathcal{Q}_{\nu,p} [f] \\ - \frac{\hbar^2}{2} \frac{d}{dz} \left[\frac{1}{m_{\nu,z}} \frac{d\chi_{\nu,p}}{dz} \right] - q \left(V + V_c \right) \chi_{\nu,p} = \epsilon_{\nu,p}^{pot} \chi_{\nu,p} \\ \{\chi_{\nu,p}\}_{\nu,p} \subseteq H_o^1(0, l_z) \text{ orthonormal basis} \\ - \nabla_{x,z} \cdot [\varepsilon_R \nabla_{x,z} V] = -\frac{q}{\varepsilon_0} \left(N[V] - N_D \right) \\ N[V](x, z) = \sum_{\nu,p} \int_{\mathbb{R}^2} f(x, k) dk \left| \chi_{\nu,p}(x, z) \right|^2$$

▲□▶ ▲課▶ ★理▶ ★理▶ = 臣 = のへで

troduction	Numerical methods
0000000000000	
inetic equations in plasma physics	

Benchmark tests

イロト 不得 トイヨト イヨト 三日

Outline

Introduction

- Kinetic equations
- Kinetic equations in carrier transport

• Kinetic equations in plasma physics

• Kinetic equations in collective behaviour models

Numerical methods

- PWENO interpolations
- Splitting techniques
- Semi-Lagrangian methods
- Semi-Lagrangian DG methods

3 Benchmark tests

- SL methods
- DG scheme
- 4 The DG MOSFE
 - Introduction
 - Numerical methods
 - Experiments

Introduction			The DG MOSFET
00000000000000	000000000000000000000000000000000000000	0000000000000	00000000000000000
Kinetic equations in plasma physics			
Introduction			

Plasmas are ionized gases: positive and negative charges dissociate. Plasma physics is of great interest in fusion energy research.

Introduction		The DG MOSFET
00000000000000		
Kinetic equations in plasma physics		

Laser-plasma interaction

The force field is given by the Lorentz force, i.e. by solving the Maxwell equations:

$$\begin{aligned} \frac{\partial f}{\partial t} + v(p) \cdot \nabla_x f &- q \left(E + v \wedge B \right) \cdot \nabla_p f = 0\\ \operatorname{curl}(E) &= -\frac{\partial B}{\partial t}\\ \operatorname{curl}(B) &= \mu_0 \int_{\mathbb{R}} v(p) f dp + \mu_0 \varepsilon_0 \frac{\partial E}{\partial t}\\ \operatorname{div}(E) &= \frac{\rho}{\varepsilon_0}\\ \operatorname{div}(B) &= 0\\ B &= \nabla \wedge A\\ E &= -\frac{\partial A}{\partial t} - \nabla \Phi, \end{aligned}$$

where *v* is the velocity given in terms of the impulsion *p*:

$$v(p) = \begin{cases} \frac{p}{m_e \sqrt{1 + \frac{|p|^2}{m_e^2 c^2}}} & \text{relativistic} \\ \frac{p}{m_e} & \text{non-relativ} \end{cases}$$

tivistic.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Introduction		The DG MOSFET
000000000000000000000000000000000000000		
Kinetic equations in collective behaviour mode	ls	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outline

Introduction

- Kinetic equations
- Kinetic equations in carrier transport
- Kinetic equations in plasma physics

• Kinetic equations in collective behaviour models

Numerical methods

- PWENO interpolations
- Splitting techniques
- Semi-Lagrangian methods
- Semi-Lagrangian DG methods

3 Benchmark tests

- SL methods
- DG scheme
- 4 The DG MOSFE
 - Introduction
 - Numerical methods
 - Experiments

Introduction	Numerical methods	Benchmark tests	The DG MOSFET
Kinetic equations in collective behaviour n	lodels		
Introduction			

In some contexts a large number of "agents" interacting through microscopic rules gives rise to macroscopically observable patterns without the presence of a leader. Examples: bird flocks, fish schools, stock exchanges, the evolution of languages in primitive societies.

Introduction		The DG MOSFET
00000000000000		
Kinetic equations in collective behaviour	models	
Equations		

Cucker-Smale model

The Cucker-Smale model is an alignment model: particles try to copy the velocity from the other ones. It reads

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f - \operatorname{div}_v \left[f \left(v *_v U_0^{\phi} *_x f \right) \right] = 0$$
$$U_0^{\phi}(x; v) = \frac{1}{(1 + |x|_{\mathbb{R}^d}^2)^{\gamma}} \chi \left[\cos\left(x, v \right) \ge \cos(\phi) \right].$$

Attractive/repulsive models

Particles do not copy the velocity from the other ones, rather they try to stay neither too close not too far: this conditions aims to copy the animal behaviour. The model reads

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{x} f + \operatorname{div}_{v} \left[(\alpha - \beta \|v\|^{2}) v f + (\nabla U * \rho) f \right] = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction		The DG MOSFET
00000000000000		
Kinetic equations in collective behaviour	models	
Equations		

Cucker-Smale model

The Cucker-Smale model is an alignment model: particles try to copy the velocity from the other ones. It reads

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f - \operatorname{div}_v \left[f \left(v *_v U_0^{\phi} *_x f \right) \right] = 0$$
$$U_0^{\phi}(x; v) = \frac{1}{(1 + |x|_{\mathbb{R}^d}^2)^{\gamma}} \chi \left[\cos\left(x, v\right) \ge \cos(\phi) \right].$$

Attractive/repulsive models

Particles do not copy the velocity from the other ones, rather they try to stay neither too close not too far: this conditions aims to copy the animal behaviour. The model reads

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{x} f + \operatorname{div}_{v} \left[(\alpha - \beta \|v\|^{2}) v f + (\nabla U * \rho) f \right] = 0.$$

Introduction	

Numerical methods

Benchmark tests

The DG MOSFET

Introduction

We shall propose three methods for the solution of transport problems.

Finite Differences methods

They are based on a Runge-Kutta discretization in time. The approximation of the PDE is realized via non-oscillatory techniques.

Semi-Lagrangian methods

They are based on following the characteristics backward. Need coupling to a reconstruction technique at the foot of characteristics. With respect to Finite Differences methods, they allow for larger time steps, but loose precision in the asymptotic behaviour.

Semi-Lagrangian Discontinuous Galerkin methods

They are based on a discontinuous representation of the distribution function, which can be well resolved by local refinement of the mesh, without constraining the time step.

PWENO interpolations

 Benchmark tests

イロト 不得 トイヨト イヨト 三日

The DG MOSFET

Outline

Introduction

- Kinetic equations
- Kinetic equations in carrier transport
- Kinetic equations in plasma physics
- Kinetic equations in collective behaviour models

Numerical methods

• PWENO interpolations

- Splitting techniques
- Semi-Lagrangian methods
- Semi-Lagrangian DG methods

3 Benchmark tests

- SL methods
- DG scheme
- 4 The DG MOSFE
 - Introduction
 - Numerical methods
 - Experiments

	Numerical methods	The DG MOSFET
	000000000000000000000000000000000000000	
PWENO interpolations		
Motivation		

We need a **Pointwise** interpolation method which does not add spurious oscillations when high gradients appear, e.g. when a jump has to be transported.

Figure: Left: PWENO interpolation. Right: Lagrange interpolation.

イロト 不得 とう アイロト

ж

Introduction	Numerical methods	Benchmark tests	The DG MOSFET
0000000000000	000000000000000000000000000000000000000	0000000000000	00000000000000000
PWENO interpolations			
Motivation			

We need a **Pointwise** interpolation method which does not add spurious oscillations when high gradients appear, e.g. when a jump has to be transported.

Figure: Left: PWENO interpolation. Right: Lagrange interpolation.

イロト イポト イヨト イヨト

PWENO interpolations

Numerical methods **Benchmark** tests

The DG MOSFET

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of Lagrange polynomial reconstructions.

PWENO-6,4

We want to reconstruct the value at this point: we take the reconstruction of the three Lagrange polynomials and compute a sensible average of them, based PWENO interpolations

Numerical methods **Benchmark** tests

The DG MOSFET

Non-oscillatory properties

Essentially Non Oscillatory (ENO) methods are based on on a sensible average of Lagrange polynomial reconstructions.

We describe the case of PWENO-6,4: we take a stencil of six points and divide it into three substencils of four points:

PWENO-6,4

The smoothness of the Lagrange polynomials is measured along this segment, between the

> We want to reconstruct the value at this point: we take the reconstruction of the three Lagrange polynomials and compute a sensible average of them, based on how smooth is each

> > ▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

	Numerical methods	The DG MOSFET
	000000000000000000000000000000000000000	
PWENO interpolations		
The average		

If we note $p_r(x)$ the Lagrange polynomials, PWENO reconstruction reads

 $p_{PWENO}(x) = \omega_0(x)p_0(x) + \omega_1(x)p_1(x) + \omega_2(x)p_2(x).$

Convex combination.

The convex combination $\{\omega_r(x)\}_r$ must penalize the substencils S_r in which the $p_r(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils S_r are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^2 -norms of the Lagrange polynomials $p_r(x)$ to measure their regularity close to the reconstruction point *x*. The following smoothness indicators have been proposed by Jiang and Shu:

$$\beta_r = \Delta x \left\| \frac{dp_r}{dx} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^3 \left\| \frac{d^2 p_r}{dx^2} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^5 \left\| \frac{d^3 p_r}{dx^3} \right\|_{L^2_{(x_i, x_{i+1})}}.$$

	Numerical methods	The DG MOSFET
	000000000000000000000000000000000000000	
PWENO interpolations		
The average		

If we note $p_r(x)$ the Lagrange polynomials, PWENO reconstruction reads

$$p_{PWENO}(x) = \omega_0(x)p_0(x) + \omega_1(x)p_1(x) + \omega_2(x)p_2(x).$$

Convex combination.

The convex combination $\{\omega_r(x)\}_r$ must penalize the substencils S_r in which the $p_r(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils S_r are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^2 -norms of the Lagrange polynomials $p_r(x)$ to measure their regularity close to the reconstruction point *x*. The following smoothness indicators have been proposed by Jiang and Shu:

$$\beta_r = \Delta x \left\| \frac{dp_r}{dx} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^3 \left\| \frac{d^2 p_r}{dx^2} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^5 \left\| \frac{d^3 p_r}{dx^3} \right\|_{L^2_{(x_i, x_{i+1})}}.$$

	Numerical methods	The DG MOSFET
	000000000000000000000000000000000000000	
PWENO interpolations		
The average		

If we note $p_r(x)$ the Lagrange polynomials, PWENO reconstruction reads

$$p_{PWENO}(x) = \omega_0(x)p_0(x) + \omega_1(x)p_1(x) + \omega_2(x)p_2(x).$$

Convex combination.

The convex combination $\{\omega_r(x)\}_r$ must penalize the substencils S_r in which the $p_r(x)$ have high derivatives.

Smoothness indicators

In order to decide which substencils S_r are "regular" and which ones are not, we have to introduce the smoothness indicators: we use a weighted sum of the L^2 -norms of the Lagrange polynomials $p_r(x)$ to measure their regularity close to the reconstruction point *x*. The following smoothness indicators have been proposed by Jiang and Shu:

$$\beta_r = \Delta x \left\| \frac{dp_r}{dx} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^3 \left\| \frac{d^2 p_r}{dx^2} \right\|_{L^2_{(x_i, x_{i+1})}} + \Delta x^5 \left\| \frac{d^3 p_r}{dx^3} \right\|_{L^2_{(x_i, x_{i+1})}}.$$

・ロト・日本・日本・日本・日本・日本

The DG MOSFET

PWENO interpolations

High order reconstruction

Admit for now that the convex combination is given by the normalization $\omega_r(x) = \frac{\tilde{\omega}_r(x)}{\sum_{s=0}^2 \tilde{\omega}_s(x)}$ of the protoweights $\tilde{\omega}_r(x)$ defined this way:

$$\tilde{\omega}_r(x) = \frac{d_r(x)}{(\epsilon + \beta_r)^2}.$$

Regular reconstruction

Suppose that all the β_r are equal; then we have

$$\omega_r(x) = d_r(x).$$

The optimal order is achieved by Lagrange reconstruction $p_{Lagrange}(x)$ in the whole stencil S, so if we define $d_r(x)$ to be the polynomials such that

 $p_{Lagrange}(x) = d_0(x)p_0(x) + d_1(x)p_1(x) + d_2(x)p_2(x),$

then we have achieved the optimal order because $p_{PWENO}(x) = p_{Lagrange}(x)$.

・ロト・日本・日本・日本・日本・日本

Numerical methods Benchmark tests PWENO interpolations

High order reconstruction

Introduction

Admit for now that the convex combination is given by the normalization $\omega_r(x) = \frac{\tilde{\omega}_r(x)}{\sum_{k=1}^{2} \tilde{\omega}_s(x)}$ of the protoweights $\tilde{\omega}_r(x)$ defined this way:

$$\tilde{\omega}_r(x) = \frac{d_r(x)}{(\epsilon + \beta_r)^2}.$$

Regular reconstruction

Suppose that all the β_r are equal; then we have

$$\omega_r(x) = d_r(x).$$

The optimal order is achieved by Lagrange reconstruction $p_{Lagrange}(x)$ in the whole stencil S, so if we define $d_r(x)$ to be the polynomials such that

$$p_{Lagrange}(x) = d_0(x)p_0(x) + d_1(x)p_1(x) + d_2(x)p_2(x),$$

then we have achieved the optimal order because $p_{PWENO}(x) = p_{Lagrange}(x)$.

The DG MOSEET

	Numerical methods	The DG MOSFET
	000000000000000000000000000000000000000	000000000000
WENO interpolations		

High order reconstruction

Admit for now that the convex combination is given by the normalization $\omega_r(x) = \frac{\tilde{\omega}_r(x)}{\sum_{s=0}^2 \tilde{\omega}_s(x)}$ of the protoweights $\tilde{\omega}_r(x)$ defined this way:

$$\tilde{\omega}_r(x) = rac{d_r(x)}{(\epsilon + eta_r)^2}.$$

High gradients

Otherwise, suppose for instance that β_0 is high order than the other ones: in this case S_0 is penalized and most of the reconstruction is carried by the other more "regular" substencils.

Splitting techniques	

Numerical methods

Benchmark tests

イロト 不得 トイヨト イヨト 三日

The DG MOSFET

Outline

Introduction

- Kinetic equations
- Kinetic equations in carrier transport
- Kinetic equations in plasma physics
- Kinetic equations in collective behaviour models

Numerical methods

• PWENO interpolations

Splitting techniques

- Semi-Lagrangian methods
- Semi-Lagrangian DG methods

3 Benchmark tests

- SL methods
- DG scheme
- 4 The DG MOSFE
 - Introduction
 - Numerical methods
 - Experiments

	Numerical methods	Benchmark tests	The DG MOSFET
	000000000000000000000000000000000000000		
Splitting techniques			
Motivation			

In this work, splitting techniques are used at different levels, namely:

• to split the Boltzmann Transport Equation into the solution of the transport part and the collisional part for separate, i.e. the **Time Splitting**:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + F \cdot \nabla_v f = \mathcal{Q}[f]$$

splits into

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + F \cdot \nabla_{\mathbf{v}} f = 0, \qquad \frac{\partial f}{\partial t} = \mathcal{Q}[f];$$

• to split the (x, y)-phase space (**Dimensional Splitting**):

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + F \cdot \nabla_y f = 0$$

splits into

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = 0, \qquad \frac{\partial f}{\partial t} + F \cdot \nabla_y f = 0.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

	Numerical methods	The DG MOSFET
	000000000000000000000000000000000000000	
Splitting techniques		
Motivation		

In this work, splitting techniques are used at different levels, namely:

• to split the Boltzmann Transport Equation into the solution of the transport part and the collisional part for separate, i.e. the **Time Splitting**:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + F \cdot \nabla_v f = \mathcal{Q}[f]$$

splits into

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + F \cdot \nabla_{\mathbf{v}} f = 0, \qquad \frac{\partial f}{\partial t} = \mathcal{Q}[f];$$

• to split the (x, v)-phase space (**Dimensional Splitting**):

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + F \cdot \nabla_y f = 0$$

splits into

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f = 0, \qquad \frac{\partial f}{\partial t} + F \cdot \nabla_v f = 0.$$

▲□▶ ▲課▶ ★理▶ ★理▶ = 臣 = のへで

Motivation		
Splitting techniques		
	000000000000000000000000000000000000000	
	Numerical methods	The DG MOSFET

In this work, splitting techniques are used at different levels, namely:

• to split the Boltzmann Transport Equation into the solution of the transport part and the collisional part for separate, i.e. the **Time Splitting**:

$$\frac{\partial f}{\partial t} + v \cdot \nabla_{x} f + F \cdot \nabla_{v} f = \mathcal{Q}[f]$$

splits into

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + F \cdot \nabla_{\mathbf{v}} f = 0, \qquad \frac{\partial f}{\partial t} = \mathcal{Q}[f];$$

• to split the (x, v)-phase space (**Dimensional Splitting**):

$$\frac{\partial f}{\partial t} + v \cdot \nabla_x f + F \cdot \nabla_v f = 0$$

splits into

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f = 0, \qquad \frac{\partial f}{\partial t} + \mathbf{F} \cdot \nabla_{\mathbf{v}} f = 0.$$
	Numerical methods	The DG MOSFET
	000000000000000000000000000000000000000	
Splitting techniques		

The (formal) exact solution of the linear PDE

$$\frac{\partial f}{\partial t} = \mathbf{L}f, \qquad f(t=0) = f^0$$

is

 $f(t) = e^{Lt} f^0.$

If we can write the linear operator L as the sum of two linear operators,

 $L = L_1 + L_2$

then we may approximate the exact solution by solving for separate

$$\frac{\partial f}{\partial t} = L_1 f$$
 and $\frac{\partial f}{\partial t} = L_2 f$.

Several schemes are proposed for reconstructing the solution of the original PDE from the solution of either blocks; a first order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_2 \Delta t} e^{L_1 \Delta t} f(t),$$

while a second order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_1 \frac{\Delta t}{2}} e^{L_2 \Delta t} e^{L_1 \frac{\Delta t}{2}} f(t).$$

	Numerical methods	The DG MOSFET
	000000 00 00000000000000000000000000000	
Splitting techniques		

The (formal) exact solution of the linear PDE

$$\frac{\partial f}{\partial t} = \mathbf{L}f, \qquad f(t=0) = f^0$$

is

 $f(t) = e^{Lt} f^0.$

If we can write the linear operator L as the sum of two linear operators,

 $L = \mathbf{L}_1 + \mathbf{L}_2,$

then we may approximate the exact solution by solving for separate

$$\frac{\partial f}{\partial t} = L_1 f$$
 and $\frac{\partial f}{\partial t} = L_2 f$.

Several schemes are proposed for reconstructing the solution of the original PDE from the solution of either blocks; a first order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_2 \Delta t} e^{L_1 \Delta t} f(t),$$

while a second order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_1 \frac{\Delta t}{2}} e^{L_2 \Delta t} e^{L_1 \frac{\Delta t}{2}} f(t).$$

	Numerical methods	The DG MOSFET
	000000 00 00000000000000000000000000000	
Splitting techniques		

The (formal) exact solution of the linear PDE

$$\frac{\partial f}{\partial t} = \mathbf{L}f, \qquad f(t=0) = f^0$$

is

$$f(t) = e^{Lt} f^0.$$

If we can write the linear operator L as the sum of two linear operators,

 $L = \mathbf{L}_1 + \mathbf{L}_2,$

then we may approximate the exact solution by solving for separate

$$\frac{\partial f}{\partial t} = L_1 f$$
 and $\frac{\partial f}{\partial t} = L_2 f$.

Several schemes are proposed for reconstructing the solution of the original PDE from the solution of either blocks; a first order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_2 \Delta t} e^{L_1 \Delta t} f(t),$$

while a second order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_1 \frac{\Delta t}{2}} e^{L_2 \Delta t} e^{L_1 \frac{\Delta t}{2}} f(t)$$

	Numerical methods	The DG MOSFET
	000000 00 00000000000000000000000000000	
Splitting techniques		

The (formal) exact solution of the linear PDE

$$\frac{\partial f}{\partial t} = Lf, \qquad f(t=0) = f^0$$

is

$$f(t) = e^{Lt} f^0.$$

If we can write the linear operator *L* as the sum of two linear operators,

 $L = \mathbf{L}_1 + \mathbf{L}_2,$

then we may approximate the exact solution by solving for separate

$$\frac{\partial f}{\partial t} = L_1 f$$
 and $\frac{\partial f}{\partial t} = L_2 f$.

Several schemes are proposed for reconstructing the solution of the original PDE from the solution of either blocks; a first order (in time) scheme is given by

$$\tilde{f}(t + \Delta t) = e^{L_2 \Delta t} e^{L_1 \Delta t} f(t),$$

while a second order (in time) scheme is given by

$$\tilde{f}(t+\Delta t) = e^{L_1 \frac{\Delta t}{2}} e^{L_2 \Delta t} e^{L_1 \frac{\Delta t}{2}} f(t).$$

Semi-Lagrangian methods	

Numerical methods

Benchmark tests

(日)

The DG MOSFET

Outline

Introduction

- Kinetic equations
- Kinetic equations in carrier transport
- Kinetic equations in plasma physics
- Kinetic equations in collective behaviour models

Numerical methods

- PWENO interpolations
- Splitting techniques

Semi-Lagrangian methods

• Semi-Lagrangian DG methods

3 Benchmark tests

- SL methods
- DG scheme
- The DG MOSFI
 - Introduction
 - Numerical methods
 - Experiments

I income durant			
Semi-Lagrangian methods			
00000000000000	000000000000000000000000000000000000000	00000000000000	0000000000
	Numerical methods		The DG MOSFET

Linear advection

We propose two schemes for solving the 1D advection

$$\frac{\partial f}{\partial t} + \frac{\partial (af)}{\partial x} = 0:$$

• **direct:** directly integrate backward in the characteristic $f^{n+1}(x) = f^n(\mathcal{X}(t^n; t^{n+1}, x))J(t^n; t^{n+1}, x)$:

• Flux Balance Method: total mass conservation is enforced:

FLUX BALANCE METHOD means evuluating

Semi-Lagrangian DG methods

Numerical methods

Benchmark tests

The DG MOSFET

Outline

Introduction

- Kinetic equations
- Kinetic equations in carrier transport
- Kinetic equations in plasma physics
- Kinetic equations in collective behaviour models

Numerical methods

- PWENO interpolations
- Splitting techniques
- Semi-Lagrangian methods
- Semi-Lagrangian DG methods

Benchmark tests

- SL methods
- DG scheme
- The DG MOSFE
 - Introduction
 - Numerical methods
 - Experiments

	Numerical methods	The DG MOSFET
	000000000000000000000000000000000000000	
Semi-Lagrangian DG methods		
Discretization		

Partition of the computational domain

The computational domain $\Omega = [0, 1]$ is partitioned into N cells of size Δx :

$$\Omega = \bigcup_{i=0}^{N-1} I_i, \qquad I_i = [x_{i-1/2}, x_{i+1/2}].$$

Discontinuous Galerkin space

Let V^d the discontinuous finite elements space:

$$V^d = \left\{\psi \in L^2(\Omega): \psi \in \mathbb{R}_d[X](I_i), \qquad i = 0, ..., N-1
ight\}$$

Introduction	Numerical methods	Benchmark tests	The DG MOSFET
Semi-Lagrangian DG methods			
Choice of the	basis		

Lagrange polynomials

We choose to use the Lagrange polynomials at the Gauß points as basis.

	Numerical methods	The DG MOSFET
	000000000000000000000000000000000000000	
Semi-Lagrangian DG methods		

Choice of the basis

The Gauß points on the interval [-1, 1]

The Gauß points $\{\alpha_r\}_{r=0}^d$ and the Gauß weights $\{\omega_r\}_{r=0}^d$ are quadrature points determined by imposing

$$\int_{-1}^{1} f(x)dx = \sum_{r=0}^{d} \omega_r f(\alpha_r)$$

for all polynomials $f \in \mathbb{R}_{2d+1}[X]$.

Distributing the Gauß points

We can now introduce the notation $x_{i,j}$ for the *j*-th Gauß point inside the interval I_i ; more precisely

$$x_{i,j} = x_{i-1/2} + \frac{\Delta x}{2} \alpha_j.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

	Numerical methods	The DG MOSFET
	000000000000000000000000000000000000000	
Semi-Lagrangian DG methods		

Choice of the basis

Orthogonality of the basis

As the Lagrange polynomials at the Gauß points are defined by

$$\varphi_{i,j} = \prod_{l=0, l\neq j}^d \frac{x - x_{i,l}}{x_{i,j} - x_{i,l}},$$

it is easy to check that

$$\int_{I_i} \varphi_{i,j_1}(x)\varphi_{i,j_2}(x) = \frac{\Delta x}{2} \sum_{r=0}^d \omega_r \varphi_{i,j_1}(\alpha_r)\varphi_{i,j_2}(\alpha_r) = \frac{\Delta x}{2} \omega_{j_1} \delta_{j_1,j_2}.$$

Notation for the future

We shall denote by $\{\tilde{\varphi}^j\}_{j=0}^d$ and $\{\tilde{\alpha}_j\}_{j=0}^d$ the Lagrange polynomials and the Gauß points on the interval [0, 1].

Introduction Semi-Lagrangian DG methods Numerical methods Benchmark tests

The DG MOSFET

Characteristics-based method

The strategy follows that of the 1D linear advection.

Starting point

Test f^{n+1} over the interval I_i :

 $\int_{x_{i-1/2}}^{x_{i+1/2}} f^{n+1}(x)\varphi(x)dx$

use the solution given by the characteristics

$$\int_{x_{i-1/2}}^{x_{i+1/2}} f^{n+1}(x)\varphi(x)dx = \int_{x_{i-1/2}}^{x_{i+1/2}} f^n(\mathcal{X}(t^n;t^{n+1},x))J(t^n;t^{n+1},x)\varphi(x)dx$$

change variables $x \to \mathcal{X}(t^n; t^{n+1}, x)$

$$\int_{x_{i-1/2}}^{x_{i+1/2}} f(t^{n+1}, x)\varphi(x)dx = \int_{\mathcal{X}(t^n; t^{n+1}, x_{i+1/2})}^{\mathcal{X}(t^n; t^{n+1}, x_{i+1/2})} f(t^n, x)\varphi(\mathcal{X}(t^{n+1}; t^n, x))dx.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Numerical methods

The DG MOSFET

Semi-Lagrangian DG methods

Characteristics-based method

Developing the scheme

Inject the representation of f(x) into the scheme and test on $\varphi_{i,j}(x)$:

$$\int_{x_{i-1/2}}^{x_{i+1/2}} f(t^{n+1}, x)\varphi_{i,j}(x)dx = \sum_{i',j'} f_{i',j'}^n \int_{\mathcal{X}(t^n; t^{n+1}, x_{i-1/2})}^{\mathcal{X}(t^n; t^{n+1}, x_{i+1/2})} \varphi_{i',j'}(x)\varphi_{i,j}(\mathcal{X}(t^{n+1}; t^n, x))dx.$$

Some notations

Let
$$i_{start} = i_{start}(i)$$
, $\alpha_{start} = \alpha_{start}(i) \in [0, 1]$ and $i_{start} = i_{end}(i)$,
 $\alpha_{end} = \alpha_{end}(i) \in [0, 1]$ such that

Semi-Lagrangian DG methods

Numerical methods

The DG MOSFET

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Characteristics-based method

Treating the right hand side

The integral is decomposed into three pieces:

$$\begin{split} f_{i,j}^{n+1} \omega_{j} \frac{\Delta x}{2} &= \sum_{i',j'} f_{i',j'}^{n} \int_{x_{istart}-1/2}^{x_{istart}+1/2} \varphi_{i',j'}(x) \varphi_{i,j}(\mathcal{X}(t^{n+1};t^{n},x)) dx \\ &+ \sum_{i',j'} f_{i',j'}^{n} \sum_{i''=istart}^{i_{end}-1} \int_{x_{i''}-1/2}^{x_{i''}+1/2} \varphi_{i',j'}(x) \varphi_{i,j}(\mathcal{X}(t^{n+1};t^{n},x)) dx \\ &+ \sum_{i',j'} f_{i',j'}^{n} \int_{x_{i_{end}}-1/2}^{x_{i_{end}}-1/2+\alpha_{end}\Delta x} \varphi_{i',j'}(x) \varphi_{i,j}(\mathcal{X}(t^{n+1};t^{n},x)) dx. \end{split}$$

Semi-Lagrangian DG methods

Numerical methods

The DG MOSFET

Characteristics-based method

The scheme

By changing variables to reduce to integrating on [0, 1] and using Gauß quadrature we are led to

$$\begin{split} f_{i,j}^{n+1} &= \frac{1}{\omega_j} \sum_{j'=0}^d f_{i_{start}j'}^n (1 - \alpha_{start}) \sum_{r=0}^d \omega_r \tilde{\varphi}^{j'} (\alpha_{start} + \tilde{\alpha}_r (1 - \alpha_{start})) \\ &\times \varphi_{i,j} (\mathcal{X}(t^{n+1}; t^n, x_{i_{start}-1/2} + (\alpha_{start} + \tilde{\alpha}_r (1 - \alpha_{start}))\Delta x)) \\ &+ \frac{1}{\omega_j} \sum_{i''=i_{start}+1}^{i_{end}-1} \sum_{j'=0}^d f_{i'',j'}^n \sum_{r=0}^d \omega_r \tilde{\varphi}^{j'} (\tilde{\alpha}_r) \varphi_{i,j} (\mathcal{X}(t^{n+1}; t^n, x_{i''-1/2} + \tilde{\alpha}_r \Delta x)) \\ &+ \frac{1}{\omega_j} \sum_{j'=0}^d f_{i_{end},j'}^n \alpha_{end} \sum_{r=0}^d \omega_r \tilde{\varphi}^{j'} (\alpha_{end} \tilde{\alpha}_r) \varphi_{i,j} (\mathcal{X}(t^{n+1}; t^n, x_{i_{end}-1/2} + \alpha_{end} \tilde{\alpha}_r \Delta x)). \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Semi-Lagrangian DG methods

Numerical methods

The DG MOSFET

Characteristics-based method

Case of compression

then the formula reduces to just one integral:

$$f_{i,j}^{n+1} = \frac{1}{\omega_j} \sum_{j'=0}^d f_{i_{start},j'}^n (\alpha_{end} - \alpha_{start}) \sum_{r=0}^d \omega_r \varphi^{j'} ((\alpha_{end} - \alpha_{start}) \tilde{\alpha}_r + \alpha_{start}) \\ \times \varphi_{i,j} (\mathcal{X}(t^{n+1}; t^n, x_{i_{start}-1/2} + \Delta x((\alpha_{end} - \alpha_{start}) \tilde{\alpha}_r + \alpha_{start}))).$$

イロト 不得 とう アイロト ж Introduction Semi-Lagrangian DG methods Numerical methods

The DG MOSFET

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Characteristics-based method

Solving the characteristics

In order to write the scheme, we still need to solve the characteristics, both forward and backward. In order to do this, we shall use an explicit formula if it is available, otherwise Runge-Kutta methods of order 1 to 4.

Introduction 000000000000000 SL methods Numerical methods

Benchmark tests

(日)

The DG MOSFET

Outline

Introduction

- Kinetic equations
- Kinetic equations in carrier transport
- Kinetic equations in plasma physics
- Kinetic equations in collective behaviour models

Numerical methods

- PWENO interpolations
- Splitting techniques
- Semi-Lagrangian methods
- Semi-Lagrangian DG methods

3 Benchmark tests

SL methods

- DG scheme
- 4 The DG MOSFE
 - Introduction
 - Numerical methods
 - Experiments

Numerical methods

Benchmark tests

-

▲□▶ ▲課▶ ★理▶ ★理▶ = 臣 = のへで

The DG MOSFET

SL methods

Order-in-space of the methods

Ξ.

	pts	SL – Lagr –	0	SL = WENO = 6,4		
	40	4.543e - 05		1.594e - 04		
	80	6.660e - 07	6.091	2.330e - 06	6.095	
	160	1.005e - 08	6.050	3.336e - 08	6.126	
	320	1.542e - 10	6.026	3.248e - 10	6.682	
	640	2.391e - 12	6.011	2.674e - 12	6.924	
	L .				-	
pts	FBM - Lagr-6	1	FBM - WENO	0-6,4	FBM - PFC-3	٦
40	4.543e - 05		1.179e - 04		7.724e - 01	
80	6.660e - 07	6.091	1.281e - 06	6.523	7.494e - 03	6.687
160	1.005e - 08	6.050	1.124e - 08	6.832	1.866e - 03	2.005
320	1.543e - 10	6.025	1.543e - 10	6.187	4.650e - 04	2.005
640	3.687e - 12	5.386	3.006e - 12	5.682	3.247e - 04	0.518

Numerical methods

Benchmark tests

The DG MOSFET

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

SL methods

Total variation control

Figure: The evolution of Discrete Total Variation against time. In this test, N = 100, $x \in [-\pi, \pi]$, $\Delta t = 0.1$, $t_{max} = 10$, $f_0(x) = f^{step}(x)$.

Numerical methods

Benchmark tests

The DG MOSFET

▲□▶ ▲課▶ ★理▶ ★理▶ = 臣 = のへで

SL methods

Two-stream instability

SL-WENO-6,4 behaves properly, while SL-WENO-5,3 does not.

Numerical methods

Benchmark tests

(日)

The DG MOSFET

Outline

Introduction

- Kinetic equations
- Kinetic equations in carrier transport
- Kinetic equations in plasma physics
- Kinetic equations in collective behaviour models

Numerical methods

- PWENO interpolations
- Splitting techniques
- Semi-Lagrangian methods
- Semi-Lagrangian DG methods

Benchmark tests

- SL methods
- DG scheme
- 4

The DG MOSFET

- Introduction
- Numerical methods
- Experiments

Numerical methods

Benchmark tests

The DG MOSFET

DG scheme

1D linear advection

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Introduction	Numerical methods 000000000000000000000000000000000000	Benchmark tests	The DG MOSFET
DG scheme			

1D linear advection

▲□▶ ▲課▶ ★理▶ ★理▶ = 臣 = のへで

Numerical methods

Benchmark tests

The DG MOSFET

DG scheme

Landau damping

Period and decay

Set the problem
$$f_0(x, v) = \frac{1}{\sqrt{2\pi}}e^{-\frac{v^2}{2}}(1 + \alpha \cos(kx)).$$

k	$\alpha = 0.001$ (linear)	$\alpha = 0.5$ (nonlinear)
0.2	$\pm 1.07154 + 6.81267 \times 10^{-5}i$	$\pm 1.09402 - 0.00107607i$
	$(\pm 1.0640 - 5.51 \times 10^{-5}i)$	
0.3	$\pm 1.16209 - 0.0124224i$	$\pm 1.30507 - 0.128511i$
	$(\pm 1.1598 - 0.0126i)$	
0.4	$\pm 1.28645 - 0.0659432i$	$\pm 1.3581 - 0.205133i$
	$(\pm 1.2850 - 0.0661i)$	
0.5	$\pm 1.41696 - 0.152849i$	$\pm 1.47343 - 0.279512i$
	$(\pm 1.4156 - 0.1533i)$	

Table: **1D Landau damping.** The decay rate and period of the oscillations of the electric field in the Landau damping problem. Here, d = 4, $N_x \times N_v = 30 \times 30$.

	Benchmark tests
	000000000000000000000000000000000000000
DG scheme	

The DG MOSFET

Landau damping

Nonlinear Landau damping

Introduction	
000000000000000000000000000000000000000	

Numerical methods

Benchmark tests

The DG MOSFET

DG scheme

Landau damping

Filamentation of the phase-space

200

	Numerical methods	Benchmark tests	The DG N
		000000000000000000000000000000000000000	
G scheme			

Bump-On-Tail

By using
$$f_0(x, v) = \frac{9}{10\sqrt{2\pi}}e^{-\frac{v^2}{2}} + \frac{2}{10\sqrt{2\pi}}e^{-2|v-4.5|^2}(1+0.03\cos(0.3x))$$
 as initial condition, we expect to observe some vortices.

0.4 0.35 0.25 0.2 0.15 0.1 0.05

< 🗗 > <

≣≯

≣⇒ æ 590

Numerical methods

Benchmark tests

The DG MOSFET

▲□▶ ▲課▶ ★理▶ ★理▶ = 臣 = のへで

DG scheme

1D nonlinear advection

We take as test case

$$\frac{\partial f}{\partial t} + \frac{\partial (\sin(x)f)}{\partial x} = 0,$$

which has explicit characteristics and solution:

$$\mathcal{X}(s;t,x) = 2 \arctan\left(\tan\left(\frac{x}{2}\right)e^{s-t}\right) + 2\pi \left\lfloor\frac{x+\pi}{2\pi}\right\rfloor$$
$$f(t,x) = \frac{1}{1+\left(\tan\left(\frac{x}{2}\right)e^{-t}\right)^2}\frac{1}{\cos^2\left(\frac{x}{2}\right)}e^{-t}.$$

Numerical methods

Benchmark tests

The DG MOSFET

DG scheme

1D nonlinear advection

Order in space

Numerical methods

Benchmark tests

The DG MOSFET

DG scheme

1D nonlinear advection

Order in time

Introduction	
Introduction	

Numerical methods

Benchmark tests

(日)

The DG MOSFET

Outline

Introduction

- Kinetic equations
- Kinetic equations in carrier transport
- Kinetic equations in plasma physics
- Kinetic equations in collective behaviour models

Numerical methods

- PWENO interpolations
- Splitting techniques
- Semi-Lagrangian methods
- Semi-Lagrangian DG methods

3 Benchmark tests

- SL methods
- DG scheme
- 4 The DG MOSFET

Introduction

- Numerical methods
- Experiments

Introduction 0000000000000	Numerical methods	Benchmark tests	The DG MOSFET
Introduction			
The model			

We afford the simulation of a nanoscaled MOSFET.

Dimensional coupling

x-dimension is unconfined unlike *z*-dimension, therefore we adopt a different description:

- along *x*-dimension the electrons behave like particles, their movement being described by the Boltzmann Transport Equation;
- along *z*-dimension the electrons, confined in a potential well, behave like waves; the equilibrium being reached much faster than transport (quasi-static phenomenon), their state is given by the stationary-state Schrödinger equation.

Introduction

Numerical methods

Benchmark tests

(日) (個) (E) (E) (E)

The DG MOSFET

The model

Subband decomposition

Due to the confinement, different *sub-bands* (another name for the eigenvalues of the Schrödinger equation) identify independent populations, which have to be transported for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of the electrostatic field in the expression of the total density.

Introduction

Numerical methods

Benchmark tests

The DG MOSFET

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

The model

Subband decomposition

Due to the confinement, different *sub-bands* (another name for the eigenvalues of the Schrödinger equation) identify independent populations, which have to be transported for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for the computation of the electrostatic field in the expression of the total density.

Introduction	Numerical methods	Benchmark tests	The DG MOSFET
Introduction			
Bandstructure			
The three valleys			

The three valleys

The Si bandstructure presents six minima in the first Brillouin zone:

The axes of the ellipsoids are disposed along the x, y and z axes of the reciprocal lattice. The three minima have the same value, therefore there is no gap.
Introduction 00000000000000	Numerical methods	Benchmark tests	The DG MOSFE
Introduction			

Bandstructure

Coupling between subbands and valleys

The sub-bands as well as the valleys are coupled by the Poisson equation in the expression of the total density and, if the case, by the scattering operator.

Non-parabolicity

The bandstructure around the three minima can be expanded following the Kane non-parabolic approximation (ν indexes the valley):

$$\epsilon_{\nu}^{kin} = \frac{\hbar^2}{1 + \sqrt{1 + 2\tilde{\alpha}_{\nu}\hbar^2 \left(\frac{k_x^2}{m_{x,\nu}} + \frac{k_y^2}{m_{y,\nu}}\right)}} \left(\frac{k_x^2}{m_{x,\nu}} + \frac{k_y^2}{m_{y,\nu}}\right),$$

where $m_{\{x,y,z\},\nu}$ are the axes of the ellispoids (called *effective masses*) of the ν^{III} valley along *x*, *y* and *z* directions, and the $\tilde{\alpha}_{\nu}$ are known as Kane dispersion factors.

・ロト・「聞・・」 単・ 「聞・・」 しゃ

			The DG MOSFET
0000000000000	000000000000000000000000000000000000000	000000000000	00000000000
Introduction			

Bandstructure

Coupling between subbands and valleys

The sub-bands as well as the valleys are coupled by the Poisson equation in the expression of the total density and, if the case, by the scattering operator.

Non-parabolicity

The bandstructure around the three minima can be expanded following the Kane non-parabolic approximation (ν indexes the valley):

$$\epsilon_{\nu}^{kin} = \frac{\hbar^2}{1 + \sqrt{1 + 2\tilde{lpha}_{
u}\hbar^2\left(rac{k_x^2}{m_{x,
u}} + rac{k_y^2}{m_{y,
u}}
ight)}}\left(rac{k_x^2}{m_{x,
u}} + rac{k_y^2}{m_{y,
u}}
ight),$$

where $m_{\{x,y,z\},\nu}$ are the axes of the ellispoids (called *effective masses*) of the ν^{th} valley along *x*, *y* and *z* directions, and the $\tilde{\alpha}_{\nu}$ are known as Kane dispersion factors.

Introduction	Numerical methods	Benchmark tests	The DG MOSFET
Introduction			
The model			

BTE

The Boltzmann Transport Equation (one for each band and for each valley) reads

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{1}{\hbar} \nabla_k \epsilon_{\nu}^{kin} \cdot \nabla_x f_{\nu,p} - \frac{1}{\hbar} \nabla_x \epsilon_{\nu,p}^{pot} \cdot \nabla_k f_{\nu,p} = \mathcal{Q}_{\nu,p}[f], \qquad f_{\nu,p}(t=0) = \rho_{\nu,p}^{eq} M_{\nu}.$$

Schrödinger-Poisson block

$$-\frac{\hbar^2}{2} \frac{d}{dz} \left[\frac{1}{m_{z,\nu}} \frac{d\chi_{\nu,\rho}[V]}{dz} \right] - q \left(V + V_c \right) \chi_{\nu,\rho}[V] = \epsilon_{\nu,\rho}^{pot}[V] \chi_{\nu,\rho}[V]$$
$$\langle \chi_{\nu,\rho}[V], \chi_{\nu,\rho'}[V] \rangle = \delta_{\rho,\rho'}$$
$$-\operatorname{div} \left[\varepsilon_R \nabla V \right] = -\frac{q}{\varepsilon_0} \left(N[V] - N_D \right)$$
$$N[V] = \sum_{\nu,\rho} \rho_{\nu,\rho} |\chi_{\nu,\rho}[V]|^2$$

These equations cannot be decoupled because we need the eigenfunctions to compute the potential (in the expression of the total density), and we need the potential to compute the eigenfunctions.

Introduction	Numerical methods	Benchmark tests 0000000000000	The DG MOSFET
Introduction			
The model			

BTE

The Boltzmann Transport Equation (one for each band and for each valley) reads

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{1}{\hbar} \nabla_k \epsilon_{\nu}^{kin} \cdot \nabla_x f_{\nu,p} - \frac{1}{\hbar} \nabla_x \epsilon_{\nu,p}^{pot} \cdot \nabla_k f_{\nu,p} = \mathcal{Q}_{\nu,p}[f], \qquad f_{\nu,p}(t=0) = \rho_{\nu,p}^{eq} M_{\nu}.$$

Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{z,\nu}}\frac{d\chi_{\nu,p}[V]}{dz}\right] - q\left(V + V_c\right)\chi_{\nu,p}[V] = \epsilon_{\nu,p}^{pot}[V]\chi_{\nu,p}[V]$$
$$\langle\chi_{\nu,p}[V],\chi_{\nu,p'}[V]\rangle = \delta_{p,p'}$$
$$-\operatorname{div}\left[\varepsilon_R\nabla V\right] = -\frac{q}{\varepsilon_0}\left(N[V] - N_D\right)$$
$$N[V] = \sum_{\nu,p}\rho_{\nu,p}|\chi_{\nu,p}[V]|^2$$

These equations cannot be decoupled because we need the eigenfunctions to compute the potential (in the expression of the total density), and we need the potential to compute the eigenfunctions.

Introduction	Numerical methods	Benchmark tests	The DG MOSFET
Introduction			
The model			

The collision operator

The collision operator takes into account the phonon scattering mechanism. It reads

$$\begin{aligned} \mathcal{Q}_{\nu,p}[f] &= \sum_{s} \mathcal{Q}_{\nu,p}^{s}[f] \\ \mathcal{Q}_{\nu,p}^{s}[f] &= \sum_{\nu',p'} \int_{\mathbb{R}^{2}} \left[S_{(\nu',p',k')\to(\nu,p,k)}^{s} f_{\nu',p'}(k') - S_{(\nu,p,k)\to(\nu',p',k')}^{s} f_{\nu,p}(k) \right] dk': \end{aligned}$$

every S^s represents a different interaction.

Structure of the S^s

The missing dimension of the wave-vector $k \in \mathbb{R}^2$, instead of $k \in \mathbb{R}^3$, is replaced by an overlap integral $W_{(\nu,p),(\nu',p')}$:

$$S^{s}_{(\nu,p,k)\to(\nu',p',k')} = C_{\nu\to\nu'} \frac{1}{W_{(\nu,p),(\nu',p')}} \delta\left(\epsilon^{tot}_{\nu',p'}(k') - \epsilon^{tot}_{\nu,p}(k) \pm \text{some energy}\right)$$
$$\frac{1}{W_{(\nu,p),(\nu',p')}} = \int_{0}^{l_{z}} |\chi_{\nu,p}|^{2} |\chi_{\nu',p'}|^{2} dz, \qquad [W] = m.$$

Introduction	000000000000000000000000000000000000000	0000000000000	000000000000000000000000000000000000000
The model			

The collision operator

The collision operator takes into account the phonon scattering mechanism. It reads

$$\begin{aligned} \mathcal{Q}_{\nu,p}[f] &= \sum_{s} \mathcal{Q}_{\nu,p}^{s}[f] \\ \mathcal{Q}_{\nu,p}^{s}[f] &= \sum_{\nu',p'} \int_{\mathbb{R}^{2}} \left[S_{(\nu',p',k')\to(\nu,p,k)}^{s} f_{\nu',p'}(k') - S_{(\nu,p,k)\to(\nu',p',k')}^{s} f_{\nu,p}(k) \right] dk': \end{aligned}$$

every S^s represents a different interaction.

Structure of the S^s

The missing dimension of the wave-vector $k \in \mathbb{R}^2$, instead of $k \in \mathbb{R}^3$, is replaced by an overlap integral $W_{(\nu,p),(\nu',p')}$:

$$S^{s}_{(\nu,p,k)\to(\nu',p',k')} = C_{\nu\to\nu'} \frac{1}{W_{(\nu,p),(\nu',p')}} \delta\left(\epsilon^{tot}_{\nu',p'}(k') - \epsilon^{tot}_{\nu,p}(k) \pm \text{some energy}\right)$$
$$\frac{1}{W_{(\nu,p),(\nu',p')}} = \int_{0}^{l_{z}} |\chi_{\nu,p}|^{2} |\chi_{\nu',p'}|^{2} dz, \qquad [W] = m.$$

		The DG MOSFET
		000000000000
Introduction		

Boundary conditions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Numerical methods

Numerical methods

Benchmark tests

イロト 不得 トイヨト イヨト 三日

The DG MOSFET

Outline

Introduction

- Kinetic equations
- Kinetic equations in carrier transport
- Kinetic equations in plasma physics
- Kinetic equations in collective behaviour models

Numerical methods

- PWENO interpolations
- Splitting techniques
- Semi-Lagrangian methods
- Semi-Lagrangian DG methods

3 Benchmark tests

- SL methods
- DG scheme

The DG MOSFET

- Introduction
- Numerical methods
- Experiments

Introduction Numerical methods Numerical methods

Benchmark tests

The DG MOSFET

The Newton-Raphson scheme

The functional

Solving the Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{z,\nu}}\frac{d\chi_{\nu,p}[V]}{dz}\right] - q\left(V+V_c\right)\chi_{\nu,p}[V] = \epsilon_{\nu,p}^{pol}[V]\chi_{\nu,p}[V]$$
$$-\operatorname{div}\left[\varepsilon_R\nabla V\right] = -\frac{q}{\varepsilon_0}\left(N[V] - N_D\right)$$

is equivalt to minimizing, under the constraints of the Schrödinger equation, the functional P[V]

$$P[V] = -\operatorname{div}\left(\varepsilon_R \nabla V\right) + \frac{q}{\varepsilon_0} \left(N[V] - N_D \right),$$

$$dP(V^{old}, V^{new} - V^{old}) = -P[V^{old}].$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Introduction Numerical methods Numerical methods

Benchmark tests

The DG MOSFET

The Newton-Raphson scheme

The functional

Solving the Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{z,\nu}}\frac{d\chi_{\nu,p}[V]}{dz}\right] - q\left(V+V_c\right)\chi_{\nu,p}[V] = \epsilon_{\nu,p}^{pol}[V]\chi_{\nu,p}[V]$$
$$-\operatorname{div}\left[\varepsilon_R\nabla V\right] = -\frac{q}{\varepsilon_0}\left(N[V] - N_D\right)$$

is equivalt to minimizing, under the constraints of the Schrödinger equation, the functional P[V]

$$P[V] = -\operatorname{div}\left(\varepsilon_R \nabla V\right) + \frac{q}{\varepsilon_0} \left(N[V] - N_D \right),$$

The scheme

which is achieved by means of a Newton-Raphson iterative scheme

$$dP(V^{old}, V^{new} - V^{old}) = -P[V^{old}].$$

(日)

0000000000000 00000000000000000000000	The iterations			
nuoducuon nuncical inculoas Deneminar (csts nuclear inculoas	Numerical methods	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

$$d\epsilon_{\nu,p}(V,U) = -q \int U(\zeta) |\chi_{\nu,p}[V](\zeta)|^2 d\zeta$$

$$d\chi_{\nu,p}(V,U) = -q \sum_{p' \neq p} \frac{\int U(\zeta) \chi_{\nu,p}[V](\zeta) \chi_{\nu,p'}[V](\zeta) d\zeta}{\epsilon_{\nu,p}[V] - \epsilon_{\nu,p'}[V]} \chi_{\nu,p'}[V](z).$$

Iterations

After computing the Gâteaux-derivative of the density and developping calculations, we are led to a Poisson-like equation

$$-\operatorname{div}\left(\varepsilon_{R}\nabla V^{new}\right) + \int_{0}^{l_{z}} \mathcal{A}[V^{old}](z,\zeta)V^{new}(\zeta)d\zeta$$
$$= -\frac{q}{\varepsilon_{0}}\left(N[V^{old}] - N_{D}\right) + \int_{0}^{l_{z}} \mathcal{A}[V^{old}](z,\zeta)V^{old}(\zeta)d\zeta,$$

where $\mathcal{A}[V]$ is essentially the Gâteaux-derivative of the functional P[V].

0000000000000 00000000000000000000000	The iterations			
nuoducuon nuncical inculoas Deneminar (csts nuclear inculoas	Numerical methods	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

$$d\epsilon_{\nu,p}(V,U) = -q \int U(\zeta) |\chi_{\nu,p}[V](\zeta)|^2 d\zeta$$

$$d\chi_{\nu,p}(V,U) = -q \sum_{p' \neq p} \frac{\int U(\zeta) \chi_{\nu,p}[V](\zeta) \chi_{\nu,p'}[V](\zeta) d\zeta}{\epsilon_{\nu,p}[V] - \epsilon_{\nu,p'}[V]} \chi_{\nu,p'}[V](z).$$

Iterations

After computing the Gâteaux-derivative of the density and developping calculations, we are led to a Poisson-like equation

$$\begin{split} -\mathrm{div}\left(\varepsilon_{R}\nabla V^{new}\right) &+ \int_{0}^{l_{z}}\mathcal{A}[V^{old}](z,\zeta)V^{new}(\zeta)d\zeta \\ &= -\frac{q}{\varepsilon_{0}}\left(N[V^{old}]-N_{D}\right) + \int_{0}^{l_{z}}\mathcal{A}[V^{old}](z,\zeta)V^{old}(\zeta)d\zeta, \end{split}$$

where $\mathcal{A}[V]$ is essentially the Gâteaux-derivative of the functional P[V].

		The DO
merical methods		

The Gummel scheme

The iteration

Solving the Schrödinger-Poisson block

$$- ext{div}\left(arepsilon_R
abla V^{new}
ight) + rac{q}{arepsilon_0} N[V^{old}] rac{q}{k_B T_L} V^{new} \ = -rac{q}{arepsilon_0} \left(N[V^{old}] - N_D
ight) + rac{q}{arepsilon_0} N[V^{old}] rac{q}{k_B T_L} V^{old},$$

Comparison with Newton

We here repeat the Newton iteration:

$$-\operatorname{div}\left(\varepsilon_{R}\nabla V^{new}\right) + \int_{0}^{l_{z}} \mathcal{A}[V^{old}](z,\zeta)V^{new}(\zeta)d\zeta$$
$$= -\frac{q}{\varepsilon_{0}}\left(N[V^{old}] - N_{D}\right) + \int_{0}^{l_{z}} \mathcal{A}[V^{old}](z,\zeta)V^{old}(\zeta)d\zeta$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

MOSFET

		The DG MOSFET
000000000000		000000000
imerical methods		

The Gummel scheme

The iteration

Solving the Schrödinger-Poisson block

$$- ext{div}\left(arepsilon_R
abla V^{new}
ight) + rac{q}{arepsilon_0} N[V^{old}] rac{q}{k_B T_L} V^{new} \ = \ -rac{q}{arepsilon_0} \left(N[V^{old}] - N_D
ight) + rac{q}{arepsilon_0} N[V^{old}] rac{q}{k_B T_L} V^{old},$$

Comparison with Newton

We here repeat the Newton iteration:

$$\begin{aligned} -\operatorname{div}\left(\varepsilon_{R}\nabla V^{new}\right) &+ \int_{0}^{l_{z}}\mathcal{A}[V^{old}](z,\zeta)V^{new}(\zeta)d\zeta \\ &= -\frac{q}{\varepsilon_{0}}\left(N[V^{old}] - N_{D}\right) + \int_{0}^{l_{z}}\mathcal{A}[V^{old}](z,\zeta)V^{old}(\zeta)d\zeta, \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

0000

The DG MOSFET

Framework

Numerical methods

Benchmark tests

The DG MOSFET

Solver for the Schrödinger and the Poisson equations

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{z,\nu}}\frac{d\chi_{\nu,p}}{dz}\right] - q\left(V+V_c\right)\chi_{\nu,p} = \epsilon_{\nu,p}\chi_{\nu,p}$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

$$-\operatorname{div}\left[\varepsilon_{R}\nabla V\right]+\int_{0}^{l_{z}}\mathcal{A}(z,\zeta)V(\zeta)d\zeta=\mathcal{B}(z).$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system (full) is solved by means of a LAPACK routine called DGESV.

Introduction 0000000000000000 Numerical methods

Numerical methods

Benchmark tests

Solver for the Schrödinger and the Poisson equations

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{z,\nu}}\frac{d\chi_{\nu,p}}{dz}\right] - q\left(V+V_c\right)\chi_{\nu,p} = \epsilon_{\nu,p}\chi_{\nu,p}$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

$$-\operatorname{div}\left[\varepsilon_{R}\nabla V\right]+\int_{0}^{l_{z}}\mathcal{A}(z,\zeta)V(\zeta)d\zeta=\mathcal{B}(z).$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system (full) is solved by means of a LAPACK routine called DGESV.

Introduction 0000000000000000 Numerical methods

Numerical methods

Benchmark tests

Solver for the Schrödinger and the Poisson equations

We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

$$-\frac{\hbar^2}{2}\frac{d}{dz}\left[\frac{1}{m_{z,\nu}}\frac{d\chi_{\nu,p}}{dz}\right] - q\left(V+V_c\right)\chi_{\nu,p} = \epsilon_{\nu,p}\chi_{\nu,p}$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

$$-\operatorname{div}\left[arepsilon_{R}
abla V
ight] + \int_{0}^{l_{z}} \mathcal{A}(z,\zeta) V(\zeta) d\zeta = \mathcal{B}(z).$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule and the linear system (full) is solved by means of a LAPACK routine called DGESV.

			The DG MOSFET
0000000000000	000000000000000000000000000000000000000	000000000000	000000000000000000000000000000000000000
Numerical methods			

Adimensionalization

Adimensionalization is needed in order to improve numerical precision and to exploit the structure of the collision operator.

Wave vector

The wave-vector for the ν^{th} valley reads:

$$(\tilde{k}_x, \tilde{k}_y) = \frac{\sqrt{m_e \kappa_B T_L}}{\hbar} \sqrt{2w(1 + \alpha_\nu w)} \left(\sqrt{m_{x,\nu}} \cos(\phi), \sqrt{m_{y,\nu}} \sin(\phi)\right).$$

BTE

$$\frac{\partial \Phi_{\nu,p}}{\partial t} + \frac{\partial}{\partial x} \left[a_{\nu}^{1} \Phi_{\nu,p} \right] + \frac{\partial}{\partial w} \left[a_{\nu,p}^{2} \Phi_{\nu,p} \right] + \frac{\partial}{\partial \phi} \left[a_{\nu,p}^{3} \Phi_{\nu,p} \right] = \mathcal{Q}_{\nu,p} [\Phi] s(w)$$

▲□▶▲舂▶▲≧▶▲≧▶ 差 のへぐ

Numerical methods

Benchmark tests

The DG MOSFET

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Numerical methods

Time discretization

Runge-Kutta

If the BTE is written in conservation-law form, then we advance in time by the third order Total Variation Diminishing Runge-Kutta scheme: if the evolution equation reads $\frac{df}{dt} = H(t, f)$, then $I f^{(1)} = \Delta t H^n(t^n, f^n)$ 2 $f^{(2)} = \frac{3}{4}f^n + \frac{1}{4}f^{(1)} + \frac{1}{4}\Delta t H^{(1)}(t^n + \Delta t, f^{(1)})$ $f^{n+1} = \frac{1}{3}f^n + \frac{2}{3}f^{(2)} + \frac{2}{3}H^{(2)}\left(t^n + \frac{1}{2}\Delta t, f^{(2)}\right)$

Introduction

Numerical methods

Benchmark tests

イロト 不得 トイヨト イヨト 三日

The DG MOSFET

Outline

Experiments

Introduction

- Kinetic equations
- Kinetic equations in carrier transport
- Kinetic equations in plasma physics
- Kinetic equations in collective behaviour models

Numerical methods

- PWENO interpolations
- Splitting techniques
- Semi-Lagrangian methods
- Semi-Lagrangian DG methods

3 Benchmark tests

- SL methods
- DG scheme

The DG MOSFET

- Introduction
- Numerical methods
- Experiments

Introduction

Numerical methods

Benchmark tests

The DG MOSFET

< ∃→

э

Experiments

Thermodynamical equilibrium

			The DG MOSFET
Experiments			
	~		

Newton vs. Gummel

Newton schemes require much less iterations than Gummel in order to compute the thermodynamical equilibrium.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

		The DG MOSFET
		000000000
Experiments		

Plasma oscillations

mass and average temperature evolution 0 325 mass temperature 320 -1 average temperature (Kelvins) -2 315 variation (percentage) -3 310 -4 305 -5 300 -6 295 2e-12 0 5e-13 1e-12 1.5e-12 time (in seconds)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・の久(?)