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The model

We afford the simulation of a nanoscaled MOSFET.

dranDz layers

gate x—dim

z-dim ggte

source channel

About the scaling

In 1971, the Intel 4004 processor had 1000 transistors, whoseeHangth was
10000 nm. In 1974, the Intel 8008 processor had 6-7 thousand@0id the Intel
Pentium IV had 50 million. Nowadays processors may have 400 millionistans,
whose channel is 28 nm long.

Why isit important?

Smaller MOSFETSs allow for the construction of smaller devices with better
performances; moreover, they allow silicon and energy saving, dine tower
source-drain potential drop needed to switch on or off the transistor.
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z-dim ggte

source channel

dranD)z layers

gate x—dim

Dimensional coupling

x-dimension is unconfined unlikedimension, therefore we adopt a different
description:

@ alongx-dimensiorthe electrons behave likgrticles their movement being
described by the Boltzmann Transport Equation;

@ alongz-dimensiorthe electrons, confined in a potential well, behave like
waves the equilibrium being reached much faster than transport (quasi-stati
phenomenon), their state is given by the stationary-state Schrodinggsicy

c
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The model

Subband decomposition

Due to the confinement, differeatb-bands (another name for theigenvalues of th
Schradinger equatigridentify independent populations, which have to be
transported for separate.
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The model

Subband decomposition

Due to the confinement, differeatb-bands (another name for theigenvalues of the
Schradinger equatigridentify independent populations, which have to be
transported for separate.

Coupling between dimensions

Dimensions and subbands are coupled in the Poisson equation for tpetedion of
the electrostatic field in the expression of the total density.

y
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Bandstructure

The three valleys
The Si bandstructure presents six minima in the first Brillouin zone:

. Projection on the (x,y)-plane
The constant energy surfaces in the

wavevector space Ay
z :

effectiye masses: effective masses:
" my  alpng direction x my¢  along direction x
] m, alpng direction y ' m, along direction

mt  alpng direction z | m; along direction {z

- valley of type 1

The valleys of type 1 have : The valleys of type 4 have
valley of type 3 .

i valley of type 2 Y i
| ! The valleys of type 3 have
: m, =0.19m 1\ effective masses
H m,  along direction x
. m = 0.91 n , m along direction y
valley of type 3 . m, along direction z

The axes of the ellipsoids are disposed alongxttyeandz axes of the reciprocal
lattice. The three minima have the same value, therefore there is no gap.
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Coupling between subbands and valleys

The sub-bands as well as the valleys are coupled by the Poisson edndtien
expression of the total density and, if the case, by the scattering operator
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Bandstructure

Coupling between subbands and valleys

The sub-bands as well as the valleys are coupled by the Poisson edndtien
expression of the total density and, if the case, by the scattering operator

Non-parabolicity

The bandstructure around the three minima can be expanded followikgttee
non-parabolic approximation (indexes the valley):

eEn = e (n‘lf + k}% )7
2 v v
1+\/1+2ayh2(m%+%) v

wheremyy, ., are the axes of the ellispoids (calleffiective masses) of the i
valley alongx, y andz directions, and thé.,, are known as Kane dispersion factors.
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The model

BTE
The Boltzmann Transport Equation (one for each band and for edigly)reads
of, 1 i 1

é)t,p + ﬁvke’kl’n Vv — hv“% “Vidup = Quplf], fup(t=0) = plpMy.
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BTE
The Boltzmann Transport Equation (one for each band and for edigly)reads
of, 1 i 1
at”’ + gvke',f” - Vnfup — ﬁvxeﬁ?‘p Vidp = Quplf],  fup(t=0) = pZM,.

v

Schrodinger-Poisson block

K d [id\,/pM

S 2dz|m, dz } =V + Vo) xuplV] = VXV

2 dz
(XvplV] X V]) = Gpp
—div [zrVV] = _E% (N[V] — Np)
NIVI =D puplxuplVIP
v,p

These equations cannot be decoupled because we needdhéuinctionto compute
the potential (in the expression of ttwal density, and we need the potential to
compute the eigenfunctions.
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The model

The collision operator
The collision operator takes into account the phonon scattering mechdhieads

5 Q2
S
> /]R2 (St sy o for i (K) = Supig ey frp (K)] 0K

vl p!

Quplf]

Qv olf]

everyS’ represents a different interaction.
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The model

The collision operator
The collision operator takes into account the phonon scattering mechdhieads

5 Q2
S
> /R2 (St sy o for i (K) = Supig ey frp (K)] 0K

vl p!

Quplf]

Qv olf]

everyS’ represents a different interaction.

Structure of thes®

The missing dimension of the wave-veckoe R?, instead ok € R?, is replaced by
an overlap integralV,, oy (7 py:

1
Wi p), (v 0

Iz
=/mm%M#m W] =m
0

Spk) s (v k) = Cosur § (e p (K) — €p(k) = some energy

1
W(v,m,(v’ P
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Boundary conditions

13
_________ w_l________ AZ
}kmax | ‘
—— i B
x=0 w x=L  x
-~ 1 -~ ‘ T X
_kmax;

= Dirichlet

_ force the density to stay close - h N
to the equilibrium density 77 7 7 7 7 = homogeneous Neumann

______ = Homogeneous Neumann
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The Newton scheme

The functional
Solving the Schrédinger-Poisson block

ﬁz d 1 d\//.;ﬂVJ pot
| 2] (v v V) = VY]

—div[srVV] = ,gﬂo (N[V] — Np)

is equivalt to minimizing, under the constraints of the Schrodinger equdkien
functionalP[V]

PIV] = —div (srVV) + ;qo (NV] = No),
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The Newton scheme

The functional
Solving the Schrédinger-Poisson block

Rd[ 1 dw,pV
———[ Xl q SV Ve oV = V]

2 dz dz
—div[srVV] = fgﬂ (N[V] — Np)
0

is equivalt to minimizing, under the constraints of the Schrodinger equdkien
functionalP[V]

PIV] = —div (srVV) + ;qo (NV] = No),

The scheme
which is achieved by means of a Newton-Raphson iterative scheme

dP(VOld, Vns/v _ Vold) — —P[VOId].
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The iterations

Derivatives
The Gateaux-derivatives of the eigenproperties are needed:

deyp(V,U) U(Q)[xwpVI(Q)PdC

= JUOxs MOy VIO
a2 euplV] — vy V]

|

\

o
—

dXVaP(Va U)

Xvp [VI(2).
p’'#p
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The iterations

Derivatives
The Gateaux-derivatives of the eigenproperties are needed:

deog(V,U) = =0 [ UQhwslVIQ)dC
_ JU©OxvpVI(©)xop [VI(C)dS ,
dup(V, V) N e M)
Iterations

After computing the Gateaux-derivative of the density and developg@Etmyiations,
we are led to a Poisson-like equation

Iz
—div (srVV™) + / ANV (2, OV™(C)de

3 (v o)+ [ A v o,

€0

whereA[V] is essentially the Gateaux-derivative of the functidrad].
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The Gummel scheme

The iteration
Solving the Schrédinger-Poisson block

_di new g od; g new
div (erVV™) + NV v
_ _4a oldy 9 \nyod; 9 jod
- 2 (Nvey ND)+€0N[V A




Numerical methods for the Schrédinger-Poisson block
[e]e]e] lo}
Iterative schemes

The Gummel scheme

The iteration
Solving the Schrédinger-Poisson block

_di new g od; g new
div (erVV™) + NV v
_ _4a oldy 9 \nyod; 9 jod
- 2 (Nvey ND)+€0N[V A

Comparison with Newton
We here repeat the Newton iteration:

—div (srVV™) + /0 - ANV (z, OV(O)d¢

=~ (NV = No) + /OIZA[V""’MZ, OV,

€o
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Iterative schemes

Framework

introduce initial guess for the initialization
Step 0(|)
step O(ii) | diagonalize Schroedinger operator DSTEQR
[ compute the initial guess for the]  USE given
step O(ii) | density P4 expression

"Poisson" solvef: DGESV
° Newton-Raphson: takes into account Schroedinger eq.
(computation of Gateaux derivatives, matrix full)
o Gummel: decoupled systen (matrix is sparse)

update potential

step 1 (N, oy yew

set

diagonalize Schroedinger operatpr Nold "W | Step 5
new

v old 2y

DSTEQR
step 2

use given update density
expression | new__ \new
step 3

is convergence
constraint fulfilled?2

step 4
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Numerical methods

We need to solve the Schrédinger eigenvalue problem and Poisson eguatio
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Numerical methods

We need to solve the Schrédinger eigenvalue problem and Poisson eguatio
The Schrédinger equation

Equation

1 dyxup
m,, dz

2 dz

Hd
[ } = q(V+Ve) Xvp = €upXup

is discretized by alternate finite differences for the derivatives therythengtric
matrix is diagonalized by a LAPACK routine called DSTEQR.
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Numerical methods

We need to solve the Schrédinger eigenvalue problem and Poisson eguatio

The Schrédinger equation
Equation

1 dy.,
M., ?p} = q(V+Ve) Xvp = €upXup

nd
2 dz

is discretized by alternate finite differences for the derivatives therythengtric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation
We need to solve equations like

iRV + [ Az OV = B2).
0

The derivatives are discretized by finite differences in alternate dires;tthe
integral is computed via trapezoid rule and the linear system (full) is solyeadans
of a LAPACK routine called DGESV.
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Wave-vector space

The wave-vector space is adimensionalized by a change of variabledlipsoidal
variables, in order to better integrate the scattering operator and to hempla s
expression for the kinetic energy and related magnitudes.
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Adimensionalizations

Wave-vector space

The wave-vector space is adimensionalized by a change of variabledlipsoidal
variables, in order to better integrate the scattering operator and to hempla s
expression for the kinetic energy and related magnitudes.

Ellipsoidal coordinated

The wave-vector for the' valley reads:

(ko) = VBT /20T W) (/i COS(6), o/ Sin(s)
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BTE in ellipsoidal coordinates

Let the flux coefficients

oV v2w(1 4 a,w) cog¢) 1
N 14 200, W
2 _ vOeup 1 v2w(1 4+ a,w) cog¢)
au,p(X7 W7 ¢) _C ax (X) 1 + Zayw \/m
oV O€vp ) sin(¢)

o i /WL T )
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Adimensionalizations

BTE in ellipsoidal coordinates

Let the flux coefficients
2w(l+a,w)cos¢) 1
VMo 1+ 2a,w
v Z\N 1 v
oiwa) = 'O 1 VAVLE 0 Codd)

a(w¢) = C

ox 1+ 2a,W VM
apxwe) = 0 SO
Moo/ 2wW(1 4+ a,w)
Conservation-law form
0P, p 0 71 0 [ 0 .3 _
ot + X [ yq)u,p] + W |:au,p¢l/,pj| + % [au,p(bu,p:| = Qu,p[q)]s(w)
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Time discretization

Runge-Kutta

We propose a Runge-Kutta time discretization.

Runge-Kutta

If the BTE is written in conservation-law form, then we advance in time by tind th
order Total Variation Diminishing Runge-Kutta scheme: if the evolution tguoa

reads% = H(t,f), then
Q M = AtH"(t", ")
Q @ =3f"4 HW L IAHD (1" + AL, f D)
@ "= 1" 2@ 4 2HO (14 JAL )
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Newton vs. Gummel

Number of iterations

[SGENNENTE
oe

Newton schemes require much less iterations than Gummel in order taitothp
thermodynamical equilibrium and any update of the potential; the resulteare
same up to machine error.

convergence of the potential

Total number of terations per ime sep
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Equilibria

Thermodynamical equilibrium: three-valley case

potential energy [

z[m]
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potential energy
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Time-dependent simulations

Long-time behavior

We propose now some results relative to the long-time behavior of thexsyste
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Plasma oscillations

Mass and temperature oscillations

mass and average temperature evolution
0 T T T 325

mass
temperature -

\ B

s 2T o {95 =
g iy g
"
g 3t W\’\ Jaw0 E
s \ﬂ g
S |V 3
g T >
> a4} U\JWV\ {305 E
\ 3

0 5e-13 le-12 1.5e-12 2e-12
time (in seconds)
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Numerically-computed oscillations

The plasma frequency is given by

o?Ne
LUp = .
EREOM,

e R m, | Ne Whum wp Ratio | Expected
( x1028m—3) ( x10%%m—3) (x10M4s— 1 (x1014s—1) % Ratio

[ [117]05] 400 [we=1344[1475 [1 [/ |
2 117 | 0.5 | .783 2.051 2.064 1.52 V2
4 117 | 0.5 | 1.544 2.813 2.899 2.09 | 2
1 585 | 0.5 | .400 1.848 2.086 1.37 | V2
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