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Motivation

Kinetic equations

Origin.

Kinetic equations arise in physics and engineering when a huge amount ofparticles
is described statistically by a distribution functionf (t, x, v). Some examples:

semiconductor physics;

gas dynamics;

plasma physics;

collective behaviour models.

Diffusive scaling.

The diffusive scaling is meant to represent a regime in which the mean free path
travelled by the particles goes to zero.
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Setting

Setting the problem

Kinetic equation.

Take the 1Dtransport equation

ε∂tfε + v∂xfε =
1
ε
Q[fε], Q[fε] = 〈fε〉 − fε

with (t, x, v) ∈ [0, T]× R× V, completed by initial and boundary conditions.
Particles are not driven by any force field and interact through a relaxation-type
collision operator.
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Setting

Setting the problem

The velocity space(V, µ)

V is a space endowed with a measureµ such that it satisfies:

(i) 〈1〉 = 1;

(ii) 〈h(v)〉 = 0 for any odd functionh;

(iii)
〈

v2
〉

= d ∈ R>0.

In our notations〈f 〉 =
∫

V f (v)dµ(v).

Examples of(V, µ)

V = (−1, 1), dµ(v) = 1
2dλ(v);

V = (−1, 1), {vi}
N
i=1 ⊆ (−1, 1)N , dµ(v) = 1

N

∑N
i=1 δ(v = vi) :

the points{vi}
N
i=1 have to be well chosen, otherwise properties(ii) and(iii) do

not hold;

V = R, dµ(v) = 1√
2π

e−
v2
2 dλ(v).
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Heat equation andP1-approximation

Heat equation

Diffusive limit.

As ε→ 0, fε relaxes toF0 solution to theheat equation:

ε∂tfε + v∂xfε =
1
ε
Q[fε] −−−→

ε→0
∂tF0 −

〈

v2
〉

∂2
xxF0 = 0.

Proof.

Formally take the Hilbert expansion inε

fε = F0 + εF1 + ε2F2 + . . .

inject into thekinetic equationand extract theFi.

Drawbacks.

Theheat equationis notv-dependent: no microscopic feature.

Theheat equationtransports information at infinite velocity, thetransport
equationatO

(

1
ε

)

velocity.
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Heat equation andP1-approximation

Approximations

TheP1-approximation

By truncating the Hilbert expansion at first order

fε ≈ F0 + εF1

we obtain theP1-approximation

fε(t, x, v) ≈ F0(t, x)− εv∂xF0(t, x)

which isv-dependent, so that it somehow restores some microscopic features.

Drawbacks

TheP1-approximation might be negative.

As well as in heat equation, information is transported at infinite velocity.
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Intermediate models

Moment equations

Moments

Define the zeroth, first and second order moments by




ρ
J
P



 =

〈





1
v/ε
v2



 fε

〉

.

Moment equations

Integrating the kinetic equation, we obtain the moment equations

∂tρ+ ∂xJ = 0

ε2∂tJ + ∂xP = −J,

which need someclosure strategy, thekth-moment equation being dependent on the
(k + 1)th-moment.
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Intermediate models

Zeroth-order closure

Two closures are proposed, one at zeroth order and one at first order.

Zeroth order closure

By truncating the modified Hilbert expansionfε = ea0+εa1+ε2a2+... at first order

fε ≈ exp(a0 + εa1)

and injecting the approximation thus obtained

fε(t, x, v) ≈
ρ(t, x)
Z(t, x)

e−εv ∂xρ
ρ

(t,x)

into the zeroth moment equation, we obtain the following system:

∂tρ− ∂x

[

ρ

ε
G

(

ε
∂xρ

ρ

)]

= 0.
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Intermediate models

Zeroth-order closure

Zeroth order closure

The system is:

∂tρ− ∂x

[

ρ

ε
G

(

ε
∂xρ

ρ

)]

= 0.

Some notations

We have introduced:

Z(t, x) is a normalizing factor such that〈fε〉 = ρ(t, x);

F(x) = 〈exv〉;

G(x) = F
′

F
(x).

Examples

If V = (−1, 1) anddµ = 1
2dλ (normalized Lebesgue measure), then

G(x) = coth(x)−
1
x
.
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Intermediate models

First-order closure

Entropy Minimization Principle

The first-order closure comes from the following Entropy Minimization Principle:

fε = argmin{〈fε log(fε)〉}

under the constraints
〈(

1
v/ε

)

fε

〉

=

(

ρ
J

)

.

The closed system

We can thus express the second moment as

P = ρψ

(

εJ
ρ

)

, ψ(x) =
F

′′

F

(

G
(−1)(x)

)

,

so that the first-order closure reads

∂tρ+ ∂xJ = 0, ε2∂tJ + ∂x

[

ρψ

(

εJ
ρ

)]

= −J.



Introduction Approximations Asymptotic-preserving schemes Experiments

Intermediate models

First-order closure

Entropy Minimization Principle

The first-order closure comes from the following Entropy Minimization Principle:

fε = argmin{〈fε log(fε)〉}

under the constraints
〈(

1
v/ε

)

fε

〉

=

(

ρ
J

)

.

The closed system

We can thus express the second moment as

P = ρψ

(

εJ
ρ

)

, ψ(x) =
F

′′

F

(

G
(−1)(x)

)

,

so that the first-order closure reads

∂tρ+ ∂xJ = 0, ε2∂tJ + ∂x

[

ρψ

(

εJ
ρ

)]

= −J.



Introduction Approximations Asymptotic-preserving schemes Experiments

Intermediate models

First-order closure

Reconstruction

The microscopic approximation is reconstructed by

f̃ε(t, x, v) = ρ(t, x)
exp
[

vG(−1)
(

εJ
ρ(t,x)

)]

F ◦G(−1)
(

εJ
ρ(t,x)

) .

Notations

We are using the following notations:

F(x) = 〈exv〉 , G(x) =
F
′

F
(x), ψ(x) =

F
′′

F

(

G
(−1)(x)

)

.

Example

In caseV = (−1, 1) anddµ = 1
2dλ (normalized Lebesgue measure), we have

F(x) =
sinh(x)

x
, G(x) = coth(x)−

1
x
.
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Kinetic equation

Kinetic equation

We propose a splitting scheme for solving the kinetic equation

ε∂tfε + v∂xfε =
1
ε
(〈fε〉 − fε)

without need of mesh-resolving parameterε as it tends to zero.

Decomposition

Split fε into itsmean valueplusfluctuations:

fε = ρε + εgε = 〈fε〉+ εgε.

Boundedness of the fluctuations

We have from the boundendess in theLp(V, µ)-spaces of the collision operator

‖gε‖
2
L2

t,x,v
=

∫

R≥0

∫

R

∫

V
|fε − ρε|

2 dt dx dv

=

∫

R≥0

∫

R

∫

V
|Q[fε]|

2 dt dx dv

≤ C
∫

R≥0

∫

R

∫

V
|fε|

2dt dx dv.
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Kinetic equation

Kinetic equation

Reformulation

Inject the decompositionfε = ρε + εgε into the kinetic equation to obtain

∂tfε +
v
ε
∂xρε + v∂xgε =

1
ε2

(ρε − fε).

First-order splitting strategy

(i) solve for a∆t-step the equation∂tfε = 1
ε2 (ρε − fε)− v

ε
∂xρε;

(ii) solve for a∆t-step the equation∂tfε + v∂xgε = 0.

Evolution of the fluctuations

To complete the scheme, we still need to write the evolution equation for the
fluctuationsgε:

(i) 〈v〉 = 0 =⇒ ∂tρε = 0 =⇒ ∂tgε = − 1
ε2 gε −

v
ε2∂xρε;

(ii) for Step (ii) we use∂tgε = 0.
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Kinetic equation

Kinetic equation

Résumé

If we take into account only the leading contribution inε,

(i) ∂tfε = − 1
ε2 (fε − ρε) , ∂tgε = − 1

ε2 (gε + v∂xρε) , ∂tρε = 0;

(ii) ∂tfε + v∂xgε = 0, ∂tgε = 0.

Time discretization of the scheme

Droppingε-subscript for convenience,

Step (i)a relaxf : f n+1/2 = e−
∆t
ε2 f n +

(

1− e−
∆t
ε2

)

ρn;

Step (i)b relaxg: gn+1/2 = e−
∆t
ε2 gn −

(

1− e−
∆t
ε2

)

v∂xρ
n;

Step (i)c ρn+1/2 = ρn;

Step (ii)a convectf : f n+1 = f n+1/2 −∆t · v∂xgn+1/2;

Step (iii)b updateρ: ρn+1 =
〈

f n+1
〉

;

Step (ii)c let gn+1 = gn+1/2; we might usegn+1 = f n+1−ρn+1

ε
instead (to be discussed).
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Kinetic equation

Kinetic equation

AP property

The relaxed schemeε→ 0 reads:

∂tf − v2∂2
xxρ = 0, which implies that∂tρ−

〈

v2
〉

∂2
xxρ = 0. This is the heat

equation with the proper constant;

gn+1/2 = −v∂xρ
n+1/2, which is coherent with the Hilbert expansion.

The scheme, therefore, relaxes to a solver to the proper heat equation.

The case of normalized Lebesgue measure

Let us use in the following the Lebesgue setting:

x

v

−1

1

xmin xmax

V−space is
measured through
the normalized
Lebesgue measure
d   = 1/2 dµ λ
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d   = 1/2 dµ λ
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Kinetic equation

Kinetic equation

Time-space discretized scheme

Step (i)a f n+1/2
i,j = e−

∆t
ε2 f n

i,j +
(

1− e−
∆t
ε2

)

ρn
i ;

Step (i)b gn+1/2
i,j = e−

∆t
ε2 gn

i,j +
(

1− e−
∆t
ε2

)

D̄jρ
n
i ;

Step (i)c ρ
n+1/2
i = ρn

i ;

Step (ii)a f n+1
i,j = f n+1/2

i,j +∆tDjg
n+1/2
i,j ;

Step (ii)b gn+1
i,j = gn+1/2

i,j ;

Step (iii)c by a right-rectangluar rule:ρn+1
i = ∆v

2

∑j−2
j=0 f n+1

i,j .
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Kinetic equation

Kinetic equation

The space-derivativesD andD̄

In the fully-relaxed scheme, we obtainρn+1
i = ρn

i +∆tDjD̄jρ
n
i . In order to recover

the classical three-point centered scheme for the heat equation, needed for the scheme
to be stable,D andD̄ must be taken in aternate direction. We define, therefore:

[Djϕ]i =
1
∆x

{

−vj (ϕi − ϕi−1) if vj ∈ V+

−vj (ϕi+1 − ϕi) if vj ∈ V−

[

D̄jϕ
]

i
=

1
∆x

{

−vj (ϕi+1 − ϕi) if ∈ V+

−vj (ϕi − ϕi−1) if vj ∈ V−

where we have also introducedV± = {j ∈ {0, . . . ,Nv − 1} such thatvj ∈ R±}.

Boundary conditions

Boundary conditions should enforce mass conservation during the advection step:

Nx−2
∑

i=1

∑

j

Djg
n+1/2
i,j = 0 ⇐=

{

gn+1/2
0,k = −1

vk #[V+]

∑

vj∈V−
vjg

n+1/2
1,j for k ∈ V+

gn+1/2
Nx−1,k =

−1
vk #[V−]

∑

vj∈V+
vjg

n+1/2
Nx−2,j for k ∈ V−.
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First-order closure

Numerics for the first-order closure

We recall the first-order closure (droppingε-dependency):

∂tρ+ ∂xJ = 0

ε2∂tJ + ∂x

[

ρψ

(

εJ
ρ

)]

= −J

Strategy

We introduce a new unknownz(t, x) and two new parametersλ andα; the non-linear
equation for the first moment is now an advection equation and the non-linearities
only appear at a right hand side:





∂tt ∂x 0
0 ε2∂t ∂x

0 ε2λ2∂x ∂t









ρ
J
z



 =





0
−J

1
α
(ρψ(u)− z)



 ,

with u = εJ
ρ

. Asα→ 0, this system relaxes towards the original system.
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First-order closure

Numerics for the first-order closure

Diagonalization

We diagonalize it by means of a linear transformation of its unknowns (µ = ελ)





ρ
J
z



 =





1
µ2

1
µ2

1
µ2

0 1
εµ

− 1
εµ

0 1 1









f0
f+
f−



 ,

Splitting

then apply splitting technique between theα-relaxations and theε-relaxations:





∂t 0 0
0 ∂t +

µ
ε
∂x 0

0 0 ∂t −
µ
ε
∂x









f0
f+
f−



 =





− 1
α
(ρψ(u)− z)

−
f+
ε2 + z

2ε2+
1

2α (ρψ(u)− z)

−
f−
ε2 + z

2ε2+
1

2α (ρψ(u)− z)



 .
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First-order closure

Numerics for the first-order closure
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First-order closure

Numerics for the first-order closure

Stiffness inStep 1.

Step 1 is again stiff asε→ 0:

∂tf± ±
µ

ε
∂xf± = −

1
ε2

[

f± −
z
2

]

,

which means thatf± is relaxed towardsz2 , so we apply the same strategy as before
and splitf± into the following sum:

f± =
z
2
+ εg±

and follow the same calculations as before.
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First-order closure

Numerics for the first-order closure

SolvingStep 1.

Developping all the computations and rewriting the system in the original variables
we get:

zn+1/2 = zn + ε(1−e−∆t/ε2
)

2

(

D̄+(zn) + D̄−(zn)
)

+∆t
[

D+

(

e−∆t/ε2 µJn

2

+(1− e−∆t/ε2
)
D̄+(zn)

2

)

+ D−
(

e−∆t/ε2 (−µJn)
2 + (1− e−∆t/ε2

)
D̄−(zn)

2

)]

Jn+1/2 = e−∆t/ε2
Jn + 1−e−∆t/ε2

2µ

(

D̄+(zn)− D̄−(zn)
)

+ ∆t
εµ

[

D+

(

e−∆t/ε2 µJn

2

+(1− e−∆t/ε2
)
D̄+(zn)

2

)

− D−
(

e−∆t/ε2 (−µJn)
2 + (1− e−∆t/ε2

)
D̄−(zn)

2

)]

ρn+1/2 = ρn + ∆t
µ2

(

D+

(

e−∆t/ε2 µJn

2 + (1− e−∆t/ε2
)
D̄+(zn)

2

)

+ D−
(

e−∆t/ε2 (−µJn)
2 + (1− e−∆t/ε2

)
D̄−(zn)

2

))

.
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First-order closure

Numerics for the first-order closure

SolvingStep 2.

Step 2 just involves relaxations, and no more details are given; after reconstructing
the original variables we obtain

zn+1 = e−∆t/αzn+1/2 + (1− e−∆t/α)ρn+1/2ψn+1/2

Jn+1 = Jn+1/2

ρn+1 = ρn+1/2.
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First-order closure

Numerics for the first-order closure

Derivatives

Discretized derivatives are subjected to upwinding and are taken in alternate
directions, in order to rescue the classical three-points centered scheme for the
Laplacian of the heat equation in the(α→ 0, ε→ 0)-scheme:

(

D̄+(ϕ)
)

i
= −

µ

∆x
(ϕi+1 − ϕi)

(D+(ϕ))i = −
µ

∆x
(ϕi − ϕi−1)

(

D̄−(ϕ)
)

i
=

µ

∆x
(ϕi − ϕi−1)

(D−(ϕ))i =
µ

∆x
(ϕi+1 − ϕi) .

Boundary conditions

Homogeneous Neumann conditions are used to enforce mass conservation:

ρn
0 = ρn

1, ρ
n
Nx−1 = ρn

Nx−2, zn
0 = zn

1, zn
Nx−1 = zn

Nx−2, Jn
0 = −Jn

1, Jn
Nx−1 = −Jn

Nx−2.
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First-order closure

Numerics for the first-order closure

AP properties: the limitα→ 0

Jn+1 = e−∆t/ε2
Jn +

1− e−∆t/ε2

2µ

(

D̄+(ρ
nψn)− D̄−(ρ

nψn)
)

+
∆t
εµ

[

D+

(

e−∆t/ε2 µJn

2
+ (1− e−∆t/ε2

)
D̄+(ρ

nψn)

2

)

−D−

(

e−∆t/ε2 (−µJn)

2
+ (1− e−∆t/ε2

)
D̄−(ρ

nψn)

2

)]

,

ρn+1 = ρn +
∆t
µ2

(

D+

(

e−∆t/ε2 µJn

2
+ (1− e−∆t/ε2

)
D̄+(ρ

nψn)

2

)

+D−

(

e−∆t/ε2 (−µJn)

2
+ (1− e−∆t/ε2

)
D̄−(ρ

nψn)

2

))

.

AP properties: the limitε→ 0

ρn+1 = ρn + ψ(0)
∆t

(∆x)2
(ρn

j+1 − 2ρn
j + ρn

j−1).
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First-order closure

Numerics for the first-order closure

AP properties: the limitα→ 0
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Zeroth-order closure
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Zeroth-order closure

Numerics for the zeroth-order closure

We recall the the zeroth-order closure reads

∂tρ− ∂x

[

ρ

ε
G

(

ε
∂xρ

ρ

)]

= 0.

Strategy

The zeroth-order closure is seen as the limitα→ 0 of the following system:
(

∂t ∂x
µ2

ε2 ∂x ∂t

)

(

ρ
J

)

=

(

0

− 1
α

[

J + ρ
ε
G

(

ε ∂xρ
ρ

)]

)

.

Diagonalization

We diagonalize the system by changing variablesf± =
ρ

2
±
εJ
2µ

thus obtaining the

system

∂tf± ±
µ

ε
∂xf± =

1
α

[

ρ

2
− f± ∓

ρ

2µ
G

(

ε
∂xρ

ρ

)]

.
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Zeroth-order closure

Numerics for the zeroth-order closure

Decomposition

We follow the same decomposition strategy of splitting into average and fluctuations:

g± =
1
ε

f± −
1
2ε
ρ.

First-order splitting strategy

We solve the resulting system

∂tf± ± µ∂xg± =
1
α

[

ρ
2 − f± ∓ ρ

2µG

(

ε ∂xρ
ρ

)]

∓ µ
2ε∂xρ by splitting it into:

Step (i) solve for a∆t-time step

∂tf± =
1
α

[

ρ

2
− f± ∓

ρ

2µ
G

(

ε
∂xρ

ρ

)]

∓
µ

2ε
∂xρ;

Step (ii) solve for a∆t-time step

∂tf± ±
µ

ε
∂xf± = 0, ∂tg± = 0.
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Zeroth-order closure

Numerics for the zeroth-order closure

Discretized system

Step (i)a

f n+1/2
± = e−∆t/αf n

± +
ρn

2
(1− e−∆t/α)

[

1∓
1
µ
G

(

∓
ε

µ

D̄±ρ
n

ρn

)]

+α(1− e−∆t/α)
1
2ε

D̄±ρ
n;

Step (i)b

gn+1/2
± =

1
ε

f n+1/2
± −

1
2ε
ρn+1/2;

Step (ii)a
f n+1
± = f n+1/2

± +∆tD±gn+1/2
± ;

Step (ii)b
gn+1
± = gn+1/2

± .



Introduction Approximations Asymptotic-preserving schemes Experiments

Zeroth-order closure

Numerics for the zeroth-order closure

AP properties: the relaxed schemeα→ 0

Step (i)a results into

f n+1/2
± =

ρn

2

[

1+
1
µ
G

(

ε

µ

D̄±ρ
n

ρn

)]

,

while Step (i)a into

gn+1/2
± =

ρn

2µε
G

(

ε

µ

D̄±ρ
n

ρn

)

.

Therefore, in terms of the mean valueρ, we have

ρn+1 = ρn +∆t

{

D+

[

ρn

2εµ
G

(

ε

µ

D̄+ρ
n

ρn

)]

+D−

[

ρn

2εµ
G

(

ε

µ

D̄−ρ
n

ρn

)]}

.

AP properties:ε→ 0

As ε→ 0, the system relaxes to a scheme for the heat equation, as long as the
derivativesD± andD̄± are taken in alternate directions to recover the classical
centered three-point scheme.
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Zeroth-order closure

Numerics for the zeroth-order closure

AP properties: the relaxed schemeα→ 0

Step (i)a results into

f n+1/2
± =

ρn

2

[

1+
1
µ
G

(

ε

µ

D̄±ρ
n

ρn

)]

,

while Step (i)a into

gn+1/2
± =

ρn

2µε
G

(

ε

µ

D̄±ρ
n

ρn

)

.

Therefore, in terms of the mean valueρ, we have

ρn+1 = ρn +∆t

{

D+

[

ρn

2εµ
G

(

ε

µ
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+D−

[

ρn

2εµ
G

(

ε

µ

D̄−ρ
n
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)]}

.

AP properties:ε→ 0

As ε→ 0, the system relaxes to a scheme for the heat equation, as long as the
derivativesD± andD̄± are taken in alternate directions to recover the classical
centered three-point scheme.
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AP properties of the schemes

Kinetic solver

Relaxation to the heat equationε→ 0

Figure:L2
t,x,v-error of the distribution functionf with respect to the solution of the

heat equation with a symmetric initial datum, for a mesh of 100x100, with respect to
ε.
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AP properties of the schemes

First-order closure solver

Relaxationα→ 0 for a fixedε

Figure:L2
t,x-error of the densitiesρ for theα > 0 method with respect to the

completely relaxed schemeα = 0 for ε = 0.01.
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Comparisons

Comparison between closures

We plot here theL2
t,x,v-difference between thefε(t, x, v) given by the kinetic scheme

and thẽfε(t, x, v) reconstructed from heat equation or closure schemes. As initial
datum we choose a symmetricf0 and an asymmetricf0:

f0(x, v) =







2 −0.5 ≤ x ≤ 0.5 and − 0.75≤ v ≤ 0.25 for the asymmetric i. d.
2 −0.5 ≤ x ≤ 0.5 and − 0.5 ≤ v ≤ 0.5 for the symmetric i. d.
1 otherwise

Figure:Left: symmetric initial datum. Right: asymmetric initial datum.
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The system


















∂tfε +
v
ε
∂xfε =

1
ε2

(〈fε〉 − fε) + σa(Θ− ρ) + S

∂tΘ = σa(ρ−Θ)

S = S(t, x) = a given source.

Strategy

We shall write numerical schemes for three levels, exactly as for the case of the
benchmark kinetic equation:

kinetic level;

first-order closure;

zeroth-order closure.
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The system


















∂tfε +
v
ε
∂xfε =

1
ε2

(〈fε〉 − fε) + σa(Θ− ρ) + S

∂tΘ = σa(ρ−Θ)

S = S(t, x) = a given source.

Strategy

We shall write numerical schemes for three levels, exactly as for the case of the
benchmark kinetic equation:

kinetic level;

first-order closure;

zeroth-order closure.
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Kinetic level

The distribution function is split into average and fluctuationsfε = ρε + εgε, then a
first-order splitting procedure is adopted:

Step (i) Solve for∆t



































gn+1/2 = e−∆t/ε2
gn − (1− e−∆t/ε2

)v∂xρ
n,

f n+1/2 = e−∆t/ε2
f n + (1− e−∆t/ε2

)ρn,

Θn+1/2 = e−σa∆tΘn + σa(1− e−σa∆t)ρn,

ρn+1/2 = ρn;

Step 2.- Solve for∆t the convection equation

∂tf + v∂xg = σa(Θ− ρ) + S,

then updateρn+1.
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First-order closure

The system














∂tρ+ ∂xJ = σa(Θ− ρ) + S,

ε2∂tJ + ∂x

[

ρψ
(

εJ
ρ

)]

= −J

∂tΘ = σa(ρ−Θ).

is seen as the relaxation, asα→ 0, of the following:






























∂tρ+ ∂xJ = σa(Θ− ρ) + S,

ε2∂tJ + ∂xz = −J,

∂tz + ε2λ2∂xJ =
1
α

(

ρψ(εJ/ρ)− z
)

∂tΘ = σa(ρ−Θ).
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First-order closure: strategy

Diagonalize the system usingf0 andf±, then split:

Step (i) Solve

∂tf0 = µ2 (σa(Θ− ρ) + S),

∂tf± = −
f±
ε2

+
z

2ε2
∓ µ∂xg± ∓

µ

2ε
∂xz,

∂tΘ = σa(ρ−Θ),

Step (ii) Solve the ODE

∂tf0 = −
1
α
(ρψ(u)− z),

∂tf± =
1

2α
(ρψ(u)− z),

∂tΘ = 0.
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Zeroth-order closure






∂t̺− ∂x

(̺

ε
G
(

ε
∂x̺

̺

)

)

= σa(Θ− ρ) + S,

∂tΘ = σa(ρ−Θ),

is seen as the relaxation, whenα tends to 0, of


















∂tρ+ ∂xJ = σa(Θ− ρ) + S,

∂tJ + µ2

ε2 ∂xρ = −
1
α

[

J +
ρ

ε
G

(

ε
∂xρ

ρ

)]

,

∂tΘ = σa(ρ−Θ).
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Solver

Following the same strategy as for the zeroth-order closure of the benchmark system,
and relaxing the numerical scheme toα = 0, we obtain the following

Θn+1 =e−σa∆tΘn + σa(1− e−σa∆t)ρn.

ρn+1 = ρn +∆t

{

D+

[

ρn

2εµ
G

(

ε

µ

D̄+ρ
n

ρn

)]

+D−

[

ρn

2εµ
G

(

ε

µ

D̄−ρ
n

ρn

)]}

+∆t
(

σa(Θ
n+1 − ρn) + Sn

)

.
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Numerical results

(a) 0th order model (b) 1st order model

(c) 0th order model (d) 1st order model

Figure: t = 1; (a) and (b):f0 = ρ0 = Θ0 = 10−10; (c) and (d):f0 = ρ0 = Θ0 = 1.
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Numerical results

(e) Heat (f) Kinetic (g) SL-WENO

(h) Heat (i) Kinetic (j) SL-WENO

Figure:Su-Olson test: Comparison of the densityρ computed by the different
models asε varies at timet = 1 (continued).
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Numerical results

Figure:ε = 0.026, the initial datum isf0 = ρ0 = Θ0 = 10−10.
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Su-Olson tests

Numerical results

Figure:ε = 0.1, the initial datum isf0 = ρ0 = Θ0 = 10−10.
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Su-Olson tests

Numerical results

Figure:ε = 0.26, the initial datum isf0 = ρ0 = Θ0 = 10−10.
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Numerical results

Figure:ε = 0.26, the initial datum isf0 = ρ0 = Θ0 = 1.
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Numerical results

Figure:ε = 1, the initial data isf0 = ρ0 = Θ0 = 1.
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