AP schemes for intermediate models between a kinetic equation and its diffusive limit

José Antonio Carrillo de la Plata, Thierry Goudon, Pauline Godillon-Lafitte, Francesco Vecil

Universitat de València

ICNAAM 2011

Outline

(1) Introduction

- Motivation
- Setting
(2) Approximations
- Heat equation and \mathbb{P}^{1}-approximation
- Intermediate models
(3) Asymptotic-preserving schemes
- Kinetic equation
- First-order closure
- Zeroth-order closure
(4) Experiments
- AP properties of the schemes
- Comparisons
- Su-Olson tests

Outline

(1) Introduction

- Motivation
- Setting
(2) Approximations
- Heat equation and \mathbb{P}^{1}-approximation
- Intermediate models
(3) Asymptotic-preserving schemes
- Kinetic equation
- First-order closure
- Zeroth-order closure

4 Experiments

- AP properties of the schemes
- Comparisons
- Su-Olson tests

Kinetic equations

Origin.
Kinetic equations arise in physics and engineering when a huge amount of particles is described statistically by a distribution function $f(t, x, v)$. Some examples:

- semiconductor physics;
- gas dynamics;
- plasma physics;
- collective behaviour models.

Diffusive scaling.
The diffusive scaling is meant to represent a regime in which the mean free path travelled by the particles goes to zero.

Kinetic equations

Origin.
Kinetic equations arise in physics and engineering when a huge amount of particles is described statistically by a distribution function $f(t, x, v)$. Some examples:

- semiconductor physics;
- gas dynamics;
- plasma physics;
- collective behaviour models.

Diffusive scaling.
The diffusive scaling is meant to represent a regime in which the mean free path travelled by the particles goes to zero.

Setting

Outline

(1) Introduction

- Motivation
- Setting
(2) Approximations
- Heat equation and \mathbb{P}^{1}-approximation
- Intermediate models
(3) Asymptotic-preserving schemes
- Kinetic equation
- First-order closure
- Zeroth-order closure
(4) Experiments
- AP properties of the schemes
- Comparisons
- Su-Olson tests

Setting the problem

Kinetic equation.
Take the 1D transport equation

$$
\varepsilon \partial_{t} f_{\varepsilon}+v \partial_{x} f_{\varepsilon}=\frac{1}{\varepsilon} \mathcal{Q}\left[f_{\varepsilon}\right], \quad \mathcal{Q}\left[f_{\varepsilon}\right]=\left\langle f_{\varepsilon}\right\rangle-f_{\varepsilon}
$$

with $(t, x, v) \in[0, T] \times \mathbb{R} \times V$, completed by initial and boundary conditions. Particles are not driven by any force field and interact through a relaxation-type collision operator.

Setting the problem

The velocity space (V, μ)
V is a space endowed with a measure μ such that it satisfies:
(i) $\langle 1\rangle=1$;
(ii) $\langle h(v)\rangle=0$ for any odd function h;
(iii) $\left\langle v^{2}\right\rangle=d \in \mathbb{R}_{>0}$.

In our notations $\langle f\rangle=\int_{V} f(v) d \mu(v)$.

Examples of (V, μ)
${ }^{0} V=(-1,1), \quad d \mu(v)=\frac{1}{2} d \lambda(v)$;

- $V=(-1,1), \quad\left\{v_{i}\right\}_{i=1}^{N} \subseteq(-1,1)^{N}, \quad d \mu(v)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(v=v_{i}\right)$
the points $\left\{v_{i}\right\}_{i=1}^{N}$ have to be well chosen, otherwise properties (ii) and (iii) do not hold;
- $V=\mathbb{R}$,

Setting the problem

The velocity space (V, μ)
V is a space endowed with a measure μ such that it satisfies:
(i) $\langle 1\rangle=1$;
(ii) $\langle h(v)\rangle=0$ for any odd function h;
(iii) $\left\langle v^{2}\right\rangle=d \in \mathbb{R}_{>0}$.

In our notations $\langle f\rangle=\int_{V} f(v) d \mu(v)$.

Examples of (V, μ)

- $V=(-1,1), \quad d \mu(v)=\frac{1}{2} d \lambda(v)$;
- $V=(-1,1), \quad\left\{v_{i}\right\}_{i=1}^{N} \subseteq(-1,1)^{N}, \quad d \mu(v)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(v=v_{i}\right)$: the points $\left\{v_{i}\right\}_{i=1}^{N}$ have to be well chosen, otherwise properties (ii) and (iii) do not hold;
- $V=\mathbb{R}, \quad d \mu(v)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{v^{2}}{2}} d \lambda(v)$.

Outline

(1) Introduction

- Motivation
- Setting
(2) Approximations
- Heat equation and \mathbb{P}^{1}-approximation
- Intermediate modelsAsymptotic-preserving schemes
- Kinetic equation
- First-order closure
- Zeroth-order closure
(4) Experiments
- AP properties of the schemes
- Comparisons
- Su-Olson tests

Heat equation

Diffusive limit.
As $\varepsilon \rightarrow 0, f_{\varepsilon}$ relaxes to F_{0} solution to the heat equation:

$$
\varepsilon \partial_{t} f_{\varepsilon}+v \partial_{x} f_{\varepsilon}=\frac{1}{\varepsilon} \mathcal{Q}\left[f_{\varepsilon}\right] \quad \xrightarrow[\varepsilon \rightarrow 0]{\longrightarrow} \quad \partial_{t} F_{0}-\left\langle v^{2}\right\rangle \partial_{x x}^{2} F_{0}=0 .
$$

Proof.
Formally take the Hilbert expansion in ε
inject into the kinetic equation and extract the F_{i}.

Drawbacks.

- The heat equation is not v-dependent: no microscopic feature.
- The heat equation transports information at infinite velocity, the transport equation at $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ velocity.

Heat equation

Diffusive limit.
As $\varepsilon \rightarrow 0, f_{\varepsilon}$ relaxes to F_{0} solution to the heat equation:

$$
\varepsilon \partial_{t} f_{\varepsilon}+v \partial_{x} f_{\varepsilon}=\frac{1}{\varepsilon} \mathcal{Q}\left[f_{\varepsilon}\right] \quad \xrightarrow[\varepsilon \rightarrow 0]{ } \quad \partial_{t} F_{0}-\left\langle v^{2}\right\rangle \partial_{x x}^{2} F_{0}=0 .
$$

Proof.
Formally take the Hilbert expansion in ε

$$
f_{\varepsilon}=F_{0}+\varepsilon F_{1}+\varepsilon^{2} F_{2}+\ldots
$$

inject into the kinetic equation and extract the F_{i}.

Drawbacks

- The heat equation is not v-dependent: no microscopic feature.
- The heat equation transports information at infinite velocity, the transport equation at $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ velocity.

Heat equation

Diffusive limit.
As $\varepsilon \rightarrow 0, f_{\varepsilon}$ relaxes to F_{0} solution to the heat equation:

$$
\varepsilon \partial_{t} f_{\varepsilon}+v \partial_{x} f_{\varepsilon}=\frac{1}{\varepsilon} \mathcal{Q}\left[f_{\varepsilon}\right] \quad \xrightarrow[\varepsilon \rightarrow 0]{ } \quad \partial_{t} F_{0}-\left\langle v^{2}\right\rangle \partial_{x x}^{2} F_{0}=0 .
$$

Proof.
Formally take the Hilbert expansion in ε

$$
f_{\varepsilon}=F_{0}+\varepsilon F_{1}+\varepsilon^{2} F_{2}+\ldots
$$

inject into the kinetic equation and extract the F_{i}.

Drawbacks.

- The heat equation is not v-dependent: no microscopic feature.
- The heat equation transports information at infinite velocity, the transport equation at $\mathcal{O}\left(\frac{1}{\varepsilon}\right)$ velocity.

Approximations

The $\mathbb{P} 1$-approximation
By truncating the Hilbert expansion at first order

$$
f_{\varepsilon} \approx F_{0}+\varepsilon F_{1}
$$

we obtain the $\mathbb{P} 1$-approximation

$$
f_{\varepsilon}(t, x, v) \approx F_{0}(t, x)-\varepsilon v \partial_{x} F_{0}(t, x)
$$

which is v-dependent, so that it somehow restores some microscopic features.

Drawbacks

- The $\mathbb{P} 1$-approximation might be negative.
- As well as in heat equation, information is transported at infinite velocity.

Approximations

The $\mathbb{P} 1$-approximation
By truncating the Hilbert expansion at first order

$$
f_{\varepsilon} \approx F_{0}+\varepsilon F_{1}
$$

we obtain the $\mathbb{P} 1$-approximation

$$
f_{\varepsilon}(t, x, v) \approx F_{0}(t, x)-\varepsilon v \partial_{x} F_{0}(t, x)
$$

which is v-dependent, so that it somehow restores some microscopic features.

Drawbacks

- The $\mathbb{P} 1$-approximation might be negative.
- As well as in heat equation, information is transported at infinite velocity.

Outline

(1) Introduction

- Motivation
- Setting
(2) Approximations
- Heat equation and \mathbb{P}^{1}-approximation
- Intermediate modelsAsymptotic-preserving schemes
- Kinetic equation
- First-order closure
- Zeroth-order closure

4 Experiments

- AP properties of the schemes
- Comparisons
- Su-Olson tests

Moment equations

Moments
Define the zeroth, first and second order moments by

$$
\left(\begin{array}{c}
\rho \\
J \\
\mathbb{P}
\end{array}\right)=\left\langle\left(\begin{array}{c}
1 \\
v / \varepsilon \\
v^{2}
\end{array}\right) f_{\varepsilon}\right\rangle
$$

Moment equations
Integrating the kinetic equation, we obtain the moment equations
which need some closure strategy, the $k^{\text {th }}$-moment equation being dependent on the $(k+1)^{t h}$-moment.

Moment equations

Moments

Define the zeroth, first and second order moments by

$$
\left(\begin{array}{c}
\rho \\
J \\
\mathbb{P}
\end{array}\right)=\left\langle\left(\begin{array}{c}
1 \\
v / \varepsilon \\
v^{2}
\end{array}\right) f_{\varepsilon}\right\rangle
$$

Moment equations

Integrating the kinetic equation, we obtain the moment equations

$$
\begin{aligned}
\partial_{t} \rho+\partial_{x} J & =0 \\
\varepsilon^{2} \partial_{t} J+\partial_{x} \mathbb{P} & =-J,
\end{aligned}
$$

which need some closure strategy, the $k^{\text {th }}$-moment equation being dependent on the $(k+1)^{t h}$-moment.

Zeroth-order closure

Two closures are proposed, one at zeroth order and one at first order.
Zeroth order closure
By truncating the modified Hilbert expansion $f_{\varepsilon}=e^{a_{0}+\varepsilon a_{1}+\varepsilon^{2} a_{2}+\ldots}$ at first order

$$
f \varepsilon \approx \exp \left(a_{0}+\varepsilon a_{1}\right)
$$

and injecting the approximation thus obtained

$$
f_{E}(t, x, v) \approx \frac{\rho(t, x)}{Z(t, x)} e^{-\varepsilon v \frac{\sum_{x}}{\rho}(t, x)}
$$

into the zeroth moment equation, we obtain the following system:

$$
\partial_{t} \rho-\partial_{x}\left[\frac{\rho}{\varepsilon} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \rho}{\rho}\right)\right]=0
$$

Zeroth-order closure

Two closures are proposed, one at zeroth order and one at first order.
Zeroth order closure
By truncating the modified Hilbert expansion $f_{\varepsilon}=e^{a_{0}+\varepsilon a_{1}+\varepsilon^{2} a_{2}+\ldots}$ at first order

$$
f_{\varepsilon} \approx \exp \left(a_{0}+\varepsilon a_{1}\right)
$$

and injecting the approximation thus obtained

$$
f_{\varepsilon}(t, x, v) \approx \frac{\rho(t, x)}{Z(t, x)} e^{-\varepsilon v \frac{\partial_{x} \rho}{\rho}(t, x)}
$$

into the zeroth moment equation, we obtain the following system:

$$
\partial_{t} \rho-\partial_{x}\left[\frac{\rho}{\varepsilon} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \rho}{\rho}\right)\right]=0
$$

Zeroth-order closure

Zeroth order closure
The system is:

$$
\partial_{t} \rho-\partial_{x}\left[\frac{\rho}{\varepsilon} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \rho}{\rho}\right)\right]=0 .
$$

Some notations

We have introduced:

- $Z(t, x)$ is a normalizing factor such that $\left\langle f_{\varepsilon}\right\rangle=\rho(t, x)$;
- $\mathbb{F}(x)=\left\langle e^{\pi v}\right\rangle$;
- $\mathbb{G}(x)=\frac{\mathbb{F}^{\prime}}{\mathbb{F}}(x)$.

Examples

If $\boldsymbol{V}=(-1,1)$ and $d \mu=\frac{1}{2} d \lambda$ (normalized Lebesgue measure), then

Zeroth-order closure

Zeroth order closure
The system is:

$$
\partial_{t} \rho-\partial_{x}\left[\frac{\rho}{\varepsilon} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \rho}{\rho}\right)\right]=0
$$

Some notations
We have introduced:

- $Z(t, x)$ is a normalizing factor such that $\left\langle f_{\varepsilon}\right\rangle=\rho(t, x)$;
- $\mathbb{F}(x)=\left\langle e^{x v}\right\rangle$;
- $\mathbb{G}(x)=\frac{\mathbb{F}^{\prime}}{\mathbb{F}}(x)$.

Examples

If $V=(-1,1)$ and $d \mu=\frac{1}{2} d \lambda$ (normalized Lebesgue measure), then

Zeroth-order closure

Zeroth order closure
The system is:

$$
\partial_{t} \rho-\partial_{x}\left[\frac{\rho}{\varepsilon} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \rho}{\rho}\right)\right]=0
$$

Some notations

We have introduced:

- $Z(t, x)$ is a normalizing factor such that $\left\langle f_{\varepsilon}\right\rangle=\rho(t, x)$;
- $\mathbb{F}(x)=\left\langle e^{x v}\right\rangle$;
- $\mathbb{G}(x)=\frac{\mathbb{F}^{\prime}}{\mathbb{F}}(x)$.

Examples

If $V=(-1,1)$ and $d \mu=\frac{1}{2} d \lambda$ (normalized Lebesgue measure), then

$$
\mathbb{G}(x)=\operatorname{coth}(x)-\frac{1}{x}
$$

First-order closure

Entropy Minimization Principle

The first-order closure comes from the following Entropy Minimization Principle:

$$
f_{\varepsilon}=\operatorname{argmin}\left\{\left\langle f_{\varepsilon} \log \left(f_{\varepsilon}\right)\right\rangle\right\}
$$

under the constraints

$$
\left\langle\binom{ 1}{v / \varepsilon} f_{\varepsilon}\right\rangle=\binom{\rho}{J} .
$$

The closed system
We can thus express the second moment as

so that the first-order closure reads

First-order closure

Entropy Minimization Principle

The first-order closure comes from the following Entropy Minimization Principle:

$$
f_{\varepsilon}=\operatorname{argmin}\left\{\left\langle f_{\varepsilon} \log \left(f_{\varepsilon}\right)\right\rangle\right\}
$$

under the constraints

$$
\left\langle\binom{ 1}{v / \varepsilon} f_{\varepsilon}\right\rangle=\binom{\rho}{J} .
$$

The closed system
We can thus express the second moment as

$$
\mathbb{P}=\rho \psi\left(\frac{\varepsilon J}{\rho}\right), \quad \psi(x)=\frac{\mathbb{F}^{\prime \prime}}{\mathbb{F}}\left(\mathbb{G}^{(-1)}(x)\right)
$$

so that the first-order closure reads

$$
\partial_{t} \rho+\partial_{x} J=0, \quad \varepsilon^{2} \partial_{t} J+\partial_{x}\left[\rho \psi\left(\frac{\varepsilon J}{\rho}\right)\right]=-J .
$$

First-order closure

Reconstruction
The microscopic approximation is reconstructed by

$$
\tilde{f}_{\varepsilon}(t, x, v)=\rho(t, x) \frac{\exp \left[v \mathbb{G}^{(-1)}\left(\frac{\varepsilon J}{\rho(t, x)}\right)\right]}{\mathbb{F} \circ \mathbb{G}^{(-1)}\left(\frac{\varepsilon J}{\rho(t, x)}\right)}
$$

Notations

We are using the following notations:

Example

In case $V=(-1,1)$ and $d \mu=\frac{1}{2} d \lambda$ (normalized Lebesgue measure), we have

First-order closure

Reconstruction
The microscopic approximation is reconstructed by

$$
\tilde{f}_{\varepsilon}(t, x, v)=\rho(t, x) \frac{\exp \left[v \mathbb{G}^{(-1)}\left(\frac{\varepsilon J}{\rho(t, x)}\right)\right]}{\mathbb{F} \circ \mathbb{G}^{(-1)}\left(\frac{\varepsilon J}{\rho(t, x)}\right)}
$$

Notations

We are using the following notations:

$$
\mathbb{F}(x)=\left\langle e^{x v}\right\rangle, \quad \mathbb{G}(x)=\frac{\mathbb{F}^{\prime}}{\mathbb{F}}(x), \quad \psi(x)=\frac{\mathbb{F}^{\prime \prime}}{\mathbb{F}}\left(\mathbb{G}^{(-1)}(x)\right)
$$

Example

In case $V=(-1,1)$ and $d \mu=\frac{1}{2} d \lambda$ (normalized Lebesgue measure), we have

First-order closure

Reconstruction

The microscopic approximation is reconstructed by

$$
\tilde{f}_{\varepsilon}(t, x, v)=\rho(t, x) \frac{\exp \left[v \mathbb{G}^{(-1)}\left(\frac{\varepsilon J}{\rho(t, x)}\right)\right]}{\mathbb{F} \circ \mathbb{G}^{(-1)}\left(\frac{\varepsilon J}{\rho(t, x)}\right)} .
$$

Notations

We are using the following notations:

$$
\mathbb{F}(x)=\left\langle e^{x v}\right\rangle, \quad \mathbb{G}(x)=\frac{\mathbb{F}^{\prime}}{\mathbb{F}}(x), \quad \psi(x)=\frac{\mathbb{F}^{\prime \prime}}{\mathbb{F}}\left(\mathbb{G}^{(-1)}(x)\right)
$$

Example
In case $V=(-1,1)$ and $d \mu=\frac{1}{2} d \lambda$ (normalized Lebesgue measure), we have

$$
\mathbb{F}(x)=\frac{\sinh (x)}{x}, \quad \mathbb{G}(x)=\operatorname{coth}(x)-\frac{1}{x}
$$

Outline

Introduction- Motivation
- SettingApproximations
- Heat equation and \mathbb{P}^{1}-approximation
- Intermediate models
(3) Asymptotic-preserving schemes
- Kinetic equation
- First-order closure
- Zeroth-order closure
(4) Experiments
- AP properties of the schemes
- Comparisons
- Su-Olson tests

Kinetic equation

We propose a splitting scheme for solving the kinetic equation

$$
\varepsilon \partial_{t} f_{\varepsilon}+v \partial_{x} f_{\varepsilon}=\frac{1}{\varepsilon}\left(\left\langle f_{\varepsilon}\right\rangle-f_{\varepsilon}\right)
$$

without need of mesh-resolving parameter ε as it tends to zero.
Decomposition
Split f_{ε} into its mean value plus fluctuations:

Boundedness of the fluctuations
We have from the boundendess in the $L^{P}(V, \mu)$-spaces of the collision operator
$=\int_{\mathbb{R}>0} \int_{\mathbb{R}} \int_{V}\left|f_{\varepsilon}-\rho_{\varepsilon}\right|^{2} d t d x d v$
$=\int_{R>0} \int_{\mathbb{R}} \int_{V} \mid Q\left[\int_{E}\right]^{2} d t d x d V$
$\leq C \int_{\mathbb{R}} \int_{\mathbb{R}} \int_{V}\left|f_{\varepsilon}\right|^{2} d t d x d v$.

Kinetic equation

We propose a splitting scheme for solving the kinetic equation

$$
\varepsilon \partial_{t} f_{\varepsilon}+v \partial_{x} f_{\varepsilon}=\frac{1}{\varepsilon}\left(\left\langle f_{\varepsilon}\right\rangle-f_{\varepsilon}\right)
$$

without need of mesh-resolving parameter ε as it tends to zero.
Decomposition
Split f_{ε} into its mean value plus fluctuations:

$$
f_{\varepsilon}=\rho_{\varepsilon}+\varepsilon g_{\varepsilon}=\left\langle f_{\varepsilon}\right\rangle+\varepsilon g_{\varepsilon}
$$

Boundedness of the fluctuations
We have from the boundendess in the $L^{p}(V, \mu)$-spaces of the collision operator
$=\int_{\mathbb{R}>0} \int_{\mathbb{R}} \int_{V}\left|f_{\varepsilon}-\rho_{\varepsilon}\right|^{2} d t d x d v$
$=\int_{\mathbb{R}>0} \int_{\mathbb{R}} \int_{V}\left|\mathcal{Q}\left[f_{\varepsilon}\right]\right|^{2} d t d x d v$

Kinetic equation

We propose a splitting scheme for solving the kinetic equation

$$
\varepsilon \partial_{t} f_{\varepsilon}+v \partial_{x} f_{\varepsilon}=\frac{1}{\varepsilon}\left(\left\langle f_{\varepsilon}\right\rangle-f_{\varepsilon}\right)
$$

without need of mesh-resolving parameter ε as it tends to zero.
Decomposition
$\operatorname{Split} f_{\varepsilon}$ into its mean value plus fluctuations:

$$
f_{\varepsilon}=\rho_{\varepsilon}+\varepsilon g_{\varepsilon}=\left\langle f_{\varepsilon}\right\rangle+\varepsilon g_{\varepsilon}
$$

Boundedness of the fluctuations
We have from the boundendess in the $L^{p}(V, \mu)$-spaces of the collision operator

$$
\begin{aligned}
\left\|g_{\varepsilon}\right\|_{L_{t, x, v}^{2}}^{2} & =\int_{\mathbb{R}_{\geq 0}} \int_{\mathbb{R}} \int_{V}\left|f_{\varepsilon}-\rho_{\varepsilon}\right|^{2} d t d x d v \\
& =\int_{\mathbb{R}_{\geq 0}} \int_{\mathbb{R}} \int_{V}\left|\mathcal{Q}\left[f_{\varepsilon}\right]\right|^{2} d t d x d v \\
& \leq C \int_{\mathbb{R}_{\geq 0}} \int_{\mathbb{R}} \int_{V}\left|f_{\varepsilon}\right|^{2} d t d x d v
\end{aligned}
$$

Kinetic equation

Reformulation
Inject the decomposition $f_{\varepsilon}=\rho_{\varepsilon}+\varepsilon g_{\varepsilon}$ into the kinetic equation to obtain

$$
\partial_{t} f_{\varepsilon}+\frac{v}{\varepsilon} \partial_{x} \rho_{\varepsilon}+v \partial_{x} g_{\varepsilon}=\frac{1}{\varepsilon^{2}}\left(\rho_{\varepsilon}-f_{\varepsilon}\right)
$$

First-order splitting strategy
(i) solve for a Δt-step the equation $\partial_{f} f_{s}=$
(ii) solve for a Δt-step the equation $\partial_{t} f_{\varepsilon}+v \partial_{x} g_{\varepsilon}=0$.

Evolution of the fluctuations
To complete the scheme, we still need to write the evolution equation for the fluctuations g_{ε}
(i) $\langle v\rangle=0 \Longrightarrow \partial_{t} \rho_{\varepsilon}=0$
(ii) for Step (ii) we usc $\partial_{t g}=0$.

Kinetic equation

Reformulation
Inject the decomposition $f_{\varepsilon}=\rho_{\varepsilon}+\varepsilon g_{\varepsilon}$ into the kinetic equation to obtain

$$
\partial_{t} f_{\varepsilon}+\frac{v}{\varepsilon} \partial_{x} \rho_{\varepsilon}+v \partial_{x} g_{\varepsilon}=\frac{1}{\varepsilon^{2}}\left(\rho_{\varepsilon}-f_{\varepsilon}\right)
$$

First-order splitting strategy
(i) solve for a Δt-step the equation $\partial_{t} f_{\varepsilon}=\frac{1}{\varepsilon^{2}}\left(\rho_{\varepsilon}-f_{\varepsilon}\right)-\frac{v}{\varepsilon} \partial_{x} \rho_{\varepsilon}$;
(ii) solve for a Δt-step the equation $\partial_{t} f_{\varepsilon}+v \partial_{x} g_{\varepsilon}=0$.

Evolution of the fluctuations
To complete the scheme, we still need to write the evolution equation for the fluctuations g_{ε}
(ii) for Step (ii) we use $\partial_{t} g_{\varepsilon}=0$.

Kinetic equation

Reformulation
Inject the decomposition $f_{\varepsilon}=\rho_{\varepsilon}+\varepsilon g_{\varepsilon}$ into the kinetic equation to obtain

$$
\partial_{t} f_{\varepsilon}+\frac{v}{\varepsilon} \partial_{x} \rho_{\varepsilon}+v \partial_{x} g_{\varepsilon}=\frac{1}{\varepsilon^{2}}\left(\rho_{\varepsilon}-f_{\varepsilon}\right)
$$

First-order splitting strategy
(i) solve for a Δt-step the equation $\partial_{t} f_{\varepsilon}=\frac{1}{\varepsilon^{2}}\left(\rho_{\varepsilon}-f_{\varepsilon}\right)-\frac{v}{\varepsilon} \partial_{x} \rho_{\varepsilon}$;
(ii) solve for a Δt-step the equation $\partial_{t} f_{\varepsilon}+v \partial_{x} g_{\varepsilon}=0$.

Evolution of the fluctuations
To complete the scheme, we still need to write the evolution equation for the fluctuations g_{ε} :
(i) $\langle v\rangle=0 \Longrightarrow \partial_{t} \rho_{\varepsilon}=0 \quad \Longrightarrow \quad \partial_{t} g_{\varepsilon}=-\frac{1}{\varepsilon^{2}} g_{\varepsilon}-\frac{v}{\varepsilon^{2}} \partial_{x} \rho_{\varepsilon}$;
(ii) for Step (ii) we use $\partial_{t} g_{\varepsilon}=0$.

Kinetic equation

Résumé
If we take into account only the leading contribution in ε,
(i) $\partial_{t} f_{\varepsilon}=-\frac{1}{\varepsilon^{2}}\left(f_{\varepsilon}-\rho_{\varepsilon}\right)$,
$\partial_{t} g_{\varepsilon}=-\frac{1}{\varepsilon^{2}}\left(g_{\varepsilon}+v \partial_{x} \rho_{\varepsilon}\right)$,
$\partial_{t} \rho_{\varepsilon}=0 ;$
(ii) $\partial_{t} f_{\varepsilon}+v \partial_{x} g_{\varepsilon}=0, \quad \partial_{t} g_{\varepsilon}=0$.

Time discretization of the scheme
Dropping ε-subscript for convenience,

Step (i)b relax $g: g^{n+1 / 2}=e^{-\frac{\Delta t}{\varepsilon^{2}}} g^{n}-\left(1-e^{-\frac{\Delta t}{\varepsilon^{2}}}\right) v \partial_{x} \rho^{n}$;
Sten (i)c $\rho^{n+1 / 2}=\rho^{n}$;
Step (ii)a convect $f: f^{n+1}=f^{n+1 / 2}-\Delta t \cdot v \partial_{x} g^{n+1 / 2}$;
Step (iii)b update $\rho: \rho^{n+1}=\left\langle f^{n+1}\right\rangle$;
Step (ii)c let $g^{n+1}=g^{n+1 / 2}$; we might use $g^{n+1}=\frac{\rho^{n+1}-\rho^{n+1}}{}$ instead (to be discussed).

Kinetic equation

Résumé

If we take into account only the leading contribution in ε,
(i) $\partial_{t} f_{\varepsilon}=-\frac{1}{\varepsilon^{2}}\left(f_{\varepsilon}-\rho_{\varepsilon}\right)$,

$$
\partial_{t} g_{\varepsilon}=-\frac{1}{\varepsilon^{2}}\left(g_{\varepsilon}+v \partial_{x} \rho_{\varepsilon}\right)
$$

$$
\partial_{t} \rho_{\varepsilon}=0
$$

(ii) $\partial_{t} f_{\varepsilon}+v \partial_{x} g_{\varepsilon}=0$, $\partial_{t} g_{\varepsilon}=0$.

Time discretization of the scheme
Dropping ε-subscript for convenience,
Step (i)a $\operatorname{relax} f: f^{n+1 / 2}=e^{-\frac{\Delta t}{\varepsilon^{2}}} f^{n}+\left(1-e^{-\frac{\Delta t}{\varepsilon^{2}}}\right) \rho^{n}$;
Step (i)b relax $g: g^{n+1 / 2}=e^{-\frac{\Delta t}{\varepsilon^{2}}} g^{n}-\left(1-e^{-\frac{\Delta t}{\varepsilon^{2}}}\right) v \partial_{x} \rho^{n}$;
Step (i)c $\rho^{n+1 / 2}=\rho^{n}$;
Step (ii)a convect $f: f^{n+1}=f^{n+1 / 2}-\Delta t \cdot v \partial_{x} g^{n+1 / 2}$;
Step (iii)b update $\rho: \rho^{n+1}=\left\langle f^{n+1}\right\rangle$;
Step (ii)c let $g^{n+1}=g^{n+1 / 2}$; we might use $g^{n+1}=\frac{f^{n+1}-\rho^{n+1}}{\varepsilon}$ instead (to be discussed).

Kinetic equation

AP property

The relaxed scheme $\varepsilon \rightarrow 0$ reads:

- $\partial_{t} f-v^{2} \partial_{x x}^{2} \rho=0$, which implies that $\partial_{t} \rho-\left\langle v^{2}\right\rangle \partial_{x x}^{2} \rho=0$. This is the heat equation with the proper constant;
- $g^{n+1 / 2}=-v \partial_{x} \rho^{n+1 / 2}$, which is coherent with the Hilbert expansion.

The scheme, therefore, relaxes to a solver to the proper heat equation.

The case of normalized Lebesgue measure

Let us use in the following the Lebesgue setting:

V -space is measured through the normalized
Lebesgue measure
$\mathrm{d} \mu=1 / 2 \mathrm{~d} \lambda$

Kinetic equation

AP property

The relaxed scheme $\varepsilon \rightarrow 0$ reads:

- $\partial_{t} f-v^{2} \partial_{x x}^{2} \rho=0$, which implies that $\partial_{t} \rho-\left\langle v^{2}\right\rangle \partial_{x x}^{2} \rho=0$. This is the heat equation with the proper constant;
- $g^{n+1 / 2}=-v \partial_{x} \rho^{n+1 / 2}$, which is coherent with the Hilbert expansion.

The scheme, therefore, relaxes to a solver to the proper heat equation.

The case of normalized Lebesgue measure
Let us use in the following the Lebesgue setting:

Kinetic equation

Time-space discretized scheme
$\operatorname{Step}(\mathbf{i}) \mathbf{a} f_{i, j}^{n+1 / 2}=e^{-\frac{\Delta t}{\varepsilon^{2}}} f_{i, j}^{n}+\left(1-e^{-\frac{\Delta t}{\varepsilon^{2}}}\right) \rho_{i}^{n}$;
Step (i)b $g_{i, j}^{n+1 / 2}=e^{-\frac{\Delta t}{\varepsilon^{2}}} g_{i, j}^{n}+\left(1-e^{-\frac{\Delta t}{\varepsilon^{2}}}\right) \overline{\mathbb{D}}_{j} \rho_{i}^{n}$;
Step (i)c $\rho_{i}^{n+1 / 2}=\rho_{i}^{n}$;
Step (ii)a $f_{i, j}^{n+1}=f_{i, j}^{n+1 / 2}+\Delta t \mathbb{D}_{j} g_{i, j}^{n+1 / 2}$;
Step (ii)b $g_{i, j}^{n+1}=g_{i, j}^{n+1 / 2}$;
Step (iii)c by a right-rectangluar rule: $\rho_{i}^{n+1}=\frac{\Delta v}{2} \sum_{j=0}^{j-2} f_{i, j}^{n+1}$.

Kinetic equation

The space-derivatives \mathbb{D} and $\overline{\mathbb{D}}$

In the fully-relaxed scheme, we obtain $\rho_{i}^{n+1}=\rho_{i}^{n}+\Delta t \mathbb{D}_{j} \overline{\mathbb{D}}_{j} \rho_{i}^{n}$. In order to recover the classical three-point centered scheme for the heat equation, needed for the scheme to be stable, \mathbb{D} and $\overline{\mathbb{D}}$ must be taken in aternate direction. We define, therefore:

$$
\begin{aligned}
& {\left[\mathbb{D}_{j} \varphi\right]_{i}=\frac{1}{\Delta x} \begin{cases}-v_{j}\left(\varphi_{i}-\varphi_{i-1}\right) & \text { if } v_{j} \in V_{+} \\
-v_{j}\left(\varphi_{i+1}-\varphi_{i}\right) & \text { if } v_{j} \in V_{-}\end{cases} } \\
& {\left[\overline{\mathbb{D}}_{j} \varphi\right]_{i}=\frac{1}{\Delta x} \begin{cases}-v_{j}\left(\varphi_{i+1}-\varphi_{i}\right) & \text { if } \in V_{+} \\
-v_{j}\left(\varphi_{i}-\varphi_{i-1}\right) & \text { if } v_{j} \in V_{-}\end{cases} }
\end{aligned}
$$

where we have also introduced $V_{ \pm}=\left\{j \in\left\{0, \ldots, N_{v}-1\right\}\right.$ such that $\left.v_{j} \in \mathbb{R}_{ \pm}\right\}$.

Boundary conditions
Boundary conditions should enforce mass conservation during the advection step:

Kinetic equation

The space-derivatives \mathbb{D} and $\overline{\mathbb{D}}$

In the fully-relaxed scheme, we obtain $\rho_{i}^{n+1}=\rho_{i}^{n}+\Delta t \mathbb{D}_{j} \overline{\mathbb{D}}_{j} \rho_{i}^{n}$. In order to recover the classical three-point centered scheme for the heat equation, needed for the scheme to be stable, \mathbb{D} and $\overline{\mathbb{D}}$ must be taken in aternate direction. We define, therefore:

$$
\begin{aligned}
& {\left[\mathbb{D}_{j} \varphi\right]_{i}=\frac{1}{\Delta x} \begin{cases}-v_{j}\left(\varphi_{i}-\varphi_{i-1}\right) & \text { if } v_{j} \in V_{+} \\
-v_{j}\left(\varphi_{i+1}-\varphi_{i}\right) & \text { if } v_{j} \in V_{-}\end{cases} } \\
& {\left[\overline{\mathbb{D}}_{j} \varphi\right]_{i}=\frac{1}{\Delta x} \begin{cases}-v_{j}\left(\varphi_{i+1}-\varphi_{i}\right) & \text { if } \in V_{+} \\
-v_{j}\left(\varphi_{i}-\varphi_{i-1}\right) & \text { if } v_{j} \in V_{-}\end{cases} }
\end{aligned}
$$

where we have also introduced $V_{ \pm}=\left\{j \in\left\{0, \ldots, N_{v}-1\right\}\right.$ such that $\left.v_{j} \in \mathbb{R}_{ \pm}\right\}$.

Boundary conditions

Boundary conditions should enforce mass conservation during the advection step:

$$
\sum_{i=1}^{N_{x}-2} \sum_{j} \mathbb{D}_{j} g_{i, j}^{n+1 / 2}=0 \Longleftarrow \begin{cases}g_{0, k}^{n+1 / 2}=\frac{-1}{v_{k} \#\left[V_{+}\right]} \sum_{v_{j} \in V_{-}} v_{j} g_{1, j}^{n+1 / 2} & \text { for } k \in V_{+} \\ g_{N_{x}-1, k}^{n+1 / 2}=\frac{-1}{v_{k} \#\left[V_{-}\right]} \sum_{v_{j} \in V_{+}} v_{j} g_{N_{x}-2, j}^{n+1 / 2} & \text { for } k \in V_{-}\end{cases}
$$

Outline

Introduction

- Motivation
- Setting
(2)

Approximations

- Heat equation and \mathbb{P}^{1}-approximation
- Intermediate models
(3) Asymptotic-preserving schemes
- Kinetic equation
- First-order closure
- Zeroth-order closure
(4) Experiments
- AP properties of the schemes
- Comparisons
- Su-Olson tests

Numerics for the first-order closure

We recall the first-order closure (dropping ε-dependency):

$$
\begin{aligned}
\partial_{t} \rho+\partial_{x} J & =0 \\
\varepsilon^{2} \partial_{t} J+\partial_{x}\left[\rho \psi\left(\frac{\varepsilon J}{\rho}\right)\right] & =-J
\end{aligned}
$$

Strategy

We introduce a new unknown $z(t, x)$ and two new parameters λ and α; the non-linear equation for the first moment is now an advection equation and the non-linearities only appear at a right hand side:

with $u=\frac{\varepsilon J}{\rho}$. As $\alpha \rightarrow 0$, this system relaxes towards the original system.

Numerics for the first-order closure

We recall the first-order closure (dropping ε-dependency):

$$
\begin{aligned}
\partial_{t} \rho+\partial_{x} J & =0 \\
\varepsilon^{2} \partial_{t} J+\partial_{x}\left[\rho \psi\left(\frac{\varepsilon J}{\rho}\right)\right] & =-J
\end{aligned}
$$

Strategy

We introduce a new unknown $z(t, x)$ and two new parameters λ and α; the non-linear equation for the first moment is now an advection equation and the non-linearities only appear at a right hand side:

$$
\left(\begin{array}{ccc}
\partial_{t} t & \partial_{x} & 0 \\
0 & \varepsilon^{2} \partial_{t} & \partial_{x} \\
0 & \varepsilon^{2} \lambda^{2} \partial_{x} & \partial_{t}
\end{array}\right)\left(\begin{array}{c}
\rho \\
J \\
z
\end{array}\right)=\left(\begin{array}{c}
0 \\
-J \\
\frac{1}{\alpha}(\rho \psi(u)-z)
\end{array}\right)
$$

with $u=\frac{\varepsilon J}{\rho}$. As $\alpha \rightarrow 0$, this system relaxes towards the original system.

Numerics for the first-order closure

We recall the first-order closure (dropping ε-dependency):

$$
\begin{aligned}
\partial_{t} \rho+\partial_{x} J & =0 \\
\varepsilon^{2} \partial_{t} J+\partial_{x}\left[\rho \psi\left(\frac{\varepsilon J}{\rho}\right)\right] & =-J
\end{aligned}
$$

Strategy

We introduce a new unknown $z(t, x)$ and two new parameters λ and α; the non-linear equation for the first moment is now an advection equation and the non-linearities only appear at a right hand side:

$$
\left(\begin{array}{ccc}
\partial_{t} t & \partial_{x} & 0 \\
0 & \varepsilon^{2} \partial_{t} & \partial_{x} \\
0 & \varepsilon^{2} \lambda^{2} \partial_{x} & \partial_{t}
\end{array}\right)\left(\begin{array}{c}
\rho \\
J \\
z
\end{array}\right)=\left(\begin{array}{c}
0 \\
-J \\
\frac{1}{\alpha}(\rho \psi(u)-z)
\end{array}\right)
$$

with $u=\frac{\varepsilon J}{\rho}$. As $\alpha \rightarrow 0$, this system relaxes towards the original system.

Numerics for the first-order closure

Diagonalization
We diagonalize it by means of a linear transformation of its unknowns ($\mu=\varepsilon \lambda$)

$$
\left(\begin{array}{c}
\rho \\
J \\
z
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{\mu^{2}} & \frac{1}{\mu^{2}} & \frac{1}{\mu^{2}} \\
0 & \frac{1}{\varepsilon \mu} & -\frac{1}{\varepsilon \mu} \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
f_{0} \\
f_{+} \\
f_{-}
\end{array}\right)
$$

Splitting

then apply splitting technique between the α-relaxations and the ε-relaxations:

Numerics for the first-order closure

Diagonalization

We diagonalize it by means of a linear transformation of its unknowns ($\mu=\varepsilon \lambda$)

$$
\left(\begin{array}{c}
\rho \\
J \\
z
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{\mu^{2}} & \frac{1}{\mu^{2}} & \frac{1}{\mu^{2}} \\
0 & \frac{1}{\varepsilon \mu} & -\frac{1}{\varepsilon \mu} \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{c}
f_{0} \\
f_{+} \\
f_{-}
\end{array}\right)
$$

Splitting

then apply splitting technique between the α-relaxations and the ε-relaxations:

$$
\left(\begin{array}{ccc}
\partial_{t} & 0 & 0 \\
0 & \partial_{t}+\frac{\mu}{\varepsilon} \partial_{x} & 0 \\
0 & 0 & \partial_{t}-\frac{\mu}{\varepsilon} \partial_{x}
\end{array}\right)\left(\begin{array}{c}
f_{0} \\
f_{+} \\
f_{-}
\end{array}\right)=\left(\begin{array}{c}
-\frac{1}{\alpha}(\rho \psi(u)-z) \\
-\frac{f_{+}}{\varepsilon^{2}}+\frac{z}{2 \varepsilon^{2}}+\frac{1}{2 \alpha}(\rho \psi(u)-z) \\
-\frac{f_{-}}{\varepsilon^{2}}+\frac{z}{2 \varepsilon^{2}}+\frac{1}{2 \alpha}(\rho \psi(u)-z)
\end{array}\right) .
$$

Numerics for the first-order closure

Stiffness in Step 1.
Step 1 is again stiff as $\varepsilon \rightarrow 0$:

$$
\partial_{t} f_{ \pm} \pm \frac{\mu}{\varepsilon} \partial_{x} f_{ \pm}=-\frac{1}{\varepsilon^{2}}\left[f_{ \pm}-\frac{z}{2}\right]
$$

which means that $f_{ \pm}$is relaxed towards $\frac{z}{2}$, so we apply the same strategy as before and split $f_{ \pm}$into the following sum:

$$
f_{ \pm}=\frac{z}{2}+\varepsilon g_{ \pm}
$$

and follow the same calculations as before.

Numerics for the first-order closure

Solving Step 1.

Developping all the computations and rewriting the system in the original variables we get:

$$
\begin{gathered}
z^{n+1 / 2}=z^{n}+\frac{\varepsilon\left(1-e^{-\Delta t / \varepsilon^{2}}\right)}{2}\left(\overline{\mathbb{D}}_{+}\left(z^{n}\right)+\overline{\mathbb{D}}_{-}\left(z^{n}\right)\right)+\Delta t\left[\mathbb { D } _ { + } \left(e^{-\Delta t / \varepsilon^{2} \frac{\mu J^{n}}{2}}\right.\right. \\
\left.\left.+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{\overline{\mathbb{D}}_{+}\left(z^{n}\right)}{2}\right)+\mathbb{D}_{-}\left(e^{-\Delta t / \varepsilon^{2}} \frac{\left(-\mu J^{n}\right)}{2}+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{\overline{\mathbb{D}}_{-}\left(z^{n}\right)}{2}\right)\right] \\
J^{n+1 / 2}=e^{-\Delta t / \varepsilon^{2}} J^{n}+\frac{1-e^{-\Delta t / \varepsilon^{2}}}{2 \mu}\left(\overline{\mathbb{D}}_{+}\left(z^{n}\right)-\overline{\mathbb{D}}_{-}\left(z^{n}\right)\right)+\frac{\Delta t}{\varepsilon \mu}\left[\mathbb { D } _ { + } \left(e^{-\Delta t / \varepsilon^{2} \frac{\mu J^{n}}{2}}\right.\right. \\
\left.+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{\overline{\mathbb{D}}_{+}\left(z^{n}\right)}{2}\right)-\mathbb{D}_{-}\left(e^{\left.\left.-\Delta t / \varepsilon^{2} \frac{\left(-\mu J^{n}\right)}{2}+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{\overline{\mathbb{D}}_{-}\left(z^{n}\right)}{2}\right)\right]}\right. \\
\rho^{n+1 / 2}=\rho^{n}+\frac{\Delta t}{\mu^{2}}\left(\mathbb{D}_{+}\left(e^{-\Delta t / \varepsilon^{2}} \frac{\mu J^{n}}{2}+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{\overline{\mathbb{D}}_{+}\left(z^{n}\right)}{2}\right)\right. \\
\left.+\mathbb{D}_{-}\left(e^{-\Delta t / \varepsilon^{2}} \frac{\left(-\mu J^{n}\right)}{2}+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{\overline{\mathbb{D}}_{-}\left(z^{n}\right)}{2}\right)\right)
\end{gathered}
$$

Numerics for the first-order closure

Solving Step 2.
Step 2 just involves relaxations, and no more details are given; after reconstructing the original variables we obtain

$$
\begin{aligned}
z^{n+1} & =e^{-\Delta t / \alpha} z^{n+1 / 2}+\left(1-e^{-\Delta t / \alpha}\right) \rho^{n+1 / 2} \psi^{n+1 / 2} \\
J^{n+1} & =J^{n+1 / 2} \\
\rho^{n+1} & =\rho^{n+1 / 2}
\end{aligned}
$$

Numerics for the first-order closure

Derivatives
Discretized derivatives are subjected to upwinding and are taken in alternate directions, in order to rescue the classical three-points centered scheme for the Laplacian of the heat equation in the $(\alpha \rightarrow 0, \varepsilon \rightarrow 0)$-scheme:

$$
\begin{aligned}
\left(\overline{\mathbb{D}}_{+}(\varphi)\right)_{i} & =-\frac{\mu}{\Delta x}\left(\varphi_{i+1}-\varphi_{i}\right) \\
\left(\mathbb{D}_{+}(\varphi)\right)_{i} & =-\frac{\mu}{\Delta x}\left(\varphi_{i}-\varphi_{i-1}\right) \\
\left(\overline{\mathbb{D}}_{-}(\varphi)\right)_{i} & =\frac{\mu}{\Delta x}\left(\varphi_{i}-\varphi_{i-1}\right) \\
\left(\mathbb{D}_{-}(\varphi)\right)_{i} & =\frac{\mu}{\Delta x}\left(\varphi_{i+1}-\varphi_{i}\right)
\end{aligned}
$$

Boundary conditions
Homogeneous Neumann conditions are used to enforce mass conservation:

Numerics for the first-order closure

Derivatives

Discretized derivatives are subjected to upwinding and are taken in alternate directions, in order to rescue the classical three-points centered scheme for the Laplacian of the heat equation in the $(\alpha \rightarrow 0, \varepsilon \rightarrow 0)$-scheme:

$$
\begin{aligned}
\left(\overline{\mathbb{D}}_{+}(\varphi)\right)_{i} & =-\frac{\mu}{\Delta x}\left(\varphi_{i+1}-\varphi_{i}\right) \\
\left(\mathbb{D}_{+}(\varphi)\right)_{i} & =-\frac{\mu}{\Delta x}\left(\varphi_{i}-\varphi_{i-1}\right) \\
\left(\overline{\mathbb{D}}_{-}(\varphi)\right)_{i} & =\frac{\mu}{\Delta x}\left(\varphi_{i}-\varphi_{i-1}\right) \\
\left(\mathbb{D}_{-}(\varphi)\right)_{i} & =\frac{\mu}{\Delta x}\left(\varphi_{i+1}-\varphi_{i}\right) .
\end{aligned}
$$

Boundary conditions

Homogeneous Neumann conditions are used to enforce mass conservation:

$$
\rho_{0}^{n}=\rho_{1}^{n}, \rho_{N_{x}-1}^{n}=\rho_{N_{x}-2}^{n}, z_{0}^{n}=z_{1}^{n}, z_{N_{x}-1}^{n}=z_{N_{x}-2}^{n}, J_{0}^{n}=-J_{1}^{n}, J_{N_{x}-1}^{n}=-J_{N_{x}-2}^{n} .
$$

Numerics for the first-order closure

AP properties: the limit $\alpha \rightarrow 0$

$$
\begin{aligned}
& J^{n+1}=e^{-\Delta t / \varepsilon^{2}} J^{n}+ \frac{1-e^{-\Delta t / \varepsilon^{2}}}{2 \mu}\left(\overline{\mathbb{D}}_{+}\left(\rho^{n} \psi^{n}\right)-\overline{\mathbb{D}}_{-}\left(\rho^{n} \psi^{n}\right)\right) \\
&+\frac{\Delta t}{\varepsilon \mu}[\mathbb{D}_{+}\left(e^{-\Delta t / \varepsilon^{2}} \frac{\mu J^{n}}{2}+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{\overline{\mathbb{D}}_{+}\left(\rho^{n} \psi^{n}\right)}{2}\right) \\
&\left.-\mathbb{D}_{-}\left(e^{-\Delta t / \varepsilon^{2}} \frac{\left(-\mu J^{n}\right)}{2}+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{\overline{\mathbb{D}}_{-}\left(\rho^{n} \psi^{n}\right)}{2}\right)\right], \\
& \rho^{n+1}=\rho^{n}+\frac{\Delta t}{\mu^{2}}\left(\mathbb{D}_{+}\left(e^{-\Delta t / \varepsilon^{2}} \frac{\mu J^{n}}{2}+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{\overline{\mathbb{D}}_{+}\left(\rho^{n} \psi^{n}\right)}{2}\right)\right. \\
&\left.+\mathbb{D}_{-}\left(e^{-\Delta t / \varepsilon^{2}} \frac{\left(-\mu J^{n}\right)}{2}+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{\overline{\mathbb{D}}_{-}\left(\rho^{n} \psi^{n}\right)}{2}\right)\right) .
\end{aligned}
$$

AP properties: the limit $\varepsilon \rightarrow 0$

Numerics for the first-order closure

AP properties: the limit $\alpha \rightarrow 0$

$$
\begin{aligned}
& J^{n+1}=e^{-\Delta t / \varepsilon^{2}} J^{n}+ \frac{1-e^{-\Delta t / \varepsilon^{2}}}{2 \mu}\left(\overline{\mathbb{D}}_{+}\left(\rho^{n} \psi^{n}\right)-\overline{\mathbb{D}}_{-}\left(\rho^{n} \psi^{n}\right)\right) \\
&+\frac{\Delta t}{\varepsilon \mu}\left[\mathbb{D}_{+}\left(e^{-\Delta t / \varepsilon^{2}} \frac{\mu J^{n}}{2}+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{\overline{\mathbb{D}}_{+}\left(\rho^{n} \psi^{n}\right)}{2}\right)\right. \\
&\left.-\mathbb{D}_{-}\left(e^{-\Delta t / \varepsilon^{2}} \frac{\left(-\mu J^{n}\right)}{2}+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{\overline{\mathbb{D}}_{-}\left(\rho^{n} \psi^{n}\right)}{2}\right)\right], \\
& \rho^{n+1}=\rho^{n}+\frac{\Delta t}{\mu^{2}}\left(\mathbb{D}_{+}\left(e^{-\Delta t / \varepsilon^{2}} \frac{\mu J^{n}}{2}+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{\overline{\mathbb{D}}_{+}\left(\rho^{n} \psi^{n}\right)}{2}\right)\right. \\
&\left.+\mathbb{D}_{-}\left(e^{-\Delta t / \varepsilon^{2}} \frac{\left(-\mu J^{n}\right)}{2}+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \frac{\overline{\mathbb{D}}-\left(\rho^{n} \psi^{n}\right)}{2}\right)\right) .
\end{aligned}
$$

AP properties: the limit $\varepsilon \rightarrow 0$

$$
\rho^{n+1}=\rho^{n}+\psi(0) \frac{\Delta t}{(\Delta x)^{2}}\left(\rho_{j+1}^{n}-2 \rho_{j}^{n}+\rho_{j-1}^{n}\right)
$$

Outline

Introduction

- Motivation
- SettingApproximations
- Heat equation and \mathbb{P}^{1}-approximation
- Intermediate models
(3) Asymptotic-preserving schemes
- Kinetic equation
- First-order closure
- Zeroth-order closure
(4) Experiments
- AP properties of the schemes
- Comparisons
- Su-Olson tests

Numerics for the zeroth-order closure

We recall the the zeroth-order closure reads

$$
\partial_{t} \rho-\partial_{x}\left[\frac{\rho}{\varepsilon} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \rho}{\rho}\right)\right]=0 .
$$

Strategy
The zeroth-order closure is seen as the limit $\alpha \rightarrow 0$ of the following system:

Diagonalization

We diagonalize the system by changing variables $f_{ \pm}=\frac{\rho}{2} \pm \frac{\varepsilon J}{2 \mu}$ thus obtaining the
system

$$
\partial_{t} f_{ \pm} \pm \frac{\mu}{\varepsilon} \partial_{x} f_{ \pm}=\frac{1}{\alpha}\left[\frac{\rho}{2}-f_{ \pm} \mp \frac{\rho}{2 \mu} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \rho}{\rho}\right)\right]
$$

Numerics for the zeroth-order closure

We recall the the zeroth-order closure reads

$$
\partial_{t} \rho-\partial_{x}\left[\frac{\rho}{\varepsilon} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \rho}{\rho}\right)\right]=0 .
$$

Strategy
The zeroth-order closure is seen as the limit $\alpha \rightarrow 0$ of the following system:

$$
\left(\begin{array}{cc}
\partial_{t} & \partial_{x} \\
\frac{\mu^{2}}{\varepsilon^{2}} \partial_{x} & \partial_{t}
\end{array}\right)\binom{\rho}{J}=\binom{0}{-\frac{1}{\alpha}\left[J+\frac{\rho}{\varepsilon} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \rho}{\rho}\right)\right]} .
$$

Diagonalization
We diagonalize the system by changing variables $f_{ \pm}=\frac{\rho}{2} \pm \frac{\varepsilon J}{2 \mu}$ thus obtaining the
system

Numerics for the zeroth-order closure

We recall the the zeroth-order closure reads

$$
\partial_{t} \rho-\partial_{x}\left[\frac{\rho}{\varepsilon} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \rho}{\rho}\right)\right]=0
$$

Strategy

The zeroth-order closure is seen as the limit $\alpha \rightarrow 0$ of the following system:

$$
\left(\begin{array}{cc}
\partial_{t} & \partial_{x} \\
\frac{\mu^{2}}{\varepsilon^{2}} \partial_{x} & \partial_{t}
\end{array}\right)\binom{\rho}{J}=\binom{0}{-\frac{1}{\alpha}\left[J+\frac{\rho}{\varepsilon} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \rho}{\rho}\right)\right]} .
$$

Diagonalization

We diagonalize the system by changing variables $f_{ \pm}=\frac{\rho}{2} \pm \frac{\varepsilon J}{2 \mu}$ thus obtaining the system

$$
\partial_{t} f_{ \pm} \pm \frac{\mu}{\varepsilon} \partial_{x} f_{ \pm}=\frac{1}{\alpha}\left[\frac{\rho}{2}-f_{ \pm} \mp \frac{\rho}{2 \mu} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \rho}{\rho}\right)\right] .
$$

Numerics for the zeroth-order closure

Decomposition
We follow the same decomposition strategy of splitting into average and fluctuations:

$$
g_{ \pm}=\frac{1}{\varepsilon} f_{ \pm}-\frac{1}{2 \varepsilon} \rho .
$$

First-order splitting strategy
We solve the resulting system

Step (i) solve for a Δt-time step

Step (ii) solve for a Δt-time step

Numerics for the zeroth-order closure

Decomposition

We follow the same decomposition strategy of splitting into average and fluctuations:

$$
g_{ \pm}=\frac{1}{\varepsilon} f_{ \pm}-\frac{1}{2 \varepsilon} \rho .
$$

First-order splitting strategy
We solve the resulting system
$\partial_{t} f_{ \pm} \pm \mu \partial_{x} g_{ \pm}=\frac{1}{\alpha}\left[\frac{\rho}{2}-f_{ \pm} \mp \frac{\rho}{2 \mu} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \rho}{\rho}\right)\right] \mp \frac{\mu}{2 \varepsilon} \partial_{x} \rho$ by splitting it into:
Step (i) solve for a Δt-time step

$$
\partial_{t} f_{ \pm}=\frac{1}{\alpha}\left[\frac{\rho}{2}-f_{ \pm} \mp \frac{\rho}{2 \mu} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \rho}{\rho}\right)\right] \mp \frac{\mu}{2 \varepsilon} \partial_{x} \rho
$$

Step (ii) solve for a Δt-time step

$$
\partial_{t} f_{ \pm} \pm \frac{\mu}{\varepsilon} \partial_{x} f_{ \pm}=0, \quad \partial_{t} g_{ \pm}=0
$$

Numerics for the zeroth-order closure

Discretized system
Step (i)a

$$
\begin{aligned}
f_{ \pm}^{n+1 / 2}= & e^{-\Delta t / \alpha} f_{ \pm}^{n}+\frac{\rho^{n}}{2}\left(1-e^{-\Delta t / \alpha}\right)\left[1 \mp \frac{1}{\mu} \mathbb{G}\left(\mp \frac{\varepsilon}{\mu} \frac{\overline{\mathbb{D}}_{ \pm} \rho^{n}}{\rho^{n}}\right)\right] \\
& +\alpha\left(1-e^{-\Delta t / \alpha}\right) \frac{1}{2 \varepsilon} \overline{\mathbb{D}}_{ \pm} \rho^{n} ;
\end{aligned}
$$

Step (i)b

$$
g_{ \pm}^{n+1 / 2}=\frac{1}{\varepsilon} f_{ \pm}^{n+1 / 2}-\frac{1}{2 \varepsilon} \rho^{n+1 / 2}
$$

Step (ii)a

$$
f_{ \pm}^{n+1}=f_{ \pm}^{n+1 / 2}+\Delta t \mathbb{D}_{ \pm} g_{ \pm}^{n+1 / 2}
$$

Step (ii)b

$$
g_{ \pm}^{n+1}=g_{ \pm}^{n+1 / 2}
$$

Numerics for the zeroth-order closure

AP properties: the relaxed scheme $\alpha \rightarrow 0$
Step (i)a results into

$$
f_{ \pm}^{n+1 / 2}=\frac{\rho^{n}}{2}\left[1+\frac{1}{\mu} \mathbb{G}\left(\frac{\varepsilon}{\mu} \frac{\overline{\mathbb{D}}_{ \pm} \rho^{n}}{\rho^{n}}\right)\right]
$$

while Step (i)a into

$$
g_{ \pm}^{n+1 / 2}=\frac{\rho^{n}}{2 \mu \varepsilon} \mathbb{G}\left(\frac{\varepsilon}{\mu} \frac{\overline{\mathbb{D}}_{ \pm} \rho^{n}}{\rho^{n}}\right)
$$

Therefore, in terms of the mean value ρ, we have

$$
\rho^{n+1}=\rho^{n}+\Delta t\left\{\mathbb{D}_{+}\left[\frac{\rho^{n}}{2 \varepsilon \mu} \mathbb{G}\left(\frac{\varepsilon}{\mu} \frac{\overline{\mathbb{D}}_{+} \rho^{n}}{\rho^{n}}\right)\right]+\mathbb{D}_{-}\left[\frac{\rho^{n}}{2 \varepsilon \mu} \mathbb{G}\left(\frac{\varepsilon}{\mu} \frac{\overline{\mathbb{D}}_{-} \rho^{n}}{\rho^{n}}\right)\right]\right\} .
$$

AP properties: $\varepsilon \rightarrow 0$
As $\varepsilon \rightarrow 0$, the system relaxes to a scheme for the heat equation, as long as the derivatives $\mathbb{D}_{ \pm}$and $\overline{\mathbb{D}}_{ \pm}$are taken in alternate directions to recover the classical centered three-point scheme.

Numerics for the zeroth-order closure

AP properties: the relaxed scheme $\alpha \rightarrow 0$
Step (i)a results into

$$
f_{ \pm}^{n+1 / 2}=\frac{\rho^{n}}{2}\left[1+\frac{1}{\mu} \mathbb{G}\left(\frac{\varepsilon}{\mu} \frac{\overline{\mathbb{D}}_{ \pm} \rho^{n}}{\rho^{n}}\right)\right]
$$

while Step (i)a into

$$
g_{ \pm}^{n+1 / 2}=\frac{\rho^{n}}{2 \mu \varepsilon} \mathbb{G}\left(\frac{\varepsilon}{\mu} \frac{\overline{\mathbb{D}}_{ \pm} \rho^{n}}{\rho^{n}}\right) .
$$

Therefore, in terms of the mean value ρ, we have

$$
\rho^{n+1}=\rho^{n}+\Delta t\left\{\mathbb{D}_{+}\left[\frac{\rho^{n}}{2 \varepsilon \mu} \mathbb{G}\left(\frac{\varepsilon}{\mu} \frac{\overline{\mathbb{D}}_{+} \rho^{n}}{\rho^{n}}\right)\right]+\mathbb{D}_{-}\left[\frac{\rho^{n}}{2 \varepsilon \mu} \mathbb{G}\left(\frac{\varepsilon}{\mu} \frac{\overline{\mathbb{D}}_{-} \rho^{n}}{\rho^{n}}\right)\right]\right\}
$$

AP properties: $\varepsilon \rightarrow 0$
As $\varepsilon \rightarrow 0$, the system relaxes to a scheme for the heat equation, as long as the derivatives $\mathbb{D}_{ \pm}$and $\overline{\mathbb{D}}_{ \pm}$are taken in alternate directions to recover the classical centered three-point scheme.

Outline

(1) Introduction

- Motivation
- Setting
(2) Approximations
- Heat equation and \mathbb{P}^{1}-approximation
- Intermediate modelsAsymptotic-preserving schemes
- Kinetic equation
- First-order closure
- Zeroth-order closure
(4) Experiments
- AP properties of the schemes
- Comparisons
- Su-Olson tests

Kinetic solver

Relaxation to the heat equation $\varepsilon \rightarrow 0$

Figure: $L_{t, x, v}^{2}$-error of the distribution function f with respect to the solution of the heat equation with a symmetric initial datum, for a mesh of 100 x 100 , with respect to ε.

First-order closure solver

Relaxation $\alpha \rightarrow 0$ for a fixed ε

Convergence of tho

Figure: $L_{t, x}^{2}$-error of the densities ρ for the $\alpha>0$ method with respect to the completely relaxed scheme $\alpha=0$ for $\varepsilon=0.01$.

Outline

(1) Introduction

- Motivation
- Setting
(2) Approximations
- Heat equation and \mathbb{P}^{1}-approximation
- Intermediate modelsAsymptotic-preserving schemes
- Kinetic equation
- First-order closure
- Zeroth-order closure
(4) Experiments
- AP properties of the schemes
- Comparisons
- Su-Olson tests

Comparison between closures

We plot here the $L_{t, x, v}^{2}$-difference between the $f_{\varepsilon}(t, x, v)$ given by the kinetic scheme and the $\tilde{f}_{\varepsilon}(t, x, v)$ reconstructed from heat equation or closure schemes. As initial datum we choose a symmetric f_{0} and an asymmetric f_{0} :

$$
f_{0}(x, v)=\left\{\begin{array}{lll}
2 & -0.5 \leq x \leq 0.5 \text { and }-0.75 \leq v \leq 0.25 & \text { for the asymmetric i. d. } \\
2 & -0.5 \leq x \leq 0.5 \text { and }-0.5 \leq v \leq 0.5 & \text { for the symmetric i. d. } \\
1 & \text { otherwise } &
\end{array}\right.
$$

Figure: Left: symmetric initial datum. Right: asymmetric initial datum.

Outline

(1) Introduction

- Motivation
- Setting
(2) Approximations
- Heat equation and \mathbb{P}^{1}-approximation
- Intermediate modelsAsymptotic-preserving schemes
- Kinetic equation
- First-order closure
- Zeroth-order closure
(4) Experiments
- AP properties of the schemes
- Comparisons
- Su-Olson tests

Su-Olson tests

The system

$$
\left\{\begin{array}{l}
\partial_{t} f_{\varepsilon}+\frac{v}{\varepsilon} \partial_{x} f_{\varepsilon}=\frac{1}{\varepsilon^{2}}\left(\left\langle f_{\varepsilon}\right\rangle-f_{\varepsilon}\right)+\sigma_{a}(\Theta-\rho)+S \\
\partial_{t} \Theta=\sigma_{a}(\rho-\Theta) \\
S=S(t, x)=\text { a given source. }
\end{array}\right.
$$

Strategy

W/e shall write numerical schemes for three levels, exactly as for the case of the benchmark kinetic equation:

- kinetic level;
- first-order closure;
- zeroth-order closure.

Su-Olson tests

The system

$$
\left\{\begin{array}{l}
\partial_{t} f_{\varepsilon}+\frac{v}{\varepsilon} \partial_{x} f_{\varepsilon}=\frac{1}{\varepsilon^{2}}\left(\left\langle f_{\varepsilon}\right\rangle-f_{\varepsilon}\right)+\sigma_{a}(\Theta-\rho)+S \\
\partial_{t} \Theta=\sigma_{a}(\rho-\Theta) \\
S=S(t, x)=\text { a given source }
\end{array}\right.
$$

Strategy

We shall write numerical schemes for three levels, exactly as for the case of the benchmark kinetic equation:

- kinetic level;
- first-order closure;
- zeroth-order closure.

Su-Olson tests

Kinetic level
The distribution function is split into average and fluctuations $f_{\varepsilon}=\rho_{\varepsilon}+\varepsilon g_{\varepsilon}$, then a first-order splitting procedure is adopted:
Step (i) Solve for Δt

$$
\left\{\begin{array}{l}
g^{n+1 / 2}=e^{-\Delta t / \varepsilon^{2}} g^{n}-\left(1-e^{-\Delta t / \varepsilon^{2}}\right) v \partial_{x} \rho^{n} \\
f^{n+1 / 2}=e^{-\Delta t / \varepsilon^{2}} f^{n}+\left(1-e^{-\Delta t / \varepsilon^{2}}\right) \rho^{n} \\
\Theta^{n+1 / 2}=e^{-\sigma_{a} \Delta t} \Theta^{n}+\sigma_{a}\left(1-e^{-\sigma_{a} \Delta t}\right) \rho^{n} \\
\rho^{n+1 / 2}=\rho^{n}
\end{array}\right.
$$

Step 2.- Solve for Δt the convection equation

$$
\partial_{t} f+v \partial_{x} g=\sigma_{a}(\Theta-\rho)+S,
$$

then update ρ^{n+1}.

Su-Olson tests

First-order closure
The system

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x} J=\sigma_{a}(\Theta-\rho)+S \\
\varepsilon^{2} \partial_{t} J+\partial_{x}\left[\rho \psi\left(\frac{\varepsilon J}{\rho}\right)\right]=-J \\
\partial_{t} \Theta=\sigma_{a}(\rho-\Theta)
\end{array}\right.
$$

is seen as the relaxation, as $\alpha \rightarrow 0$, of the following:

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x} J=\sigma_{a}(\Theta-\rho)+S, \\
\varepsilon^{2} \partial_{t} J+\partial_{x} z=-J, \\
\partial_{t} z+\varepsilon^{2} \lambda^{2} \partial_{x} J=\frac{1}{\alpha}(\rho \psi(\varepsilon J / \rho)-z) \\
\partial_{t} \Theta=\sigma_{a}(\rho-\Theta)
\end{array}\right.
$$

Su-Olson tests

First-order closure: strategy
Diagonalize the system using f_{0} and $f_{ \pm}$, then split:
Step (i) Solve

$$
\begin{aligned}
\partial_{t} f_{0} & =\mu^{2}\left(\sigma_{a}(\Theta-\rho)+S\right) \\
\partial_{t} f_{ \pm} & =-\frac{f_{ \pm}}{\varepsilon^{2}}+\frac{z}{2 \varepsilon^{2}} \mp \mu \partial_{x} g_{ \pm} \mp \frac{\mu}{2 \varepsilon} \partial_{x} z, \\
\partial_{t} \Theta & =\sigma_{a}(\rho-\Theta),
\end{aligned}
$$

Step (ii) Solve the ODE

$$
\begin{aligned}
\partial_{t} f_{0} & =-\frac{1}{\alpha}(\rho \psi(u)-z) \\
\partial_{t} f_{ \pm} & =\frac{1}{2 \alpha}(\rho \psi(u)-z) \\
\partial_{t} \Theta & =0
\end{aligned}
$$

Su-Olson tests

Zeroth-order closure

$$
\left\{\begin{array}{l}
\partial_{t} \varrho-\partial_{x}\left(\frac{\varrho}{\varepsilon} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \varrho}{\varrho}\right)\right)=\sigma_{a}(\Theta-\rho)+S, \\
\partial_{t} \Theta=\sigma_{a}(\rho-\Theta)
\end{array}\right.
$$

is seen as the relaxation, when α tends to 0 , of

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x} J=\sigma_{a}(\Theta-\rho)+S \\
\partial_{t} J+\frac{\mu^{2}}{\varepsilon^{2}} \partial_{x} \rho=-\frac{1}{\alpha}\left[J+\frac{\rho}{\varepsilon} \mathbb{G}\left(\varepsilon \frac{\partial_{x} \rho}{\rho}\right)\right] \\
\partial_{t} \Theta=\sigma_{a}(\rho-\Theta)
\end{array}\right.
$$

Su-Olson tests

Solver

Following the same strategy as for the zeroth-order closure of the benchmark system, and relaxing the numerical scheme to $\alpha=0$, we obtain the following

$$
\begin{aligned}
\Theta^{n+1}= & e^{-\sigma_{a} \Delta t} \Theta^{n}+\sigma_{a}\left(1-e^{-\sigma_{a} \Delta t}\right) \rho^{n} \\
\rho^{n+1}= & \rho^{n}+\Delta t\left\{\mathbb{D}_{+}\left[\frac{\rho^{n}}{2 \varepsilon \mu} \mathbb{G}\left(\frac{\varepsilon}{\mu} \frac{\overline{\mathbb{D}}_{+} \rho^{n}}{\rho^{n}}\right)\right]+\mathbb{D}_{-}\left[\frac{\rho^{n}}{2 \varepsilon \mu} \mathbb{G}\left(\frac{\varepsilon}{\mu} \frac{\overline{\mathbb{D}}_{-} \rho^{n}}{\rho^{n}}\right)\right]\right\} \\
& +\Delta t\left(\sigma_{a}\left(\Theta^{n+1}-\rho^{n}\right)+S^{n}\right)
\end{aligned}
$$

Su-Olson tests

Numerical results

Figure: $t=1$; (a) and (b): $f_{0}=\rho_{0}=\Theta_{0}=10^{-10}$; (c) and (d): $f_{0}=\rho_{0}=\Theta_{0}=1$.

Su-Olson tests

Numerical results

Figure: Su-Olson test: Comparison of the density ρ computed by the different models as ε varies at time $t=1$ (continued).

Su-Olson tests

Numerical results

Figure: $\varepsilon=0.026$, the initial datum is $f_{0}=\rho_{0}=\Theta_{0}=10^{-10}$.

Su-Olson tests

Numerical results

Figure: $\varepsilon=0.1$, the initial datum is $f_{0}=\rho_{0}=\Theta_{0}=10^{-10}$.

Su-Olson tests

Numerical results

Figure: $\varepsilon=0.26$, the initial datum is $f_{0}=\rho_{0}=\Theta_{0}=10^{-10}$.

Su-Olson tests

Numerical results

Figure: $\varepsilon=0.26$, the initial datum is $f_{0}=\rho_{0}=\Theta_{0}=1$.

Su-Olson tests

Numerical results

Figure: $\varepsilon=1$, the initial data is $f_{0}=\rho_{0}=\Theta_{0}=1$.

