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Introduction

Collective behaviors
They describe situations in which a set of individuals organize into macroscopically
observable patterns by self-organization, without the acrive role of a leader.

Figure: A fish school

Exmaples

Fish schools

Bird flocks

Insect swarms

Sheep herds

Micro organisms

Averaging of prices
in stock exchanges

Diffusion of
languages in
primitive societies
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Introduction

Collective behavior categories

For the sake of clarity, we divide the collective behavior models into two categories:

Alignment models

They describe the tendency animals have
to modify their orientation by mimicking
what the surrounding individuals do.

Figure: A bird flock

Attractive/repulsive models

They describe the tendency of social
animals which want to stay together
(attraction), nonetheless not too close so
as to avoid collisions (repulsion).

Figure: A sheep herd
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Introduction

Collective behavior level of description
The collective behavior models are classified depending on the precision.

Particle (also called individual-based) models

Individuals are numbered from 1 to N.
Advantage: very precise, nature is discrete.
Drawback: Numerically too costly to simulate for real applications.
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Introduction

Collective behavior level of description

Continuum models

The population of individuals is described through a continuum function ρ, at
different precision levels:

In kinetic (or mesoscopic) models ρ depends on position and velocity.
Advantage: precise, can retain details (e.g. filamentation).
Drawback: high dimensionality too costly to solve.

In hydrodynamic (or macroscopic) models ρ only depends on position.
Advantage: high performances due to the low dimensionality.
Drawback: it is the least precise possible description.
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Description

The Cucker-Smale model

Particle description

Individual number i ∈ {1, . . . ,N} modifies its velocity depending on what the other
individuals do:

d
dt

x(i) = v(i),
d
dt

v(i) = − 1
N

N∑
j=1

1(
1 + |x(j) − x(i)|2Rd

)γ · (v(i) − v(j)
)
.

Known facts about this model

For γ ≤ 1
2 the interaction is strong and the system always converges to the

asymptotic state vi(t) −−−−→
t→+∞

〈v(0)〉.

For γ > 1
2 the interaction is weaker and the system converges to the asymptotic

state vi(t) −−−−→
t→+∞

〈v(0)〉 provided that the positions and the velocities are not

too spread-out in a certain parameter space.
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Description

The Cucker-Smale model

Cone of vision

That each bird be able to see all the surrounding birds is non-physical. Therefore, a
modified version of the model is taken into account by introducing a cone of vision:

x(i)

v(i)

x(j)

x(k)

φ
particle k is not seen by particle

C
(i)

viewing angle of particle i

particle j lies inside the

i as it lies outside the viewing

cone of particle i



Introduction Alignment model Asymptotic-speed model

Description

The Cucker-Smale model

Cone of vision

The original model

d
dt

x(i) = v(i),
d
dt

v(i) = − 1
N

N∑
j=1

1(
1 + |x(j) − x(i)|2Rd

)γ · (v(i) − v(j)
)
.

is modified:

d
dt

v(i) = − 1
N

N∑
j=1

1I
[
cos
(

x(j) − x(i), v(i)
)
≥ cos(φ)

]
(

1 + |x(j) − x(i)|2Rd

)γ ·
(

v(i) − v(j)
)
,

cos
(
v′, v′′

)
=

d∑
n=1

v′nv′′n

|v′|Rd |v′′|Rd
cosine between v′ and v′′.

where φ is the viweing angle.
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Description

The Cucker-Smale model

Kinetic description

For N →∞ the continuum model is obtained

∂f
∂t

+ v ·∇xf −∇v ·
[(

v ?v
1

(1 + |x|2)γ ?x f
)

f
]
= 0.

Known facts about this model

For γ ≤ 1
2 the system converges to the asymptotic state

f (t, x, v) −−−−→
t→+∞

ρ(t, x)δv̄(v).

For γ > 1
2 ??? No results known.

Cone of vision

If we wished to add a cone of vision, the system would be

∂f
∂t

+ v ·∇xf −∇v ·
[(

v ?v
1I [cos (x, v) ≥ cos(φ)]

(1 + |x|2)γ ?x f
)

f
]
= 0.
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Numerical results

Outline

We shall perform a numerical analysis on three aspects:

Leadership emergence thanks to the viewing angle.

Convergence particle −→ kinetic.

Intuition about what happens for γ > 1
2 in the kinetic model.
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Numerical results

Leadership emergence

The viewing-angle structure allows for the emergence of leadership.

Viewing cone

The viewing cone of particle i is defined as

C(i) =
{

x ∈ Rdsuch that
∣∣∣angle

(
x− x(i), v(i)

)∣∣∣ ≤ φ} ⊆ Rd.

Using graph theory to define the troops

The set of particles is a directed graph: an arc goes from i to j iff P(j) ∈ C(i).
Particles i and j are connected iff j is reachable from i. Reachability is an equivalence
relation, whose classes are called connected components in graph theory; we shall
call them troops.

Definition of the leadership

Particle i is a leader iff C(i) = ∅. The number of troops and leaders evolves with time.
If a troop has only one leader, then it can be inscribed inside a triangle having as
vertex the leader.
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Numerical results

Leadership emergence
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Numerical results

Leadership emergence

Let each troop has just one leader, let αp the angle at the vertex, and let
α := maxp=1,...,Ntroops αp. Numerical evidence shows that α depends on the viewing
angle φ.
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Numerical results

Leadership emergence: 3D case
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Numerical results

Particle/kinetic connections

Numerical scheme for the kinetic model

The kinetic code is solved through a simple WENO finite-differences scheme
coupled to the TVD third-order Runge-Kutta time integrator. Just the term
∂

∂v
[− (v ?v U0 ?x f ) f ] requires to split the flux: let

a2(x, v) := − (v ?v U0 ?x f ) , ‖a2‖∞ = sup
(x,v)
|a2(x, v)|,

we rewrite it as

a2(x, v) :=
a2(x, v) + ‖a2‖∞

2︸ ︷︷ ︸
a2,+(x,v)≥0

+
a2(x, v)− ‖a2‖∞

2︸ ︷︷ ︸
a2,−(x,v)≤0

so that

∂

∂v
[− (v ?v U0 ?x f ) f ] =

∂

∂v
[a2(x, v)f ] =

∂

∂v
[a2,+(x, v)f ]︸ ︷︷ ︸

wind fr. left

+
∂

∂v
[a2,−(x, v)f ]︸ ︷︷ ︸

wind fr. right

.



Introduction Alignment model Asymptotic-speed model

At a first glance

Numerical evidence confirms that the kinetic model is the correct limit of the particle
model:
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Particle/kinetic connections

Degradation rate

In the literature, it is proven that

W
(
µ(t), µN(t)

)
≤ C(t)W

(
µ(0), µN(0)

)
,

where C(t) has exponential growth, W
(
µ(t), µN(t)

)
is the Wasserstein

distance between

µ(t) := λ ρ(t, x) , λ = Lebesgue measure,

which is the particle density of the kinetic model in the sense of measures,
and

µN(t) :=
1
N

N∑
i=1

δ
(

x− x(i)(t)
)
,

which is the particle distribution of the individual-based model.
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Particle/kinetic connections

Convergence of the initial datum

We recall that W
(
µ(t), µN(t)

)
≤ C(t)W

(
µ(0), µN(0)

)
. Let us now focus

on the part concerning the initial datum (in red): numerical evidence
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Particle/kinetic connections

Exponential degradation

Again, we recall that W
(
µ(t), µN(t)

)
≤ C(t)W

(
µ(0), µN(0)

)
. Empirically,

C(t) seems to grow at most linearly in time:
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Therefore, the more optimistic C(t) = 1 +K(γ)t, might hold, with a linear
dependency of K on the exponent γ, as suggested by numerical experiments:
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Phase transition

Relative energies

We introduce the relative kinetic and potential energies:

ΛN :=
1

2N2

∑
i,j

|v(i) − v(j)|2Rd , ΓN :=
1

2N2

∑
i,j

|x(i) − x(j)|2Rd .

In the regime γ > 1
2 , we need small values for ΛN(0) and ΓN(0) in order to

ensure convergence. The phase transition from converging to diverging
simulations is smooth and not sharp. Moreover, it does not seem to depend
on N, which suggests similar results for the kinetic case might hold.
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Description

The asymptotic-speed model

We take into account three effects: selfpropulsion, friction and
attraction/repulsion: for i ∈ {1, . . . ,N}

d
dt

x(i) = v(i), mi
d
dt

v(i) = miαv(i)︸ ︷︷ ︸
selfpropulsion

−miβ|v(i)|2Rd v(i)︸ ︷︷ ︸
friction︸ ︷︷ ︸

asymptotic speed=
√
α/β

−mi

∑
j 6=i

mj∇U(x(i) − x(j))︸ ︷︷ ︸
attraction/repulsion potential

,

U(x) = −Ca exp
(
−|x|

p

`p
a

)
︸ ︷︷ ︸

attractive part

+ Cr exp
(
−|x|

p

`p
r

)
︸ ︷︷ ︸

repulsive part

, p ∈ {1, 2}.

Kinetic model
As N →∞ we get the following kinetic model:

∂f
∂t

+ v ·∇xf︸ ︷︷ ︸
free motion

+∇v ·
[
(α− β|v|2Rd )vf

]︸ ︷︷ ︸
asymptotic speed

−∇v · [(∇xU ∗ ρ)f ]︸ ︷︷ ︸
attraction/repulsion

= 0.
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Description

The asymptotic-speed model
To make the characteristic times appear, we adimensonalize the system:

dx(i)

dt
=

t∗
tkin

v(i)︸ ︷︷ ︸
free motion

,
dv(i)

dt
=

t∗
tf/p

(1− |v(i)|2)v(i)

︸ ︷︷ ︸
asymptotic speed

− t∗
ta/r

1
N

∑
j6=i

∇x [−W(x) + CW(x/`)]

︸ ︷︷ ︸
Morse potential

,

tkin = `a

√
β

α
, tf/p =

1
α
, ta/r =

`a

CaM

√
α

β
.

We expect that the smallest characteristic times be the first effect to appear,
while the largest should indicate the asymptotic state.

Stability diagram
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Numerical results

Numerical experiments

3D clumps
particles at time 80

trajectory of particle nr. 0 since time 80 trajectory of particle nr. 1 since time 80

Time hierarchy is: ta/r < tkin < tf/p.

We are in region I (catastrophic):
C = .6, ` = .5.
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Numerical results

Numerical experiments

3D rings

Regions II (C = .5, ` = .5), III (C = .4, ` = .6) and IV (C = .5, ` = 1.2) are
catastrophic. Time hierarchy is: ta/r < tkin < tf/p.
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Numerical results

Numerical experiments

3D coherent flocks

In regions VI (stable) for small values of
√
α/β coherent flocks might

appear, with two peculiarities: particles try to form a crystal structure and
the coherent flock is mixed to a rigid-body rotation. Time hierarchy is:
ta/r < tkin < tf/p.

from time 1000 to time 1500

center of mass
particle nr. 0
particle nr. 1
particle nr. 2
particle nr. 3

from time 4500 to time 5000
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Numerical results

Numerical experiments

3D coherent flocks
The H-stability reflects in the increase of the radius with respect to the
number of particles.
Both the increases of N and α seem to favor dispersed states.
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Numerical results

Numerical experiments

Some bizarre patterns...

For small numbers of particles, some bizarre patterns might emerge.

part. nr. 1
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Introduction Alignment model Asymptotic-speed model

Numerical results

Numerical experiments

3D mills
Mills and rigid-body
rotations are two
rotational states. In
mills, the particles
keep the modulus of
the velocities fixed,
while in rigid-body
rotations they keep
fixed distances. In
region VII, these two
patterns might appear
as stages of the same
simulation.
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Numerical results

Numerical experiments

Instability of the 3D mills

Let P :=
|∑N

i=1 v(i)|∑N
i=1|v(i)| (polarity), M :=

|∑N
i=1 r(i)∧v(i)|∑N

i=1|x(i)−xCM||v(i)| (mom.).

A coherent flock corresponds to (P,M) = (1, 0); a mill to (P,M) = (0, 1).
Numerical evidence suggests that mills are unstable: they eventually
degenerate into a coherent flock. Contextually, the relative energies drop.
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Numerical results

Numerical experiments

Shape of the crystal lattice

In order to study the shape of the lattice, we introduce an order factor:

OQ =
1

N
(
µ
2

)
∣∣∣∣∣∣

N−1∑
i=0

µ∑
j1=1

µ∑
j2=j1+1

cos
(

Q · φ(i)

N (i)
j1
,N (i)

j2

)∣∣∣∣∣∣ ,

φ
(i)
`,m is angle ̂P(`)P(i)P(m) and dist

(
x(i), xN

(i)
1

)
≤ dist

(
x(i), xN

(i)
2

)
≤ ...

OQ is peaked at value 2 for any choice of µ =⇒ cubic lattice.
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Numerical results

Numerical experiments

Continuum model
We perform simulations on a simplified geometry: particles turn on a circle.

Sketch of the numerical scheme
We Strang-split the solution of the PDE and solve each part for separate:

∂tf +
t∗
tkin

v · ∂xf︸ ︷︷ ︸
upwinding

+
t∗

tf/p
∂v
[
(1− v2)vf

]
︸ ︷︷ ︸

PFC3 (conservative)

− t∗
ta/r

∂v

[(
∂x

(
−e−|x|

p
+ Ce−

|x|p
`p

)
∗ ρ
)

f
]

︸ ︷︷ ︸
upwinding

= 0.

The convolution term is computed thanks to Laguerre polynomials.
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Numerical results

Numerical experiments

The effect of the asymptotic-speed part

The continuum simulations correctly reproduce the fact that the
selfpropulsion and friction parts force the velocity to have modulus

√
α/β.

(a) Case MKR-I (b) Case MKR-II (c) Case MKR-VI-1

(d) Case MRK-VII-2 (e) Case KMR-VII (f) Case KRM-VII
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Numerical results

Numerical experiments

The effect of the asymptotic-speed part

(a) Case MKR-I (b) Case MKR-II (c) Case MKR-VI-1

(d) Case MRK-VII-2 (e) Case KMR-VII (f) Case KRM-VII
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Numerical results

Numerical experiments

Torus view

(a) Case MKR-I (b) Case MKR-II (c) Case MKR-VI-1

(d) Case MRK-VII-2 (e) Case KMR-VII (f) Case KRM-VII
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Numerical results

Numerical experiments

Torus view

(a) Case MKR-I (b) Case MKR-II (c) Case MKR-VI-1

(d) Case MRK-VII-2 (e) Case KMR-VII (f) Case KRM-VII
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Numerical results

Thank you for your attention!
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