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Abstract. We propose a numerical instrument to solve, in dimension N ∈ {1, 2}, transport
problems written in conservation form

(1)
∂u

∂t
+ divx [a(t,x)u] = 0, u(0,x) = u0(x), (t,x) ∈ R≥0 × Ω,

where Ω =
∏N

n=1[(xn)min, (xn)max] ⊆ RN , u : R≥0×Ω→ R and a : R≥0×Ω→ RN . The amount
u(t,x) evolves following the laws described by the advection field a(t,x), whose expression
depends on the nature of the system studied. Common issues in the simulation of such problems
are the appearance or movement of large gradients, the filamentation of the phase space or
the presence of vortices, in which cases many discretization points are required, while smooth
zones can be given less resolution. If a Fixed Mesh (FM) discretization is used, then the choice
of meshing the whole domain at the highest resolution is forced, which makes the numerical
method time-consuming. Adaptive-Mesh-Refinement (AMR) [3, 1] schemes describe different
zones of the domain Ω with different resolutions; the grid hierarchy is updated after each time
step depending on the features of u(t,x). The transport stages of (1) are solved by means of a
semi-Lagrangian (SL) strategy based on integrating at the feet of the characteristics through
the Point-Value Weighted Essentially Non Oscillatory (PV-WENO) scheme in order to avoid
adding spurious, non-physical oscillations [2]. We extend to the 2D setting by making the time
integration dimension-by-dimension thanks to a Strang splitting [4]. We discuss the quality of
the results and the speedup with respect to a Fixed Mesh (FM) strategy through the following
benchmark tests: in 1D, constant and variable-coefficient advections; in 2D, the Vlasov-Poisson
system, the swirling deformation flow and the guiding-center model.
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