A semi-Lagrangian AMR scheme for 2D transport problems in conservation form

Pep Mulet Mestre, Francesco Vecil

Universitat de València

CSASC, Koper/Capodistria (Slovenia), 12 June 2013

Outline

2 Numerical tools

- Multiresolution framework
- Time integration

Introduction

- ID tests
- 2D tests

Motivation

No need for fine meshing everywhere in the domain.

₩

Refine only where the important information is.

Introduction		Experiments
00		00000000
Introduction		

Framework

Equations

In dimension N, transport equations written in conservtion form:

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1} \left[a_1(t, x_1, x_2) u \right] + \frac{\partial}{\partial x_2} \left[a_2(t, x_1, x_2) u \right] = 0, \qquad u(0, x_1, x_2) = u^0(x_1, x_2),$$

where $\boldsymbol{a}: \mathbb{R}_{\geq 0} \times \Omega \to \mathbb{R}^2$ is the advection field.

Example

The three-dimensional Vlasov-Maxwell equation

$$\frac{\partial f}{\partial t} + \mathbf{v}(\mathbf{p}) \cdot \frac{\partial f}{\partial \mathbf{x}} + \mathbf{F} \cdot \frac{\partial f}{\partial \mathbf{p}} = 0, \quad \mathbf{v}(\mathbf{p}) := \frac{\mathbf{p}}{m\sqrt{1 + \frac{|\mathbf{p}|^2}{m^2c^2}}}, \quad \mathbf{F} := -e(\mathbf{E} + \mathbf{v}(\mathbf{p}) \wedge \mathbf{B}),$$

describes the evolution of f(t, x, p), typically representing the concentration of electrons or holes at position x and momentum p.

Features

Shocks, large gradients, filamentation, microscopic structures.

Introduction		Experiments
00		00000000
Introduction		

Framework

Equations

In dimension N, transport equations written in conservtion form:

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1} \left[a_1(t, x_1, x_2) u \right] + \frac{\partial}{\partial x_2} \left[a_2(t, x_1, x_2) u \right] = 0, \qquad u(0, x_1, x_2) = u^0(x_1, x_2),$$

where $\boldsymbol{a}: \mathbb{R}_{\geq 0} \times \Omega \to \mathbb{R}^2$ is the advection field.

Example

The three-dimensional Vlasov-Maxwell equation

$$\frac{\partial f}{\partial t} + \mathbf{v}(\mathbf{p}) \cdot \frac{\partial f}{\partial \mathbf{x}} + \mathbf{F} \cdot \frac{\partial f}{\partial \mathbf{p}} = 0, \quad \mathbf{v}(\mathbf{p}) := \frac{\mathbf{p}}{m\sqrt{1 + \frac{|\mathbf{p}|^2}{m^2c^2}}}, \quad \mathbf{F} := -e(\mathbf{E} + \mathbf{v}(\mathbf{p}) \wedge \mathbf{B}),$$

describes the evolution of f(t, x, p), typically representing the concentration of electrons or holes at position x and momentum p.

Features

Shocks, large gradients, filamentation, microscopic structures.

Introduction		Experiments
00	0000000	00000000
Introduction		

Framework

Equations

In dimension N, transport equations written in conservtion form:

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1} \left[a_1(t, x_1, x_2) u \right] + \frac{\partial}{\partial x_2} \left[a_2(t, x_1, x_2) u \right] = 0, \qquad u(0, x_1, x_2) = u^0(x_1, x_2),$$

where $\boldsymbol{a}: \mathbb{R}_{\geq 0} \times \Omega \to \mathbb{R}^2$ is the advection field.

Example

The three-dimensional Vlasov-Maxwell equation

$$\frac{\partial f}{\partial t} + \mathbf{v}(\mathbf{p}) \cdot \frac{\partial f}{\partial \mathbf{x}} + \mathbf{F} \cdot \frac{\partial f}{\partial \mathbf{p}} = 0, \quad \mathbf{v}(\mathbf{p}) := \frac{\mathbf{p}}{m\sqrt{1 + \frac{|\mathbf{p}|^2}{m^2c^2}}}, \quad \mathbf{F} := -e(\mathbf{E} + \mathbf{v}(\mathbf{p}) \wedge \mathbf{B}),$$

describes the evolution of f(t, x, p), typically representing the concentration of electrons or holes at position x and momentum p.

Features

Shocks, large gradients, filamentation, microscopic structures.

Outline

2 Numerical tools

• Multiresolution framework

• Time integration

3 Experiments

- Introduction
- ID tests
- 2D tests

Resolution levels

We define L + 1 resolution levels: the coarsest is $\ell = 0$, the finest $\ell = L$. In 1D, the meshes are

$$x_{\ell,j} = x_{\min} + j\Delta x_\ell, \qquad \Delta x_\ell = \frac{x_{\max} - x_{\min}}{2^\ell N_0}.$$

Grid

The ℓ -grid at time t^n is

$$G_{\ell}^n = \{x_{\ell,j}\}_{j \in \mathcal{G}_{\ell}^n}.$$

We are interested in

$$\mathcal{G}_{\ell}^n \subseteq \prod_{i=1}^N \{0, \ldots, N_{i,\ell}\}.$$

Resolution levels

We define L + 1 resolution levels: the coarsest is $\ell = 0$, the finest $\ell = L$. In 1D, the meshes are

$$x_{\ell,j} = x_{\min} + j\Delta x_{\ell}, \qquad \Delta x_{\ell} = \frac{x_{\max} - x_{\min}}{2^{\ell}N_0}.$$

Grid

The ℓ -grid at time t^n is

$$G_{\ell}^n = \{x_{\ell,j}\}_{j \in \mathcal{G}_{\ell}^n}.$$

We are interested in

$$\mathcal{G}_{\ell}^{n} \subseteq \prod_{i=1}^{N} \{0,\ldots,N_{i,\ell}\}.$$

Nesting condition

Ghost points

Ghost points are added outside the ℓ -grids to take into account the boundary conditions for the time integration.

Nesting condition

Ghost points

Ghost points are added outside the ℓ -grids to take into account the boundary conditions for the time integration.

The grid selection is based on two criteria: *prediction* and *gradient*.

The prediction criterion

Let $\{u_{\ell,j}\}_{j \in \mathcal{G}_{\ell}^{n}}$ the point values at reslution level ℓ . Let $p[u_{\ell}]$ an interpolator at resolution level ℓ . We keep point $x_{\ell,j}$ for refinement if

 $|p[u_{\ell-1}](x_{\ell,j}) - u_{\ell,j}| > \tau_p.$

The gradient criterion

We estimate the gradient at point $x_{\ell,j}$ by means of the discrete gradient computed at resolution level $\ell - 1$: if it is over a certain tolerance parameter $\tau_{d,\ell-1}$, then point $x_{\ell,j}$ is selected for refinement.

Reconstruction

The grid selection is based on two criteria: prediction and gradient.

The prediction criterion

Let $\{u_{\ell,j}\}_{j\in \mathcal{G}_{\ell}^{n}}$ the point values at resolution level ℓ . Let $p[u_{\ell}]$ an interpolator at resolution level ℓ . We keep point $x_{\ell,j}$ for refinement if

$$|p[u_{\ell-1}](x_{\ell,j}) - u_{\ell,j}| > \tau_p.$$

The gradient criterion

We estimate the gradient at point $x_{\ell,j}$ by means of the discrete gradient computed at resolution level $\ell - 1$: if it is over a certain tolerance parameter $\tau_{d,\ell-1}$, then point $x_{\ell,j}$ is selected for refinement.

Reconstruction

The grid selection is based on two criteria: prediction and gradient.

The prediction criterion

Let $\{u_{\ell,j}\}_{j\in \mathcal{G}_{\ell}^{n}}$ the point values at resolution level ℓ . Let $p[u_{\ell}]$ an interpolator at resolution level ℓ . We keep point $x_{\ell,j}$ for refinement if

$$|p[u_{\ell-1}](x_{\ell,j}) - u_{\ell,j}| > \tau_p.$$

The gradient criterion

We estimate the gradient at point $x_{\ell,j}$ by means of the discrete gradient computed at resolution level $\ell - 1$: if it is over a certain tolerance parameter $\tau_{d,\ell-1}$, then point $x_{\ell,j}$ is selected for refinement.

Reconstruction

The grid selection is based on two criteria: prediction and gradient.

The prediction criterion

Let $\{u_{\ell,j}\}_{j\in \mathcal{G}_{\ell}^{n}}$ the point values at resolution level ℓ . Let $p[u_{\ell}]$ an interpolator at resolution level ℓ . We keep point $x_{\ell,j}$ for refinement if

$$|p[u_{\ell-1}](x_{\ell,j}) - u_{\ell,j}| > \tau_p.$$

The gradient criterion

We estimate the gradient at point $x_{\ell,j}$ by means of the discrete gradient computed at resolution level $\ell - 1$: if it is over a certain tolerance parameter $\tau_{d,\ell-1}$, then point $x_{\ell,j}$ is selected for refinement.

Reconstruction

	Numerical tools	Experiments
	0000000	
Time integration		

Outline

2 Numerical tools

- Multiresolution framework
- Time integration

- Introduction
- 1D tests
- 2D tests

1D semi-Lagrangian strategy

Characteristic-based solution

The solution to the PDE

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} [a(t,x)u] = 0, \qquad u(0,x) = u^0(x)$$

is given by $u(t,x) = u(s, \mathcal{X}(s; t, x)) J(s; t, x),$

with $\mathcal{X}(s; t, x)$ the characteristic at time *s*, starting from *x* at time *t*:

$$\frac{\mathrm{d}\mathcal{X}(s;t,x)}{\mathrm{d}s} = a\left(s,\mathcal{X}(s;t,x)\right), \qquad \mathcal{X}(t;t,x) = x, \qquad J(s;t,x) := \frac{\partial\mathcal{X}(s;t,x)}{\partial x}.$$

Time integration

1D semi-Lagrangian strategy

What do we need?

- A solver for the characteristics $\mathcal{X}(s; t, x)$: **Runge-Kutta**.
- An approximation for the Jacobian through **cenetred finite differences**:

$$J(s;t,x) = \frac{\partial \mathcal{X}(s;t,x)}{\partial x} \approx \frac{\tilde{\mathcal{X}}(s;t,x+\delta x) - \tilde{\mathcal{X}}(s;t,x-\delta x)}{2\delta x}, \quad \delta x = 10^{-m} \Delta x_{\ell}.$$

• An interpolator to reconstruct *u*(*s*, *X*(*s*; *t*, *x*)): **PVWENO** (Point-Value Weighted Essentially Non-Oscillatory).

Error estimate

The local truncation error can be estimated

$$E = \underbrace{\mathcal{O}\left(\Delta t^{s+1}\right)}_{\text{Runge-Kutta}} + \underbrace{\mathcal{O}\left(\Delta x_{\ell}^{2}\right)}_{\text{Jacobian}} + \underbrace{\mathcal{O}\left(\Delta x_{\ell}^{2r}\right)}_{\text{PVWENO}(\text{advection})}$$

1D semi-Lagrangian strategy

What do we need?

- A solver for the characteristics $\mathcal{X}(s; t, x)$: **Runge-Kutta**.
- An approximation for the Jacobian through **cenetred finite differences**:

$$J(s;t,x) = \frac{\partial \mathcal{X}(s;t,x)}{\partial x} \approx \frac{\tilde{\mathcal{X}}(s;t,x+\delta x) - \tilde{\mathcal{X}}(s;t,x-\delta x)}{2\delta x}, \quad \delta x = 10^{-m} \Delta x_{\ell}.$$

• An interpolator to reconstruct *u* (*s*, *X*(*s*; *t*, *x*)): **PVWENO** (Point-Value Weighted Essentially Non-Oscillatory).

Error estimate

The local truncation error can be estimated

$$E = \underbrace{\mathcal{O}\left(\Delta t^{s+1}\right)}_{\text{Runge-Kutta}} + \underbrace{\mathcal{O}\left(\Delta x_{\ell}^{2}\right)}_{\text{Jacobian}} + \underbrace{\mathcal{O}\left(\Delta x_{\ell}^{2r}\right)}_{\text{PVWENO (advection)}}$$
approximation of the characteristics

The 2D case

Grid hierarchy and selection

We do not give details, but we apply strategies similar to the 1D case.

The 2D PDE

We solve the 2D PDE $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1} (a_1 u) + \frac{\partial}{\partial x_2} (a_2 u) = 0$

by splitting the (x_1, x_2) -domain thanks to the second-order Strang scheme:

- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1}(a_1u) = 0;$
- Solve for a Δt time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_2} (a_2 u) = 0;$
- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1}(a_1u) = 0$.

Error estimate

The Strang splitting constrains the accuracy:

$$E = \mathcal{O}\left(\Delta t^{\min(s+1,3)}\right) + \underbrace{\mathcal{O}(\Delta x_{1,\ell}^2) + \mathcal{O}(\Delta x_{2,\ell}^2)}_{\text{approximated Jacobian}} + \underbrace{\mathcal{O}(\Delta x_{1,\ell}^{2r}) + \mathcal{O}(\Delta x_{2,\ell}^{2r})}_{\text{PVWENO}}.$$

The 2D case

Grid hierarchy and selection

We do not give details, but we apply strategies similar to the 1D case.

The 2D PDE

We solve the 2D PDE
$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1} (a_1 u) + \frac{\partial}{\partial x_2} (a_2 u) = 0$$

by splitting the (x_1, x_2) -domain thanks to the second-order Strang scheme:

- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1}(a_1u) = 0;$
- Solve for a Δt time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_2} (a_2 u) = 0;$
- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1}(a_1u) = 0$.

Error estimate

The Strang splitting constrains the accuracy:

$$E = \mathcal{O}\left(\Delta \iota^{\min(s+1,3)}\right) + \underbrace{\mathcal{O}(\Delta x_{1,\ell}^2) + \mathcal{O}(\Delta x_{2,\ell}^2)}_{\text{approximated Jacobian}} + \underbrace{\mathcal{O}(\Delta x_{1,\ell}^{2r}) + \mathcal{O}(\Delta x_{2,\ell}^{2r})}_{\text{PVWENO}}.$$

The 2D case

Grid hierarchy and selection

We do not give details, but we apply strategies similar to the 1D case.

The 2D PDE

We solve the 2D PDE
$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1} (a_1 u) + \frac{\partial}{\partial x_2} (a_2 u) = 0$$

by splitting the (x_1, x_2) -domain thanks to the second-order Strang scheme:

- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1}(a_1u) = 0;$
- Solve for a Δt time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_2} (a_2 u) = 0;$
- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1}(a_1u) = 0$.

Error estimate

The Strang splitting constrains the accuracy:

$$E = \mathcal{O}\left(\Delta t^{\min(s+1,3)}\right) + \underbrace{\mathcal{O}(\Delta x_{1,\ell}^2) + \mathcal{O}(\Delta x_{2,\ell}^2)}_{\text{approximated Jacobian}} + \underbrace{\mathcal{O}(\Delta x_{1,\ell}^{2r}) + \mathcal{O}(\Delta x_{2,\ell}^{2r})}_{\text{PVWENO}}.$$

Outline

Introduction

Numerical tools

- Multiresolution framework
- Time integration

- 1D tests
- 2D tests

		Experiments
	0000000	00000000
Introduction		
Goals		

The Adaptive-Mesh-Refinement (AMR) framework is compared to the equivalent Fixed-Mesh (FM) results.

Of course, AMR cannot be more accurate than FM. Rather, it achieves faster computational times in exchange of a loss of precision.

	Experiments
	0000000
1D tests	

Outline

- Multiresolution framework
- Time integration

- Introduction
- ID tests
- 2D tests

Introductio 00 1D tests Numerical tools

Experiments

Variable-coefficient advection

Variable-coefficient advection

Speedup

For parameters

$N_0 = 128$	points at $\ell = 0$
L = 4	number of resolution levels
$\Delta t_0 = 0.125$	maximum time step
$\tau_p = 10^{-4}$	prediction-criterion tolerance
$ au_{d,0} = 0.5$	gradient-criterion tolerance,

AMR reaches a speedup of 35 times with respect to the equivalently-resolved FM, with a loss of precision from 10^{-9} to roughly 10^{-6} (the L^2 -error w.r.t. the analytical solution).

	Experiments
	0000000
2D tests	

Outline

- Multiresolution framework
- Time integration

Experiments

- Introduction
- 1D tests
- 2D tests

	Experiments
	000000
2D tasts	

Deformation flows

The system

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial x} \left[\sin^2(\pi x) \sin(2\pi y)g(t)f \right] + \frac{\partial}{\partial y} \left[-\sin^2(\pi y) \sin(2\pi x)g(t)f \right] = 0, \quad (x, y) \in [0, 1]^2,$$

for $g(t) = \cos\left(\frac{\pi t}{T}\right)$, periodically recovers the initial datum after alternate clockwise and counterclockwise twistings.

000000

Performances

Speedup ≈ 2 .

Deformation flows

The ODE integrator for the characteristics

As announced by the error estimate

$$E = \mathcal{O}(\Delta x_{1,\ell}^2) + \mathcal{O}(\Delta x_{2,\ell}^2) + \mathcal{O}\left(\Delta t^{\min(s+1,3)}\right)$$

the Strang-splitting order constrains the accuracy.

Kelvin-Hemlholtz instabilities

The model

The guiding-center model (omitting some details)

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_1} \left[\frac{\partial \Phi}{\partial x_2} \rho \right] + \frac{\partial}{\partial x_2} \left[-\frac{\partial \Phi}{\partial x_1} \rho \right] = 0, \qquad \Delta_{x_1, x_2} \Phi = \rho,$$

for initial condition $\rho(0, x_1, x_2) = 1.5 \operatorname{sech}\left(\frac{x_2}{0.9}\right) \cdot (1 + 0.08 \sin(2kx_1))$, periodic x_1 - and Dirichlet x_2 -boundaries, produces vortices and filamentation.

Introducti 00 2D tests Numerical tools

Experiments

Kelvin-Hemlholtz instabilities

GRÀCIES! HVALA! DANKE! ĎAKUJEM! DĚKUJI!