A semi-Lagrangian AMR scheme for 2D transport problems in conservation form

Pep Mulet Mestre, Francesco Vecil

Universitat de València
CSASC, Koper/Capodistria (Slovenia), 12 June 2013

Outline

(1) Introduction
(2) Numerical tools

- Multiresolution framework
- Time integration
(3) Experiments
- Introduction
- 1D tests
- 2D tests

Motivation

No need for fine meshing everywhere in the domain.

Refine only where the important information is.

Framework

Equations
In dimension N, transport equations written in conservtion form:

$$
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x_{1}}\left[a_{1}\left(t, x_{1}, x_{2}\right) u\right]+\frac{\partial}{\partial x_{2}}\left[a_{2}\left(t, x_{1}, x_{2}\right) u\right]=0, \quad u\left(0, x_{1}, x_{2}\right)=u^{0}\left(x_{1}, x_{2}\right)
$$

where $\boldsymbol{a}: \mathbb{R}_{\geq 0} \times \Omega \rightarrow \mathbb{R}^{2}$ is the advection field.

Example

The three-dimensional Vlasov-Maxwell equation

describes the evolution of $f(t, \boldsymbol{x}, \boldsymbol{p})$, typically representing the concentration of electrons or holes at position \boldsymbol{x} and momentum \boldsymbol{p}.

[^0]
Framework

Equations

In dimension N, transport equations written in conservtion form:

$$
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x_{1}}\left[a_{1}\left(t, x_{1}, x_{2}\right) u\right]+\frac{\partial}{\partial x_{2}}\left[a_{2}\left(t, x_{1}, x_{2}\right) u\right]=0, \quad u\left(0, x_{1}, x_{2}\right)=u^{0}\left(x_{1}, x_{2}\right)
$$

where $\boldsymbol{a}: \mathbb{R}_{\geq 0} \times \Omega \rightarrow \mathbb{R}^{2}$ is the advection field.

Example

The three-dimensional Vlasov-Maxwell equation

$$
\frac{\partial f}{\partial t}+\boldsymbol{v}(\boldsymbol{p}) \cdot \frac{\partial f}{\partial \boldsymbol{x}}+\boldsymbol{F} \cdot \frac{\partial f}{\partial \boldsymbol{p}}=0, \quad \boldsymbol{v}(\boldsymbol{p}):=\frac{\boldsymbol{p}}{m \sqrt{1+\frac{\mid \boldsymbol{p}^{2}}{m^{2} c^{2}}}}, \quad \boldsymbol{F}:=-e(\boldsymbol{E}+\boldsymbol{v}(\boldsymbol{p}) \wedge \boldsymbol{B})
$$

describes the evolution of $f(t, \boldsymbol{x}, \boldsymbol{p})$, typically representing the concentration of electrons or holes at position \boldsymbol{x} and momentum \boldsymbol{p}.

[^1]
Framework

Equations

In dimension N, transport equations written in conservtion form:

$$
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x_{1}}\left[a_{1}\left(t, x_{1}, x_{2}\right) u\right]+\frac{\partial}{\partial x_{2}}\left[a_{2}\left(t, x_{1}, x_{2}\right) u\right]=0, \quad u\left(0, x_{1}, x_{2}\right)=u^{0}\left(x_{1}, x_{2}\right)
$$

where $\boldsymbol{a}: \mathbb{R}_{\geq 0} \times \Omega \rightarrow \mathbb{R}^{2}$ is the advection field.

Example

The three-dimensional Vlasov-Maxwell equation

$$
\frac{\partial f}{\partial t}+\boldsymbol{v}(\boldsymbol{p}) \cdot \frac{\partial f}{\partial \boldsymbol{x}}+\boldsymbol{F} \cdot \frac{\partial f}{\partial \boldsymbol{p}}=0, \quad \boldsymbol{v}(\boldsymbol{p}):=\frac{\boldsymbol{p}}{m \sqrt{1+\frac{\mid \boldsymbol{p}^{2}}{m^{2} c^{2}}}}, \quad \boldsymbol{F}:=-e(\boldsymbol{E}+\boldsymbol{v}(\boldsymbol{p}) \wedge \boldsymbol{B})
$$

describes the evolution of $f(t, \boldsymbol{x}, \boldsymbol{p})$, typically representing the concentration of electrons or holes at position \boldsymbol{x} and momentum \boldsymbol{p}.

Features
Shocks, large gradients, filamentation, microscopic structures.

Outline

(1) Introduction

(2) Numerical tools

- Multiresolution framework
- Time integration
(3) Experiments
- Introduction
- 1D tests
- 2D tests

Grid hierarchy

Resolution levels
We define $L+1$ resolution levels: the coarsest is $\ell=0$, the finest $\ell=L$. In 1D, the meshes are

$$
x_{\ell, j}=x_{\min }+j \Delta x_{\ell}, \quad \Delta x_{\ell}=\frac{x_{\max }-x_{\min }}{2^{\ell} N_{0}}
$$

Grid
The ℓ-grid at time t^{n} is

We are interested in

Grid hierarchy

Resolution levels
We define $L+1$ resolution levels: the coarsest is $\ell=0$, the finest $\ell=L$. In 1D, the meshes are

$$
x_{\ell, j}=x_{\min }+j \Delta x_{\ell}, \quad \Delta x_{\ell}=\frac{x_{\max }-x_{\min }}{2^{\ell} N_{0}}
$$

Grid
The ℓ-grid at time t^{n} is

$$
G_{\ell}^{n}=\left\{x_{\ell, j}\right\}_{j \in \mathcal{G}_{\ell}^{n}}
$$

We are interested in

$$
\mathcal{G}_{\ell}^{n} \subseteq \prod_{i=1}^{N}\left\{0, \ldots, N_{i, \ell}\right\}
$$

Grid hierarchy

Nesting condition
We are interested in nested meshes:

Ghost points

Ghost points are added outside the ℓ-grids to take into account the boundary conditions for the time integration.

Grid hierarchy

Nesting condition
We are interested in nested meshes:

Ghost points

Ghost points are added outside the ℓ-grids to take into account the boundary conditions for the time integration.

Grid selection

The grid selection is based on two criteria: prediction and gradient.
The prediction criterion
Let $\left\{u_{\ell, j}\right\}_{j \in \mathcal{G}_{\ell}^{n}}$ the point values at reslution level ℓ. Let $p\left[u_{\ell}\right]$ an interpolator at resolution level ℓ. We keep point $x_{\ell, j}$ for refinement if $\left|p\left[u_{\ell-1}\right]\left(x_{\ell, j}\right)-u_{\ell, j}\right|>\tau_{p}$.

The gradient criterion

We estimate the gradient at point $x_{e, j}$ by means of the discrete gradient computed at resolution level $\ell-1$: if it is over a certain tolerance parameter $\tau_{d, \ell-1}$, then point $x_{\ell, j}$ is selected for refinement.

Reconstruction

Once the grid has been selected, reconstruct by means of an interpolator the point values that are not assigned yet.

Grid selection

The grid selection is based on two criteria: prediction and gradient.
The prediction criterion
Let $\left\{u_{\ell, j}\right\}_{j \in \mathcal{G}_{\ell}^{n}}$ the point values at reslution level ℓ. Let $p\left[u_{\ell}\right]$ an interpolator at resolution level ℓ. We keep point $x_{\ell, j}$ for refinement if

$$
\left|p\left[u_{\ell-1}\right]\left(x_{\ell, j}\right)-u_{\ell, j}\right|>\tau_{p}
$$

The gradient criterion
We estimate the gradient at point $x_{\ell, j}$ by means of the discrete gradient computed at resolution level $\ell-1$: if it is over a certain tolerance parameter $\tau_{d, \ell-1}$, then point $x_{\ell, j}$ is selected for refinement.

Reconstruction
Once the grid has been selected, reconstruct by means of an interpolator the point values that are not assigned yet.

Grid selection

The grid selection is based on two criteria: prediction and gradient.
The prediction criterion
Let $\left\{u_{\ell, j}\right\}_{j \in \mathcal{G}_{\ell}^{n}}$ the point values at reslution level ℓ. Let $p\left[u_{\ell}\right]$ an interpolator at resolution level ℓ. We keep point $x_{\ell, j}$ for refinement if

$$
\left|p\left[u_{\ell-1}\right]\left(x_{\ell, j}\right)-u_{\ell, j}\right|>\tau_{p} .
$$

The gradient criterion
We estimate the gradient at point $x_{\ell, j}$ by means of the discrete gradient computed at resolution level $\ell-1$: if it is over a certain tolerance parameter $\tau_{d, \ell-1}$, then point $x_{\ell, j}$ is selected for refinement.

Reconstruction
Once the grid has been selected, reconstruct by means of an interpolator the point values that are not assigned yet.

Grid selection

The grid selection is based on two criteria: prediction and gradient.
The prediction criterion
Let $\left\{u_{\ell, j}\right\}_{j \in \mathcal{G}_{\ell}^{n}}$ the point values at reslution level ℓ. Let $p\left[u_{\ell}\right]$ an interpolator at resolution level ℓ. We keep point $x_{\ell, j}$ for refinement if

$$
\left|p\left[u_{\ell-1}\right]\left(x_{\ell, j}\right)-u_{\ell, j}\right|>\tau_{p} .
$$

The gradient criterion

We estimate the gradient at point $x_{\ell, j}$ by means of the discrete gradient computed at resolution level $\ell-1$: if it is over a certain tolerance parameter $\tau_{d, \ell-1}$, then point $x_{\ell, j}$ is selected for refinement.

Reconstruction

Once the grid has been selected, reconstruct by means of an interpolator the point values that are not assigned yet.

Outline

(2) Numerical tools

- Multiresolution framework
- Time integration
(3) Experiments
- Introduction
- 1D tests
- 2D tests

1D semi-Lagrangian strategy

Characteristic-based solution
The solution to the PDE

$$
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x}[a(t, x) u]=0, \quad u(0, x)=u^{0}(x)
$$

is given by $\quad u(t, x)=u(s, \mathcal{X}(s ; t, x)) J(s ; t, x)$,
with $\mathcal{X}(s ; t, x)$ the characteristic at time s, starting from x at time t :

$$
\frac{\mathrm{d} \mathcal{X}(s ; t, x)}{\mathrm{d} s}=a(s, \mathcal{X}(s ; t, x)), \quad \mathcal{X}(t ; t, x)=x, \quad J(s ; t, x):=\frac{\partial \mathcal{X}(s ; t, x)}{\partial x}
$$

1D semi-Lagrangian strategy

What do we need?

- A solver for the characteristics $\mathcal{X}(s ; t, x)$: Runge-Kutta.
- An approximation for the Jacobian through cenetred finite differences:

$$
J(s ; t, x)=\frac{\partial \mathcal{X}(s ; t, x)}{\partial x} \approx \frac{\tilde{\mathcal{X}}(s ; t, x+\delta x)-\tilde{\mathcal{X}}(s ; t, x-\delta x)}{2 \delta x}, \quad \delta x=10^{-m} \Delta x_{\ell}
$$

- An interpolator to reconstruct $u(s, \mathcal{X}(s ; t, x))$: PVWENO (Point-Value Weighted Essentially Non-Oscillatory).

Error estimate
The local truncation error can be estimated

1D semi-Lagrangian strategy

What do we need?

- A solver for the characteristics $\mathcal{X}(s ; t, x)$: Runge-Kutta.
- An approximation for the Jacobian through cenetred finite differences:

$$
J(s ; t, x)=\frac{\partial \mathcal{X}(s ; t, x)}{\partial x} \approx \frac{\tilde{\mathcal{X}}(s ; t, x+\delta x)-\tilde{\mathcal{X}}(s ; t, x-\delta x)}{2 \delta x}, \quad \delta x=10^{-m} \Delta x_{\ell}
$$

- An interpolator to reconstruct $u(s, \mathcal{X}(s ; t, x))$: PVWENO (Point-Value Weighted Essentially Non-Oscillatory).

Error estimate

The local truncation error can be estimated

$$
E=\underbrace{\underbrace{\mathcal{O}\left(\Delta t^{s+1}\right)}_{\text {Runge-Kutta }}+\underbrace{\mathcal{O}\left(\Delta x_{\ell}^{2}\right)}_{\text {Jacobian }}+\underbrace{\mathcal{O}\left(\Delta x_{\ell}^{2 r}\right)}_{\text {PVWENO (advection) }} . . \underbrace{\mathcal{O}} .}_{\text {approximation of the characteristics }}
$$

The 2D case

Grid hierarchy and selection
We do not give details, but we apply strategies similar to the 1D case.

The 2D PDE

We solve the 2D PDE $\quad \frac{\partial u}{\partial t}+\frac{\partial}{\partial x_{1}}\left(a_{1} u\right)+\frac{\partial}{\partial x_{2}}\left(a_{2} u\right)=0$
by splitting the $\left(x_{1}, x_{2}\right)$-domain thanks to the second-order Strang scheme:

- Solve for a $\frac{\Delta t}{2}$ time sten $\frac{\partial u}{\partial t}+\frac{\partial}{\partial x_{1}}\left(a_{1} u\right)=0$;
- Solve for a Δt time step $\frac{\partial u}{\partial t}+\frac{\partial}{\partial x_{2}}\left(a_{2} u\right)=0$;
- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t}+\frac{\partial}{\partial x_{1}}\left(a_{1} u\right)=0$.

Error estimate

The Strang splitting constrains the accuracy:

The 2D case

Grid hierarchy and selection
We do not give details, but we apply strategies similar to the 1D case.

The 2D PDE
We solve the 2D PDE

$$
\frac{\partial u}{\partial t}+\frac{\partial}{\partial x_{1}}\left(a_{1} u\right)+\frac{\partial}{\partial x_{2}}\left(a_{2} u\right)=0
$$

by splitting the $\left(x_{1}, x_{2}\right)$-domain thanks to the second-order Strang scheme:

- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t}+\frac{\partial}{\partial x_{1}}\left(a_{1} u\right)=0$;
- Solve for a Δt time step $\frac{\partial u}{\partial t}+\frac{\partial}{\partial x_{2}}\left(a_{2} u\right)=0$;
- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t}+\frac{\partial}{\partial x_{1}}\left(a_{1} u\right)=0$.

Error estimate
The Strang splitting constrains the accuracy:

The 2D case

Grid hierarchy and selection
We do not give details, but we apply strategies similar to the 1D case.

The 2D PDE

We solve the 2D PDE $\quad \frac{\partial u}{\partial t}+\frac{\partial}{\partial x_{1}}\left(a_{1} u\right)+\frac{\partial}{\partial x_{2}}\left(a_{2} u\right)=0$
by splitting the $\left(x_{1}, x_{2}\right)$-domain thanks to the second-order Strang scheme:

- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t}+\frac{\partial}{\partial x_{1}}\left(a_{1} u\right)=0$;
- Solve for a Δt time step $\frac{\partial u}{\partial t}+\frac{\partial}{\partial x_{2}}\left(a_{2} u\right)=0$;
- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t}+\frac{\partial}{\partial x_{1}}\left(a_{1} u\right)=0$.

Error estimate

The Strang splitting constrains the accuracy:

$$
E=\mathcal{O}\left(\Delta t^{\min (s+1,3)}\right)+\underbrace{\mathcal{O}\left(\Delta x_{1, \ell}^{2}\right)+\mathcal{O}\left(\Delta x_{2, \ell}^{2}\right)}_{\text {approximated Jacobian }}+\underbrace{\mathcal{O}\left(\Delta x_{1, \ell}^{2 r}\right)+\mathcal{O}\left(\Delta x_{2, \ell}^{2 r}\right)}_{\text {PVWENO }} .
$$

Outline

(2) Numerical tools

- Multiresolution framework
- Time integration
(3) Experiments
- Introduction
- 1D tests
- 2D tests

Goals

The Adaptive-Mesh-Refinement (AMR) framework is compared to the equivalent Fixed-Mesh (FM) results.

Of course, AMR cannot be more accurate than FM. Rather, it achieves faster computational times in exchange of a loss of precision.

Outline

(1) Introduction

(2) Numerical tools

- Multiresolution framework
- Time integration
(3) Experiments
- Introduction
- 1D tests
- 2D tests

Variable-coefficient advection

The test case $\quad \frac{\partial u}{\partial t}+\frac{\partial}{\partial x}(\sin (x) u)=0 \quad$ produces a blow-up.

(a) at time 0
(c) at time 0.89

(b) at time 0.65

(d) at time 1.48

Variable-coefficient advection

Speedup
For parameters

$$
\begin{aligned}
N_{0} & =128 \\
L & =4 \\
\Delta t_{0} & =0.125 \\
\tau_{p} & =10^{-4} \\
\tau_{d, 0} & =0.5
\end{aligned}
$$

AMR reaches a speedup of 35 times with respect to the equivalently-resolved FM , with a loss of precision from 10^{-9} to roughly 10^{-6} (the L^{2}-error w.r.t. the analytical solution).

Outline

(2)

Numerical tools

- Multiresolution framework
- Time integration
(3) Experiments
- Introduction
- 1D tests
- 2D tests

Deformation flows

The system

$$
\frac{\partial f}{\partial t}+\frac{\partial}{\partial x}\left[\sin ^{2}(\pi x) \sin (2 \pi y) g(t) f\right]+\frac{\partial}{\partial y}\left[-\sin ^{2}(\pi y) \sin (2 \pi x) g(t) f\right]=0, \quad(x, y) \in[0,1]^{2}
$$

for $g(t)=\cos \left(\frac{\pi t}{T}\right)$, periodically recovers the initial datum after alternate clockwise and counterclockwise twistings.

Performances
Speedup ≈ 2.

Deformation flows

The ODE integrator for the characteristics

As announced by the error estimate

$$
E=\mathcal{O}\left(\Delta x_{1, \ell}^{2}\right)+\mathcal{O}\left(\Delta x_{2, \ell}^{2}\right)+\mathcal{O}\left(\Delta t^{\min (s+1,3)}\right)
$$

the Strang-splitting order constrains the accuracy.

Kelvin-Hemlholtz instabilities

The model

The guiding-center model (omitting some details)

$$
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x_{1}}\left[\frac{\partial \Phi}{\partial x_{2}} \rho\right]+\frac{\partial}{\partial x_{2}}\left[-\frac{\partial \Phi}{\partial x_{1}} \rho\right]=0, \quad \Delta_{x_{1}, x_{2}} \Phi=\rho
$$

for initial condition $\quad \rho\left(0, x_{1}, x_{2}\right)=1.5 \operatorname{sech}\left(\frac{x_{2}}{0.9}\right) \cdot\left(1+0.08 \sin \left(2 k x_{1}\right)\right)$, periodic x_{1} - and Dirichlet x_{2}-boundaries, produces vortices and filamentation.

(f) first instability

Kelvin-Hemlholtz instabilities

(h) steady state

SPEEDUP

The AMR strategy achieves a speedup of about 2.8, for parameters $\left(N_{\star, 0}, L\right)=(32,4)$ (the maximum resolution is $512 \times 512), \tau_{p}=10^{-3}$, $\tau_{d, 0}=1.5$.
(g) second instability

GRÀCIES! HVALA! DANKE! ĎAKUJEM! DĚKUJI!

[^0]: Features

[^1]: Features

