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Geometry

- gate
g :
=
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DG-MOSFET. L | source channel drain SiO 7 layers
£
7
N gake x—dim (transport)
About the scaling

In 1971, the Intel 4004 processor had 1000 transistors, whose channel length was
10000 nm. In 1974, the Intel 8008 processor had 6-7 thousand. In 2003 the Intel
Pentium IV had 50 million. Nowadays, for instance, Intel’s 17-4650U has 1.3 billion
transistors, whose channel is 22 nm long.

Why is it important?
Smaller MOSFETs allow for the construction of smaller devices with better

performances; moreover, they allow silicon and energy saving, due to the lower
voltages needed to switch on or off the transistor.
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Geometry
The role of the insulating layers

Electrons are trapped inside a o “ g
3.15 V-deep well along the | “‘\\“\\““
z-dimension. For each slice i b
x = const of the device, the

energy levels are thus discrete.

The doping

This p* — p — p™ device possesses a 10°°m = doping at the source and the drain,
10" m ™ at the channel. The doping attemps to control the electrical properties
(conductivity) of the device.

The gates

The gates are metallic contacts. The potential applied at them has the role of a “tap”
that allows or prevents the flow of current across the device.
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The confinement

Dimensional coupling J

Electrons are particles along the x-dimension, waves along the z-dimension.
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The confinement

Dimensional coupling

Electrons are particles along the x-dimension, waves along the z-dimension.

Description of the confinement
A set of 1D Schrodinger eigenvalue problems describe the electrons along z.

L il

[ 2] = g v v bV = eVl

Subbands and wave functions

The eigenvalues {e, , } (v p)e{1,2,3) xz-, Tepresent the energy levels, called subbands
in physics.

The eigenfunctions {1, (-)} (vp)e{1,2,3} xz-, are called wave functions in physics.

Electron population

The subbands decompose the electron population of the ™ valley into independent
populations. The densities are indexed on the pair (v, p).
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Band structure

The three valleys

The Si band structure presents six minima in the first Brillouin zone:

X Projection on the (x,y)—plane
The constant energy surfaces in the
wavevector space I
z

The valleys of type 1 have A The valleys of type 2 ave
effective masses: effective masses:

valley of type 3
N my algng direction x

m, algng direction y

m, along direction 7

me algng direction z
valley of type 1

valley of type 2 z (outwards)

valley of type 2 ¥

The valleys of type 3 hale

effective masses:

valley of type 1

. m; =091mg
Y valley of type 3 .

The axes of the ellipsoids are disposed along the x, y and z axes of the reciprocal
lattice. The three minima have the same value, therefore there is no gap.
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Band structure

Non-parabolicity

The band structure around the three minima can be expanded following the Kane
non-parabolic approximation (v indexes the valley):

. 2 2 k%
elrim(k)ﬁ k}') = h ( i + : )
1+ \/1 28,02 (i o) N e

where m,,,, and m, , are the effective masses along the unconfined dimensions and
the &, are the Kane dispersion factors.

z-direction

The band structure does not depend on z as the carriers are not free to move along
that direction.

Electron population

The total amount of carriers is split into independent populations, one for each valley.
We shall index them v = 1,2, 3.
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The unconfined dimension

BTE

The Boltzmann Transport Equation (one for each pair (v, p)) reads

free motion forceh field scatterings
vy , 1060y, 10, Ofs S
f,p + = f71 = P f,P — Qu,p[f] ,

ot h Ok, Ox h Ox Ok,
fuﬂp(t = 07x7k) - Q;:/cfp(x) MU(k) .
—_—— N~

equil. dens. Maxw.

The collision operator
Electrons are scattered by the vibration of the crystal lattice, described as phonons:
QV,p[f] = Z Z /2 [S?u’,p’,M)—»(u,p,k)fu’,p’ (kl) - S?V,p,k)—)(l//,pl,k’)fl/yp(k):l dk/'
Iy R
s vlip

Remark. In an unconfined setting, we would rather have something like

oJf] = Z /R} (St if (k') — Spwf (k)] di’.

s
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Eigenstates, mixed states and classical states.

The classical states are the magnitudes which only depend on the unconfined
dimension x, while mixed states depend on both x and z.

Eigenstates

The subbands and the wave functions {€v,, (x), ¥up (X, )}, )y e (1,231 ¢z, AT€
eigenstates; they depend on x only as a parameter.

Classical states
The pdf’s {f,,,(t,x,k)}, , are classical states, therefore the surface density
3 oo
o) =230 [ foltond) dk
v=I1 p=1 R

is a classical state too, and in general most of the macroscopic magnitudes.

Mixed states

The electrostatic potential V(x,z) and the volume density

3 oo
N(t,x,z) =2 Z Z /Rzﬁ,,p(t, x,k) dk [, (t, x,7)|* are mixed states.

v=1 p=1
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The model

BTE

The Boltzmann Transport Equation (one for each pair (v, p)) reads

Wy | 106" Ofvp  10eup Ofop

ot h Ok, Ox h Ox Ok

= Ql«p [f]
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The model

BTE

The Boltzmann Transport Equation (one for each pair (v, p)) reads

Wy | 106" Ofvp  10eup Ofop

o Thok or hoox ok 2ol )
Schrodinger-Poisson block
Rdl[ 1 dy,lV] B
- Td? [ET —q(V+ Vc') @)I/JJ[V] = evyp[Vh’w’[V]
—divec 1 VeV = =L (NVI=No), NV =27 aup [, VI
€0

These equations cannot be decoupled because we need the eigelfi’functions to compute
the potential, and we need the potential to compute the eigenfunctions.

V.
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The model

The collision operator

The collision operator takes into account the phonon scattering mechanism. It reads

Quolf) = 32X [ rarsirswnmsir s ) = Slvparosorar s 0] K.
s vl p!
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The model

The collision operator

The collision operator takes into account the phonon scattering mechanism. It reads

Quolf) = 32X [ rarsirswnmsir s ) = Slvparosorar s 0] K.
s vl p!

v

Structure of the S*

The missing dimension of the wave-vector k € R?, instead of k € R?, is replaced by
an overlap integral W, ») (7 py:

I
Wy p)

L,
:/|wwwwfm W) = m.
0

Stk (v pr k) = Comsur § (67 (k') — €5, (k) & some energy)

v
W p) o p)
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Initial condition

Strategy
‘We want to initialize the system under the following constraints:

@ Fulfill electrical neutrality at the source contact:
L L
/ Np(0,z)dz = / N(0,z2) dz.
0 0

@ Have a thermodynamical equilibrium for the system, i.e. a distribution which is
a zero for both the BTE and the scattering operator.

@ (Cope with the former work of Carlos and Andrés.)
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Initial condition

Strategy
‘We want to initialize the system under the following constraints:

@ Fulfill electrical neutrality at the source contact:

/OLZ Np(0,z)dz = /OLZ N(0,z2) dz.

@ Have a thermodynamical equilibrium for the system, i.e. a distribution which is
a zero for both the BTE and the scattering operator.

@ (Cope with the former work of Carlos and Andrés.)

Step 1: the potential at the metallic contacts

Solve Schrodinger-Poisson for the following density:

cvpVI) —ep

S Vi In (1 b et ) V)5, 2) P

v,p

2 me/-cB TL

N[V] =

with homogeneous Neumann boundary conditions everywhere except at gate
contacts. We retain the profile of V at the contacts: Vy(z) = V(0, 2).
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Initial condition

Step 2: the thermodynamical equilibrium

Solve Schrodinger-Poisson problem for the following density:

ewpVI®

= T e I [, [V](x,2)
Zy/ ’ \/mx vy l/67 ~BTL vsp
P ’ b

with Dirichlet conditions

at the four metallic ‘ s
contacts and gates, I ul;'/;’%”’,'
homogeneous Neumann ;
elsewhere. Now the
surface densities are of
the form

fOLZ Np(0,z)dz

N[V]

eq _ ‘u,p(’f)
Ovp = Ce ~87L and
are, therefore, a zero for
both Boltzmann and the
scattering operator.
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The Newton scheme

The functional

Solving the Schrodinger-Poisson block

_hjg[ 1 dip, |V

2dz |m;,, dz
— div [exVV] = 751 (N[V] = Np)
0

} — g (V4 Vo) 0oV = €0y VI, V]

is equivalt to seeking for the zero, under the constraints of the Schrodinger equation,
of the functional P[V]

P[V] = —div (e, VV) + 510 (N[V] — Np),




Numerical schemes
(o] lelele]e}
Iterative schemes for the Schrodinger-Poisson block

The Newton scheme

The functional

Solving the Schrodinger-Poisson block

_hjg[ 1 dip, |V

2dz |m;,, dz
— div [exVV] = 751 (N[V] = Np)
0

} — g (V4 Vo) 0oV = €0y VI, V]

is equivalt to seeking for the zero, under the constraints of the Schrodinger equation,
of the functional P[V]

P[V] = —div (e, VV) + 510 (N[V] — Np),

The scheme

which is achieved by means of a Newton-Raphson iterative scheme

dP(VOM vy — vOy = —p[vM] d = Gateaux-derivative.
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The iterations

Derivatives

The Gateaux-derivatives of the eigenproperties are needed:

de, ,(V,U)

—q / (Ol V() d

Pup [V](2)-

p'#p
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The iterations

Derivatives

The Gateaux-derivatives of the eigenproperties are needed:

dens(V,0) = =g [ VO, VIO a6
_ JUQvwp VIQvwp VIO dC
dwl’ﬁ(V? U) - p%:p Eup[v} _ Eup [V] ¢l/,ﬁ [V}(Z)
Iterations

After computing the Gateaux-derivative of the density and developping calculations,
we are led to a Poisson-like equation

—le (ERVVneW / A old (Z C) neW(C)dC

S IR / AV, OV Q)G

where A[V] is essentially the Gateaux-derivative of the density N[V].
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Comparison Newton-Raphson vs. Gummel

Gummel

2

q anew:_i(N_ND)+

N Vold
coks TL €0 eokp TL

—div (egVV™™) +

Newton-Raphson

L; q L
—div (R VV™) + / A V™ (Q)d¢ = =L (v = Np)+ / Az, OV (Q)de

v

Comparison

(a) Newton-Raphson (b) Gummel
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Comparison Newton-Raphson vs. Gummel

Gummel vs NR

convergence of the potential Total number of iteratons per ime step
N T T T T T T Gummel —+— 600 T T ° Gummel ——
001 Nev 3 Newton-Raphson —<—
g s00p i
00001 | ey H ratio GummeN-A. —-x
1 T T 400 3%
05 [ ~ g x % o
1e-08 | RNy S sof w £
tet0 [ QN 5 a0l .
te-12 | e £ ik x,
o4 | o g S 2 100 =] 28
te16 0 L 2
0 5 10 15 20 2 w0 3 4 0 2 6 & 10 12 14 16 18 20
iteration BTE salver step
_ convergence of the tota volume density - Gonvergence of the potential _ Gonvergence o the potential (z00m)
2 1000 2 1 £ 1
z T T T T T T T Gummer =] § — ] —
5 e out 5 o e —=—1| 5 o1 DT ——
H H e H — s
2 1 2 oo 2 oo
00001 S ieos S eos
lee g teos g teos
Te08 § teorp § teor
1e-10 S eosf S tes
te12 T ten £ te0
5 o 5 10 15 20 2 w0 3 4 5 0 50 100 150 200 250 300 5 T2 s 4 s
iteration iteration iteraion
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Framework

introduce initial guess for the initialization
potential VoI

step 0(i)

step O(ii) | diagonalize Schroedinger operator | DSTEQR

use given

step 0(iii) expression

"Poisson" solver:
> Newton-Raphson: takes into account Schroedinger eq

Gummel: decoupled system (matrix is sparse)

update potential
step 1| oia oy __y new

DSTEQR diagonalize Schroedinger operator
step 2
use given update density
expression VRew g new
step 3

A

s convergence
< constraint fulfilled?

step 4
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Numerical methods

We need to solve the Schrodinger eigenvalue problem and Poisson equations.
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Numerical methods

We need to solve the Schrodinger eigenvalue problem and Poisson equations.

The Schrodinger equation

Equation

B d [ 1 dipy,

mz.v dZ

2 dz :| —q (V + Vc) wu,p = €u,pwu7p

is discretized by alternate finite differences for the derivatives then the symmetric
matrix is diagonalized by a LAPACK routine called DSTEQR.
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Numerical methods

We need to solve the Schrodinger eigenvalue problem and Poisson equations.

The Schrodinger equation

Equation

B d [ 1 dipy,

mz.v dZ

2 dz :| —q (V + Vc) wu,p = €u,pwu,p

is discretized by alternate finite differences for the derivatives then the symmetric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

—div [egVV] + /LZ A(z,¢)V(¢) d¢ = rhs
0

The derivatives are discretized by finite differences in alternate directions, the
integral is computed via trapezoid rule and the banded linear system is solved by
means of Library of Iterative Solvers “-i idrs -p iluc -tol 1.0e-12".
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Adimensionalization of the wave-vector space

The wave-vector space is adimensionalized by a change of variables into ellipsoidal
variables, in order to better integrate the scattering operator and to have a simple
expression for the kinetic energy and related magnitudes.
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Adimensionalization of the wave-vector space

The wave-vector space is adimensionalized by a change of variables into ellipsoidal
variables, in order to better integrate the scattering operator and to have a simple
expression for the kinetic energy and related magnitudes.

Ellipsoidal coordinated

The wave-vector for the ™" valley reads:

(I;X,l;y) = %BTL 2w(1l + aww) (\/mm, cos(@), /My, sin(¢)) .

The Jacobian

The magnitude s,, (w) represents the dimensionless Jacobian of the change of
variables in the wave-vector space:
a (kX ) k})

su(w) = ‘det T 0)

= /mye,my (1 +20,w).
N
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BTE in ellipsoidal coordinates

Let the flux coefficients
ay, (w, ¢)

2
al/,p (x7 w, ¢)

ai,p (x, w, ¢>)

2w(1 4+ a,w) cos(¢) 1

N 14 2a,w
_ Oevyp 1 2w(1 + a,w) cos(¢)
ox 14 2a,w N
O€vp sin(¢)

Ox \fite/20(1 + auw)
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BTE in ellipsoidal coordinates

Let the flux coefficients
ay, (w, ¢)

2
al/,p (x7 w, ¢)

ai,p (x, w, ¢>)

Conservation-law form

0,
ot

2w(1 4+ a,w) cos(¢) 1

N 14 2a,w
_ Oevyp 1 2w(1 + a,w) cos(¢)
ox 14 2a,w N
O€vp sin(¢)

Ox \fite/20(1 + auw)

2 ] o 2 ] ] et
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Runge-Kutta time integration

We use a Runge-Kutta time discretization.

Runge-Kutta

We advance in time by the third order Total Variation Diminishing Runge-Kutta
scheme: if the evolution equation reads

Hyp(®) = —2 [a'V@,,,,] _ 92 [ai,pcbu,p

3
ax B [alwq),,,p] + Qv [®]s(w)

] - 9
o
(no explicit time-dependency), then
Q o\) = A, (")
Q o0, =30, +tol) + IAH,, (o)
Q@ "' =1y, + 300 + 3H,,(27)
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Boundary conditions for the BTE

x-derivative

We use inflow/outflow b.c.: for the incoming particles

fu,p(t7 —X, W, (b) g”:iE ;fl/,p(t O w, ¢)

S0 as to try having f]szl,,p(t, 0,k) dk = g;,. For the outgoing particles, we just use
homogeneous Neumann b.c.

[} A (periodic)

- | . force the density to stay close
- 3 - — = to the equilibrium density
| for the incoming particles
X
5 _ Homogeneous Neumann
= = for the ougoing particles
' drain
¢ '
vt contact
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Boundary conditions for the BTE

w-derivative

w = 0 is no real boundary; ghost points at (—w, ¢) are physical points at (w, ¢ + ).
At W = Wy there should be no particles, for properly chosen meshes: just use
homogeneous Neumann b.c.

physical point
Wy at (w, 0)

L
z
‘WAVE VECTOR VIEW

ghost point at (—wj ) = physical point at (w, 0+1)

2n

J<—————This s no real border,
50 homogeneous

E3
1=
(m+Ng/2)%N, Neus s taken. >|
1 W Anyway, no particles o
2
T should be there. 3
Z
<
m .
e z
0
&
w=0 Winax &
Z
g

Ghost points for negative energy
are physical points
fora m-shifted angle
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Boundary conditions for the BTE

¢-derivative

As ¢ represents an angle, periodicity conditions are taken.

N, +1
Jawaray) \’Ty sin( ¢ ) X o e

2n N,
N, -1

J2w(l+oy) | my  cos(d) ‘._x ~ 5
1

e = ghost points « =mesh points 0 \:
x..

cartesian— -2@

view

ellipsoidal—
view
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Integrating the scattering operator

Elastic phenomena

1
Qu @5 () = C2 Y™ Ty

o Wwrown)

27
X |:SV(W) /; ¢u,p/ (FO, ¢/) d¢/ - 271'@1,’[;51, (Fo)

’—0

Energy gap

When electrons change their state from (v, p) to (v, p’), energy jumps appear:
To(x, w) = €y (%, W) — €4 (%).

Remark, nevertheless, that they do not exchange energies with the phonons (elastic
interaction).
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Integrating the scattering operator

Here go the formulae for the integration of the collisional operator in the ellipsoidal
dimensionless variables.

Inelastic phenomena

Qup[ @5 (w)

:CQS,/( ) ’71/ —V L/~>u / / 7¢ ¢
W p )«»(up) 20} )

vl p!

v/ —v NV’ v +1
+CQSV(W) X ‘; ( . {F+>0}/ F+7¢) d¢l
v (v'p") e (vip)
v Ny
_c2 27 ®, (W, B) E Jvov N’ ¢ {F+>0}S” T4)
v (VP)H(V »')

IYV—)V’(NV—H/’ + 1)

—C227®, ,(w, P)
! Wwp)er (v p)

’7 7
v p

]I{F,z()}sl” (F_)
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Integrating the scattering operator

Energy gaps

When electrons change their state from (v, p) to (v, p’), energy jumps appear:

hw

kBTL

Li(x,w) = e‘f},,(x, w) — e (x) £

Remark that, for inelastic interactions, they exchange energies /w with the phonons.
v

Occupation numbers

The occupation numbers read

Ty 1420y Rt 1

My iy 1+2aV/

_hw _hw ’
(e ) ()

for intra-valley phenomena (v, _,,» = 0 for v/ # v), reduce to the well-known

Ny =

No o1

L
e’ — |
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Parallelization: 1D block decomposition

x—dimension

|0|l|2 3|4|5 6|7|8 9|

process nr. 0 3 process nr. 1 3 process nr. 2 3 process nr. 3
The BTE
In order to parallelize Runge-Kutta, we cut the x-dimension:

Hop(@) = = 5 [ah,] = 2 (@, 00,] = 5L [ad,0,] + Quplalstu),

We need MPI to exchange data among different processes, namely for (92 [a},@y,p] .
X

v

The Schrodinger equation
Same decomposition for the eigenvalue problem, in which x only acts as a parameter:

i d [ 1 dg,[V]

T2 dz m., dz } —q(V+ V) Yu,p[V] = € p[V]p[V].

2 dz
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Parallelization

Parallelization of Newton-Raphson

columns,

Figure : Decompisition of (x, z) taken as a unique dimension.

Updating the potential
L, L.
—div (= VV")+ / A OV () d¢ = — L (N —Np)+ / Al OV™(Q) ¢
0 0 0

The tasks are shared among the processes: the sole MPI-exchange is V™".
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Long-time behavior

‘We propose now some results relative to the long-time behavior of the system.
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Parallel performances

[seconds]
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Comparison to Monte-Carlo

Motal Gate Metal Gt
- T .
7x10" N 7x10" R
@
6x10% - - Multisubband EMC 6x10" - - Multisubband EMC
" —— Deterministic " —— Deterministic
¢ S0ty V =05V | < S0 5V
S gaaonf Vp=01V ] 2 4aoe
x x
2 3xto® |- Source Drain { _Z 35q0%| Source Drain
2x10™ 1 2x10"
1x107 g 1x10"
10 8 6 -4 2 0 2 4 6 8 10 10 8 6 -4 2 0 2 4 6 8 10
X (nm) X (nm)
(a) Fora Vp = 0.1 V bias (b) Fora Vp = 0.5V bias
Hotal Gato Motal Gato
2.0x107 — 4.0x107
. [ = = Multisubband EMC = = Multisubband EMC
1.8x10" F— peterministic 3.5x107 f—— Deterministic N
1.6x107 [ Ve=05V Ve=05V \
V,=04V 3.0x10" FV, =05V \
. 14x107f ° - ° ‘l
"o "o 2.5x107
g 1.2x107 £ l‘
E 1.0x107 ; 2.0x10 1
z Source z Source | Drain
"
5 8.0x10! ? a0’ \
6.0x10° v
" 1.0x10’
4.0x10
_____ 3 s
2.0x10° T : 5.0x10 R e
10 -8 -6 -4 -2 0 6 8 10 10 8 -6 -4 -2 8 10
X (nm)

0 2
X (nm)

(c) Fora Vp = 0.1V bias (d) Fora Vp = 0.5 V'bias
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Comparison to Monte-Carlo

i
g

0.0 ] 5F -
-0.1 d _--" -
0 _af - 1
02 1 L
: Source R <3 /? - - -Multisubband EMC
= 0.3 1 = / —— Deterministic
s A\ —2r V =05V ]
V, =05V — - Multisubband EMC® 1k 1
-0.5FV,=0.5V —— Deterministic
200 e 6 o4 2 0 2 4 & g %o 04 02 03 04 0.5
10 8 6 -4 -2 0 2 4 6 8 10 . . - - g -

X (nm) Vn W)
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Mass and temperature oscillations

mass and average temperature evolution
0 T T T 325

mass
temperature -

variation (percentage)
w
T
Il
«X
o
average temperature (Kelvins,

\Jﬂ\ /V‘
i v

0 5e-13 1e-12 1.5e-12 2e-12
time (in seconds)
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Numerically-computed oscillations

The plasma frequency is given by

2N,
wy = a .
EREOM 5
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