Méthode semi-lagrangienne à maillage adaptatif pour des problèmes de transport

Pep Mulet Mestre, Francesco Vecil

Laboratoire de Mathématiques, UBP

Journée EDPAN, 16 janvier 2014

Outline

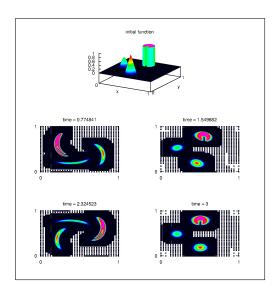
2 Numerical tools

- Multiresolution framework
- Time integration

Introduction

- ID tests
- 2D tests

Introduction	Experiments
•0	
Introduction	
Motivation	



No need for fine meshing everywhere in the domain.

₩

Refine only where the important information is.

Introduction		Experiments
0•	0000000	000000000000000000000000000000000000000
Introduction		
Framework		

Equations

In dimension N, transport equations written in conservtion form:

$$\frac{\partial u}{\partial t} + \operatorname{div}_{\mathbf{x}} [\mathbf{a}(t, \mathbf{x})u] = 0, \qquad u(0, \mathbf{x}) = u^{0}(\mathbf{x}), \qquad (t, \mathbf{x}) \in \mathbb{R}_{\geq 0} \times \Omega,$$
$$\Omega = \prod_{n=1}^{N} [(x_{n})_{\min}, (x_{n})_{\max}] \text{ is the domain, } \mathbf{a} : \mathbb{R}_{\geq 0} \times \Omega \to \mathbb{R}^{N} \text{ is the advection field.}$$

Example

The three-dimensional Vlasov-Maxwell equation

$$\frac{\partial f}{\partial t} + \mathbf{v}(\mathbf{p}) \cdot \frac{\partial f}{\partial \mathbf{x}} + \mathbf{F} \cdot \frac{\partial f}{\partial \mathbf{p}} = 0, \quad \mathbf{v}(\mathbf{p}) := \frac{\mathbf{p}}{m\sqrt{1 + \frac{|\mathbf{p}|^2}{m^2c^2}}}, \quad \mathbf{F} := -e(\mathbf{E} + \mathbf{v}(\mathbf{p}) \wedge \mathbf{B}),$$

describes the evolution of f(t, x, p), typically representing the concentration of electrons or holes at position x and momentum p.

Features

Shocks, large gradients, filamentation, microscopic structures.

Introduction		Experiments
0•	0000000	000000000000000000000000000000000000000
Introduction		
Framework		

Equations

In dimension N, transport equations written in conservtion form:

$$\frac{\partial u}{\partial t} + \operatorname{div}_{\mathbf{x}} \left[\mathbf{a}(t, \mathbf{x}) u \right] = 0, \qquad u(0, \mathbf{x}) = u^{0}(\mathbf{x}), \qquad (t, \mathbf{x}) \in \mathbb{R}_{\geq 0} \times \Omega,$$
$$\Omega = \prod_{n=1}^{N} \left[(x_{n})_{\min}, (x_{n})_{\max} \right] \text{ is the domain, } \mathbf{a} : \mathbb{R}_{\geq 0} \times \Omega \to \mathbb{R}^{N} \text{ is the advection field.}$$

Example

The three-dimensional Vlasov-Maxwell equation

$$\frac{\partial f}{\partial t} + \mathbf{v}(\mathbf{p}) \cdot \frac{\partial f}{\partial \mathbf{x}} + \mathbf{F} \cdot \frac{\partial f}{\partial \mathbf{p}} = 0, \quad \mathbf{v}(\mathbf{p}) := \frac{\mathbf{p}}{m\sqrt{1 + \frac{|\mathbf{p}|^2}{m^2c^2}}}, \quad \mathbf{F} := -e(\mathbf{E} + \mathbf{v}(\mathbf{p}) \wedge \mathbf{B}),$$

describes the evolution of f(t, x, p), typically representing the concentration of electrons or holes at position x and momentum p.

Features

Shocks, large gradients, filamentation, microscopic structures.

Introduction		Experiments
0•	0000000	000000000000000000000000000000000000000
Introduction		
Framework		

Equations

In dimension N, transport equations written in conservtion form:

$$\frac{\partial u}{\partial t} + \operatorname{div}_{\mathbf{x}} \left[\mathbf{a}(t, \mathbf{x}) u \right] = 0, \qquad u(0, \mathbf{x}) = u^{0}(\mathbf{x}), \qquad (t, \mathbf{x}) \in \mathbb{R}_{\geq 0} \times \Omega,$$
$$\Omega = \prod_{n=1}^{N} \left[(x_{n})_{\min}, (x_{n})_{\max} \right] \text{ is the domain, } \mathbf{a} : \mathbb{R}_{\geq 0} \times \Omega \to \mathbb{R}^{N} \text{ is the advection field.}$$

Example

The three-dimensional Vlasov-Maxwell equation

$$\frac{\partial f}{\partial t} + \mathbf{v}(\mathbf{p}) \cdot \frac{\partial f}{\partial \mathbf{x}} + \mathbf{F} \cdot \frac{\partial f}{\partial \mathbf{p}} = 0, \quad \mathbf{v}(\mathbf{p}) := \frac{\mathbf{p}}{m\sqrt{1 + \frac{|\mathbf{p}|^2}{m^2c^2}}}, \quad \mathbf{F} := -e(\mathbf{E} + \mathbf{v}(\mathbf{p}) \wedge \mathbf{B}),$$

describes the evolution of f(t, x, p), typically representing the concentration of electrons or holes at position x and momentum p.

Features

Shocks, large gradients, filamentation, microscopic structures.

	Numerical tools	Experiments
	•••••	
Multiresolution framework		
Outline		

2 Numerical tools

• Multiresolution framework

• Time integration

3 Experiments

- Introduction
- 1D tests
- 2D tests

	Numerical tools	Experiments
	0000000	
Multiresolution framework		

Resolution levels

We define L + 1 resolution levels: the coarsest is $\ell = 0$, the finest $\ell = L$. In 1D, the meshes are

$$x_{\ell,j} = x_{\min} + j\Delta x_{\ell}, \qquad \Delta x_{\ell} = \frac{x_{\max} - x_{\min}}{2^{\ell}N_0}.$$

Grid

The ℓ -grid at time t^n is

$$G_{\ell}^n = \{x_{\ell,j}\}_{j \in \mathcal{G}_{\ell}^n}.$$

We are interested in

$$\mathcal{G}_{\ell}^n \subseteq \prod_{i=1}^N \{0, \ldots, N_{i,\ell}\}.$$

	Numerical tools	Experiments
	0000000	
Multiresolution framework		

Resolution levels

We define L + 1 resolution levels: the coarsest is $\ell = 0$, the finest $\ell = L$. In 1D, the meshes are

$$x_{\ell,j} = x_{\min} + j\Delta x_{\ell}, \qquad \Delta x_{\ell} = \frac{x_{\max} - x_{\min}}{2^{\ell}N_0}.$$

Grid

The ℓ -grid at time t^n is

$$G_{\ell}^n = \{x_{\ell,j}\}_{j \in \mathcal{G}_{\ell}^n}.$$

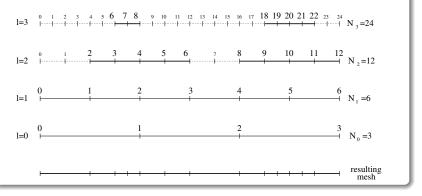
We are interested in

$$\mathcal{G}_{\ell}^{n} \subseteq \prod_{i=1}^{N} \{0, \ldots, N_{i,\ell}\}.$$

	Numerical tools	Experiments
	000000	
Multiresolution framework		

Nesting condition

We are interested in *nested* meshes:



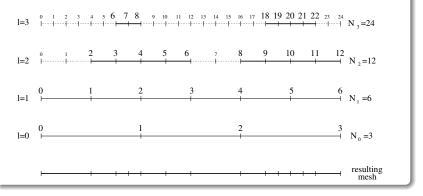
Ghost points

Ghost points are added outside the ℓ -grids to take into account the boundary conditions for the time integration.

	Numerical tools	Experiments
	000000	
Multiresolution framework		

Nesting condition

We are interested in *nested* meshes:



Ghost points

Ghost points are added outside the ℓ -grids to take into account the boundary conditions for the time integration.

	Numerical tools	Experiments
	0000000	
Multiresolution framework		
Grid selection		

The grid selection is based on two criteria: prediction and gradient.

The prediction criterion

Let $\{u_{\ell,j}\}_{j \in \mathcal{G}_{\ell}^{n}}$ the point values at reslution level ℓ . Let $p[u_{\ell}]$ an interpolator at resolution level ℓ . We keep point $x_{\ell,j}$ for refinement if

 $|p[u_{\ell-1}](x_{\ell,j}) - u_{\ell,j}| > \tau_p.$

The gradient criterion

We estimate the gradient at point $x_{\ell,j}$ by means of the discrete gradient computed at resolution level $\ell - 1$: if it is over a certain tolerance parameter $\tau_{d,\ell-1}$, then point $x_{\ell,j}$ is selected for refinement.

Reconstruction

	Numerical tools	Experiments
	0000000	
Multiresolution framework		

Grid selection

The grid selection is based on two criteria: prediction and gradient.

The prediction criterion

Let $\{u_{\ell,j}\}_{j\in \mathcal{G}_{\ell}^{n}}$ the point values at resolution level ℓ . Let $p[u_{\ell}]$ an interpolator at resolution level ℓ . We keep point $x_{\ell,j}$ for refinement if

 $|p[u_{\ell-1}](x_{\ell,j}) - u_{\ell,j}| > \tau_p.$

The gradient criterion

We estimate the gradient at point $x_{\ell,j}$ by means of the discrete gradient computed at resolution level $\ell - 1$: if it is over a certain tolerance parameter $\tau_{d,\ell-1}$, then point $x_{\ell,j}$ is selected for refinement.

Reconstruction

	Numerical tools	Experiments
	0000000	
Multiresolution framework		
Grid selection		

The grid selection is based on two criteria: *prediction* and *gradient*.

The prediction criterion

Let $\{u_{\ell,j}\}_{j\in \mathcal{G}_{\ell}^{n}}$ the point values at resolution level ℓ . Let $p[u_{\ell}]$ an interpolator at resolution level ℓ . We keep point $x_{\ell,j}$ for refinement if

 $|p[u_{\ell-1}](x_{\ell,j}) - u_{\ell,j}| > \tau_p.$

The gradient criterion

We estimate the gradient at point $x_{\ell,j}$ by means of the discrete gradient computed at resolution level $\ell - 1$: if it is over a certain tolerance parameter $\tau_{d,\ell-1}$, then point $x_{\ell,j}$ is selected for refinement.

Reconstruction

	Numerical tools	Experiments
	0000000	
Multiresolution framework		
Grid selection		

The grid selection is based on two criteria: *prediction* and *gradient*.

The prediction criterion

Let $\{u_{\ell,j}\}_{j\in \mathcal{G}_{\ell}^{n}}$ the point values at resolution level ℓ . Let $p[u_{\ell}]$ an interpolator at resolution level ℓ . We keep point $x_{\ell,j}$ for refinement if

 $|p[u_{\ell-1}](x_{\ell,j}) - u_{\ell,j}| > \tau_p.$

The gradient criterion

We estimate the gradient at point $x_{\ell,j}$ by means of the discrete gradient computed at resolution level $\ell - 1$: if it is over a certain tolerance parameter $\tau_{d,\ell-1}$, then point $x_{\ell,j}$ is selected for refinement.

Reconstruction

	Numerical tools	Experiments
	0000000	
Time integration		

Outline

2 Numerical tools

- Multiresolution framework
- Time integration

- Introduction
- 1D tests
- 2D tests

Time integration

1D semi-Lagrangian strategy

Characteristic-based solution

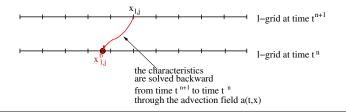
The solution to the PDE

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} (a(t,x)u) = 0, \qquad u(t=0,x) = u^0(x)$$

is given by $u(t,x) = u(s, \mathcal{X}(s; t, x)) J(s; t, x),$

with $\mathcal{X}(s; t, x)$ the characteristic at time *s*, starting from *x* at time *t*:

$$\frac{\mathrm{d}\mathcal{X}(s;t,x)}{\mathrm{d}s} = a\left(s,\mathcal{X}(s;t,x)\right), \quad \mathcal{X}(t;t,x) = x, \quad J(s;t,x) := \frac{\partial\mathcal{X}(s;t,x)}{\partial x}.$$



Time integration

1D semi-Lagrangian strategy

Constant-coefficient advection

If *a* is a real constant, then the solution of the characteristics is trivial

$$\mathcal{X}(s;t,x) = x + a \cdot (s-t)$$

and

J(s;t,x):=1.

Error estimate

The local truncation error can be estimated

$$E = \mathcal{O}\left(\Delta x_{\ell}^2\right) + \mathcal{O}\left(\Delta t^{s+1}\right),$$

where *s* is the order of the integrator used to solve the characteristics (for example, Runge-Kutta). If the characteristics are solved exactly, then no order in time appears.

Time integration

1D semi-Lagrangian strategy

Constant-coefficient advection

If *a* is a real constant, then the solution of the characteristics is trivial

$$\mathcal{X}(s;t,x) = x + a \cdot (s-t)$$

and

J(s;t,x):=1.

Error estimate

The local truncation error can be estimated

$$E = \mathcal{O}\left(\Delta x_{\ell}^2\right) + \mathcal{O}\left(\Delta t^{s+1}\right),$$

where *s* is the order of the integrator used to solve the characteristics (for example, Runge-Kutta). If the characteristics are solved exactly, then no order in time appears.

	Numerical tools	Experiments
	0000000	
Time integration		

The 2D case

Grid hierarchy and selection

We do not give details, but we apply strategies similar to the 1D case.

The 2D PDE

We solve the 2D PDE
$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1} (a_1 u) + \frac{\partial}{\partial x_2} (a_2 u) = 0$$

by splitting the (x_1, x_2) -domain thanks to the second-order Strang scheme:

- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1}(a_1 u) = 0;$
- Solve for a Δt time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_2} (a_2 u) = 0;$
- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1} (a_1 u) = 0.$

Error estimate

The Strang splitting constrains the accuracy:

$$E = \mathcal{O}(\Delta x_{1,\ell}^2) + \mathcal{O}(\Delta x_{2,\ell}^2) + \mathcal{O}\left(\Delta t^{\min(s+1,3)}\right)$$

	Numerical tools	Experiments
	0000000	
Time integration		

The 2D case

Grid hierarchy and selection

We do not give details, but we apply strategies similar to the 1D case.

The 2D PDE

We solve the 2D PDE
$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1} (a_1 u) + \frac{\partial}{\partial x_2} (a_2 u) = 0$$

by splitting the (x_1, x_2) -domain thanks to the second-order Strang scheme:

- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1}(a_1 u) = 0;$
- Solve for a Δt time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_2} (a_2 u) = 0;$
- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1} (a_1 u) = 0.$

Error estimate

The Strang splitting constrains the accuracy:

$$E = \mathcal{O}(\Delta x_{1,\ell}^2) + \mathcal{O}(\Delta x_{2,\ell}^2) + \mathcal{O}\left(\Delta t^{\min(s+1,3)}\right)$$

	Numerical tools	Experiments
	0000000	
Time integration		

The 2D case

Grid hierarchy and selection

We do not give details, but we apply strategies similar to the 1D case.

The 2D PDE

We solve the 2D PDE
$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1} (a_1 u) + \frac{\partial}{\partial x_2} (a_2 u) = 0$$

by splitting the (x_1, x_2) -domain thanks to the second-order Strang scheme:

- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1}(a_1 u) = 0;$
- Solve for a Δt time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_2} (a_2 u) = 0;$
- Solve for a $\frac{\Delta t}{2}$ time step $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x_1} (a_1 u) = 0.$

Error estimate

The Strang splitting constrains the accuracy:

$$E = \mathcal{O}(\Delta x_{1,\ell}^2) + \mathcal{O}(\Delta x_{2,\ell}^2) + \mathcal{O}\left(\Delta t^{\min(s+1,3)}\right)$$

	Experiments
	• 0 00000000000
Introduction	

Outline

Numerical tools

- Multiresolution framework
- Time integration

- 1D tests
- 2D tests

	Experiments
	000000000000000000000000000000000000000
Introduction	
Goals	

The Adaptive-Mesh-Refinement (AMR) framework is compared to the equivalent Fixed-Mesh (FM) results.

Of course, AMR cannot be more accurate than FM. Rather, it achieves faster computational times in exchange of a loss of precision.

	Experiments
	000000000000000000000000000000000000000
1D tests	

Outline

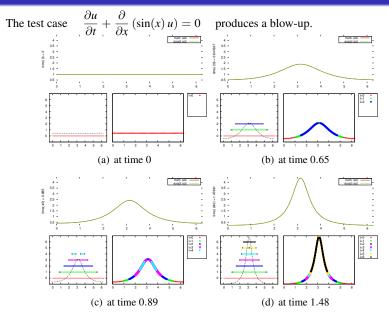
- Multiresolution framework
- Time integration

- Introduction
- ID tests
- 2D tests

Introduction OO ID tests Numerical tools

Experiments

Variable-coefficient advection



Variable-coefficient advection

Speedup

For parameters

$N_0 = 128$	points at $\ell = 0$
L = 4	number of resolution levels
$\Delta t_0 = 0.125$	maximum time step
$\tau_p = 10^{-4}$	prediction-criterion tolerance
$ au_{d,0} = 0.5$	gradient-criterion tolerance,

AMR reaches a speedup of 35 times with respect to the equivalently-resolved FM, with a loss of precision from 10^{-9} to roughly 10^{-6} (the L^2 -error w.r.t. the analytical solution).

	Experiments
	000000000000000000000000000000000000000
2D tests	

Outline

- Multiresolution framework
- Time integration

Experiments

- Introduction
- 1D tests
- 2D tests

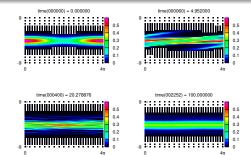
Landau damping

Vlasov-Poisson

The system reads
$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + E \frac{\partial f}{\partial v} = 0$$
, $\frac{\partial E}{\partial x} = 1 - \int_{\mathbb{R}} f(t, x, v) dv$

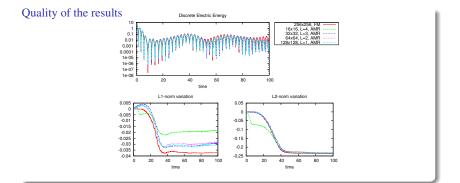
completed by periodic b.c. The Landau damping is

$$f^{0}(x,v) = \frac{e^{-\frac{v^{2}}{2}}}{\sqrt{2\pi}} \left(1 + 0.5 \cdot \cos(0.5 \cdot x)\right), \quad \Omega = \left[0, \frac{2\pi}{0.5}\right] \times [-9,9].$$



	Experiments
	000000000000000000000000000000000000000
2D tests	

Landau damping



Speedup

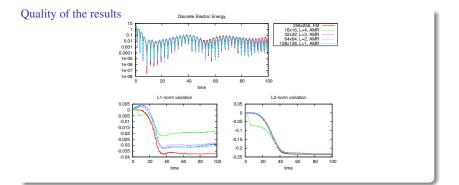
We fix parameters $N_{1,0} = N_{2,0} = 32, L = 3, \tau_{d,0} = 0.5.$ The speedups:

$$\tau_p = 10^{-4}$$
 $\tau_p = 10^{-8}$
 $\tau_p = 10^{-12}$

 speedup
 2.9
 1.4
 0.9

	Experiments
	000000000000000000000000000000000000000
2D tests	

Landau damping



Speedup

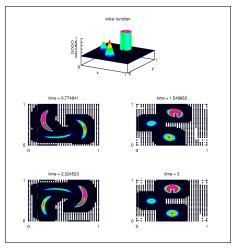
We fix parameters $N_{1,0} = N_{2,0} = 32, L = 3, \tau_{d,0} = 0.5.$ The speedups:

	$\tau_p = 10^{-4}$	$ au_p = 10^{-8}$	$\tau_p = 10^{-12}$
speedup	2.9	1.4	0.9

Deformation flows

The system

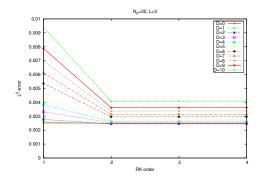
$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial x} \left[\sin^2(\pi x) \sin(2\pi y)g(t)f \right] + \frac{\partial}{\partial y} \left[-\sin^2(\pi y) \sin(2\pi x)g(t)f \right] = 0, \quad (x, y) \in [0, 1]^2,$$



for $g(t) = \cos\left(\frac{\pi t}{T}\right)$, periodically recovers the initial datum after alternate clockwise and counterclockwise twistings.

Deformation flows

The ODE integrator for the characteristics



As announced by the error estimate

$$E = \mathcal{O}(\Delta x_{1,\ell}^2) + \mathcal{O}(\Delta x_{2,\ell}^2) + \mathcal{O}\left(\Delta t^{\min(s+1,3)}\right)$$

the Strang-splitting order constrains the accuracy.

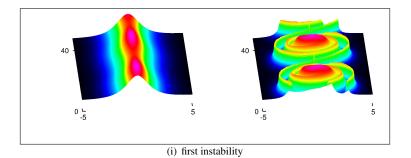
Kelvin-Hemlholtz instabilities

The model

The guiding-center model (omitting some details)

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_1} \left[\frac{\partial \Phi}{\partial x_2} \rho \right] + \frac{\partial}{\partial x_2} \left[-\frac{\partial \Phi}{\partial x_1} \rho \right] = 0, \qquad \Delta_{x_1, x_2} \Phi = \rho,$$

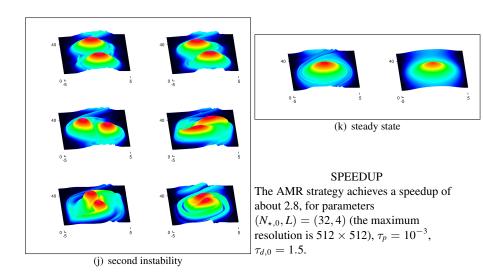
for initial condition $\rho(0, x_1, x_2) = 1.5 \operatorname{sech}\left(\frac{x_2}{0.9}\right) \cdot (1 + 0.08 \sin(2kx_1))$, periodic x_1 - and Dirichlet x_2 -boundaries, produces vortices and filamentation.



Introducti 00 2D tests Numerical tools

Experiments

Kelvin-Hemlholtz instabilities



GRAZIE!

MERCI !

;GRACIAS!