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Introduction

Motivation

No need for fine meshing
everywhere in the
domain.

⇓

Refine only where the
important information is.
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Introduction

Framework

Equations

In dimension N, transport equations written in conservtion form:

∂u
∂t

+ divx [a(t, x)u] = 0, u(0, x) = u0(x), (t, x) ∈ R≥0 × Ω,

Ω =
∏N

n=1[(xn)min, (xn)max] is the domain, a : R≥0 × Ω→ RN is the advection field.

Example

The three-dimensional Vlasov-Maxwell equation

∂f
∂t

+ v(p) · ∂f
∂x

+ F · ∂f
∂p

= 0, v(p) :=
p

m
√

1 + |p|2
m2c2

, F := −e(E + v(p) ∧ B),

describes the evolution of f (t, x, p), typically representing the concentration of
electrons or holes at position x and momentum p.

Features

Shocks, large gradients, filamentation, microscopic structures.
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Multiresolution framework

Grid hierarchy

Resolution levels

We define L + 1 resolution levels: the coarsest is ` = 0, the finest ` = L. In 1D, the
meshes are

x`,j = xmin + j∆x`, ∆x` =
xmax − xmin

2`N0
.

Grid

The `-grid at time tn is
Gn

` = {x`,j}j∈Gn
`
.

We are interested in

Gn
` ⊆

N∏
i=1

{0, . . . ,Ni,`}.
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Multiresolution framework

Grid hierarchy

Nesting condition

We are interested in nested meshes:

l=3

l=2

l=1

l=0 N   =3
0

N   =6
1

N   =12
2

N   =24
3

0 1 2 9 10 11 12 13 14 23 24

2 3 8 9 10 11

1 2 3 4 5 6

0

0

1 2 3

3        4       5 15     16     17

4         5        60                 1

          6    7   8 1918 20 21 22

7 12

resulting
mesh

Ghost points

Ghost points are added outside the `-grids to take into account the boundary
conditions for the time integration.
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Multiresolution framework

Grid selection

The grid selection is based on two criteria: prediction and gradient.

The prediction criterion

Let {u`,j}j∈Gn
`

the point values at reslution level `. Let p[u`] an interpolator at
resolution level `. We keep point x`,j for refinement if

|p[u`−1](x`,j)− u`,j| > τp.

The gradient criterion

We estimate the gradient at point x`,j by means of the discrete gradient computed at
resolution level `− 1: if it is over a certain tolerance parameter τd,`−1, then point x`,j
is selected for refinement.

Reconstruction

Once the grid has been selected, reconstruct by means of an interpolator the point
values that are not assigned yet.
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Time integration

1D semi-Lagrangian strategy

Characteristic-based solution

The solution to the PDE
∂u
∂t

+
∂

∂x
(a(t, x)u) = 0, u(t = 0, x) = u0(x)

is given by u(t, x) = u (s,X (s; t, x)) J(s; t, x),

with X (s; t, x) the characteristic at time s, starting from x at time t:

dX (s; t, x)

ds
= a (s,X (s; t, x)) , X (t; t, x) = x, J(s; t, x) :=

∂X (s; t, x)

∂x
.

l−grid at time t

l−grid at time t

n+1

n

x l,j

x l,j

are solved backward
n+1 nfrom time t      to time t

through the advection field a(t,x)

the characteristics

b
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Time integration

1D semi-Lagrangian strategy

Constant-coefficient advection

If a is a real constant, then the solution of the characteristics is trivial

X (s; t, x) = x + a · (s− t)

and
J(s; t, x) := 1.

Error estimate

The local truncation error can be estimated

E = O
(

∆x2
`

)
+O

(
∆ts+1

)
,

where s is the order of the integrator used to solve the characteristics (for example,
Runge-Kutta). If the characteristics are solved exactly, then no order in time appears.
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Time integration

The 2D case

Grid hierarchy and selection

We do not give details, but we apply strategies similar to the 1D case.

The 2D PDE

We solve the 2D PDE
∂u
∂t

+
∂

∂x1
(a1 u) +

∂

∂x2
(a2 u) = 0

by splitting the (x1, x2)-domain thanks to the second-order Strang scheme:

Solve for a ∆t
2 time step ∂u

∂t + ∂
∂x1

(a1 u) = 0;

Solve for a ∆t time step ∂u
∂t + ∂

∂x2
(a2 u) = 0;

Solve for a ∆t
2 time step ∂u

∂t + ∂
∂x1

(a1 u) = 0.

Error estimate

The Strang splitting constrains the accuracy:

E = O(∆x2
1,`) +O(∆x2

2,`) +O
(

∆tmin(s+1,3)
)
.
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Introduction

Goals

The Adaptive-Mesh-Refinement (AMR) framework is compared to the equivalent
Fixed-Mesh (FM) results.

Of course, AMR cannot be more accurate than FM. Rather, it achieves faster
computational times in exchange of a loss of precision.
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1D tests

Variable-coefficient advection

The test case
∂u
∂t

+
∂

∂x
(sin(x) u) = 0 produces a blow-up.
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1D tests

Variable-coefficient advection

Speedup

For parameters

N0 = 128 points at ` = 0

L = 4 number of resolution levels

∆t0 = 0.125 maximum time step

τp = 10−4 prediction-criterion tolerance

τd,0 = 0.5 gradient-criterion tolerance,

AMR reaches a speedup of 35 times with respect to the equivalently-resolved FM,
with a loss of precision from 10−9 to roughly 10−6 (the L2-error w.r.t. the analytical
solution).
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2D tests

Landau damping

Vlasov-Poisson

The system reads
∂f
∂t

+ v
∂f
∂x

+ E
∂f
∂v

= 0,
∂E
∂x

= 1−
∫
R

f (t, x, v) dv

completed by periodic b.c. The Landau damping is

f 0(x, v) =
e−

v2
2

√
2π

(1 + 0.5 · cos(0.5 · x)) , Ω =

[
0,

2π
0.5

]
× [−9, 9].
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2D tests

Landau damping

Quality of the results
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Speedup

We fix parameters N1,0 = N2,0 = 32, L = 3, τd,0 = 0.5. The speedups:

τp = 10−4 τp = 10−8 τp = 10−12

speedup 2.9 1.4 0.9
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2D tests

Deformation flows
The system

∂f
∂t

+
∂

∂x

[
sin2(πx) sin(2πy)g(t)f

]
+
∂

∂y

[
− sin2(πy) sin(2πx)g(t)f

]
= 0, (x, y) ∈ [0, 1]2,

for g(t) = cos
(πt

T

)
,

periodically recovers the
initial datum after
alternate clockwise and
counterclockwise
twistings.
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2D tests

Deformation flows

The ODE integrator for the characteristics
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As announced by the error estimate

E = O(∆x2
1,`) +O(∆x2

2,`) +O
(

∆tmin(s+1,3)
)

the Strang-splitting order constrains the accuracy.
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2D tests

Kelvin-Hemlholtz instabilities

The model

The guiding-center model (omitting some details)

∂ρ

∂t
+

∂

∂x1

[
∂Φ

∂x2
ρ

]
+

∂

∂x2

[
− ∂Φ

∂x1
ρ

]
= 0, ∆x1,x2 Φ = ρ,

for initial condition ρ(0, x1, x2) = 1.5 sech
( x2

0.9

)
· (1 + 0.08 sin (2kx1)) ,

periodic x1- and Dirichlet x2-boundaries, produces vortices and filamentation.

(i) first instability
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2D tests

Kelvin-Hemlholtz instabilities

(j) second instability

(k) steady state

SPEEDUP
The AMR strategy achieves a speedup of
about 2.8, for parameters
(N?,0, L) = (32, 4) (the maximum
resolution is 512× 512), τp = 10−3,
τd,0 = 1.5.



Introduction Numerical tools Experiments

2D tests

GRAZIE!

MERCI !

¡GRACIAS!
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