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Equations

In dimension N, transport equations written in conservtion form:

% + divy [a(t,x)u] = 0, u(0,x) = u°(x), (t,x) € R>p x 0,

0= HLV:] [(Xn)min; (Xn)max] is the domain, @ : R>¢ X  — RY is the advection field.
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% + divy [a(t,x)u] = 0, u(0,x) = u°(x), (t,x) € R>p x 0,
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Example
The three-dimensional Vlasov-Maxwell equation

o _

oy =0 V)= P Fi=—¢(E+v(p)AB),

/ 2’
my/ 1+ -55
describes the evolution of f (¢, x, p), typically representing the concentration of
electrons or holes at position x and momentum p.

of of
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Features

Shocks, large gradients, filamentation, microscopic structures.
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Grid hierarchy

Resolution levels

We define L + 1 resolution levels: the coarsest is £ = 0, the finest £ = L. In 1D, the
meshes are
AXZ _ Xmax — Xmin

X¢,j = Xmin +ij£7 2N,
0
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Grid hierarchy

Resolution levels

We define L + 1 resolution levels: the coarsest is £ = 0, the finest £ = L. In 1D, the
meshes are
AXZ _ Xmax — Xmin

X¢,j = Xmin +ij£7 2N,
0

Grid
The ¢-grid at time 7" is
GZ = {xez/}jGQZ .

We are interested in

N
Gi CTT{0, -, Nie}-
i=1
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Grid hierarchy

Nesting condition
We are interested in nested meshes:
0o 1 2 3 4 56 78 9o 10 1 o123 14 15 16 17 1819202122 23 2
=3 pop o g N =24
0 1 2 3 4 5 6 7 8 9 10 11 12
=2 | | ¥ . : . : I } } } . i N,=12
0 1 2 3 4 5
I=1 | | | | | { N, =6
0 1 2 3
1=0 | : i | N,=3
I . Ly . . . Ly . resultin,
} . ——t . . . f———t—+ e
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Grid hierarchy

Nesting condition
We are interested in nested meshes:

0 1 2 3 4 56 78 9o 10 1 o123 os 16 17 1819202122 3 2

123 gy e R L AL R S bl N =24
0 1 2 3 4 5 6 7 8 9 10 11 12

1=2 | } t t t t 4 } t t t t i N,=12
0 1 2 3 4 5

=1 t t t t t i N, =6
0 1 2 3

1=0 | } } i N,=3
| ; L ; ; ; T . resultin
: — o rosuling

Ghost points

Ghost points are added outside the ¢-grids to take into account the boundary
conditions for the time integration.
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Grid selection

The grid selection is based on two criteria: prediction and gradient.
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Grid selection

The grid selection is based on two criteria: prediction and gradient.

The prediction criterion

Let {ug,};cgn the point values at reslution level £. Let p[u] an interpolator at
resolution level £. We keep point x; , for refinement if

plue—1](xe) — uejl > 7.
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The grid selection is based on two criteria: prediction and gradient.

The prediction criterion

Let {ug,};cgn the point values at reslution level £. Let p[u] an interpolator at
resolution level £. We keep point x; , for refinement if

plue—1](xe) — uejl > 7.

The gradient criterion

We estimate the gradient at point xg ; by means of the discrete gradient computed at
resolution level ¢ — 1: if it is over a certain tolerance parameter 74 ¢—1, then point x¢
is selected for refinement.
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Grid selection

The grid selection is based on two criteria: prediction and gradient.

The prediction criterion

Let {ug,};cgn the point values at reslution level £. Let p[u] an interpolator at
resolution level £. We keep point x; , for refinement if

plue—1](xe) — uejl > 7.

The gradient criterion

We estimate the gradient at point xg ; by means of the discrete gradient computed at
resolution level ¢ — 1: if it is over a certain tolerance parameter 74 ¢—1, then point x¢
is selected for refinement.

Reconstruction

Once the grid has been selected, reconstruct by means of an interpolator the point
values that are not assigned yet.
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1D semi-Lagrangian strategy

Characteristic-based solution

The solution to the PDE Ou

9 — _ _ 0
N + i (a(t,x)u) =0, u(t=0,x) =u (x)
is given by u(t,x) = u (s, X(s;t,x)) J(s; ¢, x),

with X (s; 7, x) the characteristic at time s, starting from x at time #:

dX(s;t,x) ) ] _ ] _0X(s;t,x)
ds =a(s,X(s;8,x)), X(tt,x)=x, J(s;t,x):= Era
X.]’j 4 4 4 4 4 n+l

:/ t + t t 1 ]—grid at time t
o+ t t t t t |

1—grid at time t™

the characteristics

are solved backward

from time t ™! to time t "
through the advection field a(t,x)
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1D semi-Lagrangian strategy

Constant-coefficient advection

If a is a real constant, then the solution of the characteristics is trivial
X(s;t,x) =x+a-(s—1)

and
J(s;t,x) := 1.
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1D semi-Lagrangian strategy

Constant-coefficient advection

If a is a real constant, then the solution of the characteristics is trivial
X(s;t,x) =x+a-(s—1)

and
J(s;t,x) := 1.

Error estimate

The local truncation error can be estimated
E=0 (Axﬁ) +0 (Af‘*‘) ,

where s is the order of the integrator used to solve the characteristics (for example,
Runge-Kutta). If the characteristics are solved exactly, then no order in time appears.
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The 2D case

Grid hierarchy and selection
We do not give details, but we apply strategies similar to the 1D case. J
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The 2D case

Grid hierarchy and selection

We do not give details, but we apply strategies similar to the 1D case.

The 2D PDE

ou 0 0
lve the 2D PDE —— + — -— =
We solve the o + o (a1 u) + o (a2u) =0

by splitting the (xi, x2)-domain thanks to the second-order Strang scheme:

Ar . d ) .
@ Solve fora 5' time step 5t + o (@1u) = 0;

@ Solve for a At time step % + 8%2 (a2 u) = 0;

At

@ Solve for a 5* time step % + a% (aru) =0.
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The 2D case

Grid hierarchy and selection

We do not give details, but we apply strategies similar to the 1D case.

The 2D PDE

Ou 0
We solve the 2D PDE — + —
e solve the o + o (aru) +

7 (a2u) =0

by splitting the (xi, x2)-domain thanks to the second-order Strang scheme:

Ar . d ) .
@ Solve fora 5' time step 5t + o (@1u) = 0;

@ Solve for a At time step % + 8%2 (a2 u) = 0;

Ar . d )
@ Solve fora 5 time step 5t + ey (aru) = 0.

Error estimate

The Strang splitting constrains the accuracy:

E=0(Ax,) +O(AL,) + O (Atmi"(”l’”) .
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Goals

The Adaptive-Mesh-Refinement (AMR) framework is compared to the equivalent
Fixed-Mesh (FM) results.

Of course, AMR cannot be more accurate than FM. Rather, it achieves faster
computational times in exchange of a loss of precision.
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1D tests

Variable-coefficient advection
P

The test case Ou + — (sin(x) u) =0 produces a blow-up.

L0t Ox
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tme(0)=0
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(c) at time 0.89 (d) at time 1.48
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Variable-coefficient advection

Speedup
For parameters
No = 128 points at £ = 0
L=4 number of resolution levels
Aty = 0.125 maximum time step
T, = 10~ prediction-criterion tolerance
Ta,0 = 0.5 gradient-criterion tolerance,

AMR reaches a speedup of 35 times with respect to the equivalently-resolved FM,
with a loss of precision from 10~ to roughly 107° (the L*-error w.r.t. the analytical
solution).
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2D tests

Experiments

Landau damping

Vlasov-Poisson

of | of | O OE _ 7/
The system reads ER +v o +E8 =0, i 1 Rf(t,x, v)dv

completed by periodic b.c. The Landau damping is

o

0 e T 27
fxv) = Wer (140.5-cos(0.5-x)), Q= [O ﬁ] x [—9,9].

1ime(000000) = 0.000000

4.952000

1ime(000400) = 20.278876

time(002252) = 100.000000
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Landau damping

Quality of the results

Discrete Electric Energy

10 256+256, FM ———
1 16x16, L=4, B
01

32x32, =3, AMR -
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Landau damping

Quality of the results Oiscrete e Enorgy

time

L2-norm variation

Speedup
We fix parameters Nijg = N>y =32, L =3, 740 =0.5. The speedups:

=10"]7=10"°]7=10""
speedup 2.9 1.4 0.9
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Deformation flows

The system

@Jr% [sinz(mc) sin(27ry)g(t)f}+ gy [— sin’(ry) sin(zm)g(t)f] =0, (x,y) €017

initial function

for g(¢) = cos m ,
periodically recovers the
initial datum after
alternate clockwise and
counterclockwise

s s twistings.
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Deformation flows

The ODE integrator for the characteristics

No=32, L=3

0.009 -

0.008

[SISISISISISSTS
TrrTrrTE
LE&LALLLY

0.007 {-

0.006 1+ —

0005 [ R

L2-error

0.004 -

0.003 |-

0.002 - 4

0.001 - 4

RK order

As announced by the error estimate

E = (’)(Axie) + O(AX%,Z) +0 (Atmin(.s+1,3))

the Strang-splitting order constrains the accuracy.
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Kelvin-Hemlholtz instabilities

The model
The guiding-center model (omitting some details)
o, o oo o o0
ol T ox | om”

=0 Ar v ® = 5
o " ox ’ =P

for initial condition  p(0,x1,x2) = 1.5 sech (;—29) - (14 0.08sin (2kxy)),
periodic x;- and Dirichlet x,-boundaries, producés vortices and filamentation.

40 ‘ 40 ~. o
<
\ '
o 0w
5 5 5 5

(i) first instability
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Kelvin-Hemlholtz instabilities

— (k) steady state
.
SPEEDUP
o o The AMR strategy achieves a speedup of

Q q about 2.8, for parameters

(Nxy0,L) = (32,4) (the maximum
o : °3 * | resolution is 512 x 512), 7, = 1073,

Td,0 = 1.5.

(j) second instability
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