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Introduction

Geometry

The
DG-MOSFET.

�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������

������������������������������

������������������������������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

2SiO   layers drainsource

gate

gate

channel

x−dim (transport)z−
d
im

 (
co

n
fi

n
.)

About the scaling
In 1971, the Intel 4004 processor had 1000 transistors, whose channel length was
10000 nm. In 2003 the Intel Pentium IV had 50 million. Nowadays, for instance,
Intel’s i7-4650U has 1.3 billion transistors, whose channel is 22 nm long. The
shortest transistor in the market is 14 nm long.

Why is it important?
Smaller MOSFETs allow for the construction of smaller devices with better
performances; moreover, they allow silicon and energy saving, due to the lower
voltages needed to switch on or off the transistor.
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Introduction

Geometry

The role of the insulating layers

Electrons are trapped inside a
3.15 V-deep well along the
z-dimension. For each slice
x = const of the device, the
energy levels are thus discrete.

The doping

This p+ − p− p+ device possesses a 1026m−3 doping at the source and the drain,
1018m−3 at the channel. The doping attemps to control the electrical properties
(conductivity) of the device.

The gates
The gates are metallic contacts. The potential applied at them has the role of a “tap”
that allows or prevents the flow of current across the device.



The model Numerical schemes Experiments Acknowledgements

Modelling

Outline

1 The model
Introduction
Modelling

2 Numerical schemes
Iterative schemes for the Schrödinger-Poisson block
Solvers for Schrödinger and Poisson
Numerical methods for the BTE
Parallelization on GPU

3 Experiments
Long-time behavior
Parallel
Comparison to Monte-Carlo
Plasma oscillations (from the one-valley solver)



The model Numerical schemes Experiments Acknowledgements

Modelling

The confinement

Dimensional coupling
Electrons are particles along the x-dimension, waves along the z-dimension.

Description of the confinement
A set of 1D Schrödinger eigenvalue problems describe the electrons along z.

−~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

Subbands and wave functions

The eigenvalues {εν,p}(ν,p)∈{1,2,3}×Z>0 represent the energy levels, called subbands
in physics.
The eigenfunctions {ψν,p(·)}(ν,p)∈{1,2,3}×Z>0 are called wave functions in physics.

Electron population

The subbands decompose the electron population of the ν th valley into independent
populations. The densities are indexed on the pair (ν, p).
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Modelling

Band structure

The three valleys

The Si band structure presents six minima in the first Brillouin zone:

The constant energy surfaces in the

wavevector space

m    = 0.19 m
0t

m    = 0.91 m
0l

x

y

z

valley of type 1

valley of type 1

valley of type 3

valley of type 3

valley of type 2

valley of type 2 x

y

z (outwards)

Projection on the (x,y)−plane

The valleys of type 1 have

effective masses:

m     along direction x

m     along direction z

The valleys of type 3 have 

effective masses:

m     along direction x

m     along direction y

m     along direction z

The valleys of type 2 have

effective masses:

m     along direction x

m     along direction y

m     along direction z
l

t

t

l

t

m     along direction yt

t

t

l

The axes of the ellipsoids are disposed along the x, y and z axes of the reciprocal
lattice. The three minima have the same value, therefore there is no gap.
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Modelling

Band structure

Non-parabolicity

The band structure around the three minima can be expanded following the Kane
non-parabolic approximation (ν indexes the valley):

εkin
ν (kx, ky) =

~2

1 +

√
1 + 2α̃ν~2

(
k2

x
me mx,ν

+
k2

y
me my,ν

)
(

k2
x

me mx,ν
+

k2
y

me my,ν

)
,

where mx,ν and my,ν are the effective masses along the unconfined dimensions and
the α̃ν are the Kane dispersion factors.

z-direction

The band structure does not depend on z as the carriers are not free to move along
that direction.

Electron population

The total amount of carriers is split into independent populations, one for each valley.
We shall index them ν = 1, 2, 3.
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Modelling

The unconfined dimension

BTE

The Boltzmann Transport Equation (one for each pair (ν, p)) reads

∂fν,p
∂t

+

free motion︷ ︸︸ ︷
1
~
∂εkin
ν

∂kx

∂fν,p
∂x
−

force field︷ ︸︸ ︷
1
~
∂εν,p
∂x

∂fν,p
∂kx

=

scatterings︷ ︸︸ ︷
Qν,p[f ] ,

fν,p(t = 0, x, k) = %eq
ν,p(x)︸ ︷︷ ︸

equil. dens.

Mν(k)︸ ︷︷ ︸
Maxw.

.

The electron-phonon interaction

Electrons are scattered by the vibration of the crystal lattice, described as phonons:

Qν,p[f ] =
∑

s

∑
ν′,p′

∫
R2

[
Ss

(ν′,p′,k′)→(ν,p,k)fν′,p′(k′)− Ss
(ν,p,k)→(ν′,p′,k′)fν,p(k)

]
dk′.

Remark. In an unconfined setting, we would rather have something like

Q[f ] =
∑

s

∫
R3

[
Ss

k′→kf (k′)− Ss
k→k′ f (k)

]
dk′.
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Modelling

Eigenstates, mixed states and classical states.
The classical states are the magnitudes which only depend on the unconfined
dimension x, while mixed states depend on both x and z.

Eigenstates

The subbands and the wave functions {εν,p(x), ψν,p(x, ·)}(ν,p)∈{1,2,3}×Z>0
are

eigenstates; they depend on x only as a parameter.

Classical states

The pdf’s {fν,p(t, x, k)}ν,p are classical states, therefore the surface density

%(t, x) = 2
3∑
ν=1

∞∑
p=1

∫
R2

fν,p(t, x, k) dk

is a classical state too, and in general most of the macroscopic magnitudes.

Mixed states

The electrostatic potential V(x, z) and the volume density

N(t, x, z) = 2
3∑
ν=1

∞∑
p=1

∫
R2

fν,p(t, x, k) dk |ψν,p(t, x, z)|2 are mixed states.
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Modelling

The model

BTE

The Boltzmann Transport Equation (one for each pair (ν, p)) reads

∂fν,p
∂t

+
1
~
∂εkin
ν

∂kx

∂fν,p
∂x
− 1

~
∂εν,p
∂x

∂fν,p
∂kx

= Qν,p[f ].

Schrödinger-Poisson block

− ~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

− divx,z [εR∇x,zV] = − q
ε0

(N[V]− ND) , N[V] = 2
∑
ν,p

%ν,p |ψν,p[V]|2

These equations cannot be decoupled because we need the eigenfunctions to compute
the potential, and we need the potential to compute the eigenfunctions.
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Modelling

The model

The electron-phonon interactions

The electron-phonon operator takes into account the phonon scattering mechanism. It
reads

Qν,p[f ] =
∑

s

∑
ν′,p′

∫
R2

[
Ss

(ν′,p′,k′)→(ν,p,k)fν′,p′(k′)− Ss
(ν,p,k)→(ν′,p′,k′)fν,p(k)

]
dk′.

Structure of the Ss

The missing dimension of the wave-vector k ∈ R2, instead of k ∈ R3, is replaced by
an overlap integral W(ν,p)↔(ν′,p′):

Ss
(ν,p,k)→(ν′,p′,k′) = Cν→ν′

1
W(ν,p)↔(ν′,p′)

δ
(
εtot
ν′,p′(k′)− εtot

ν,p(k)± some energy
)

1
W(ν,p)↔(ν′,p′)

=

∫ Lz

0
|ψν,p|2|ψν′,p′ |2 dz, [W] = m.
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Modelling

The model

Surface roughness

λ m

∆m

Si−SiO   interfaces2

are perfect planes

but in practice they

are rough, in the sense 

that the Si bulk width

has a random perturbation.

In the ideal device the

x−dimension (longitudinal)

z−
d
im

en
si

o
n
 (

co
n
fi

n
em

en
t)

The scattering rate is

SSR
(ν,p,k)→(ν,p,k′) =

(∆m)2 (λm)2 e2

4π~
· ISR
ν,p ·

1(
1 +
|k− k′|2 (λm)2

2

)3/2
· δ
(
ε

tot
ν,p(k)− ε

tot
ν,p(k′)

)

where the overlap intergral is ISR
ν,p(x) =

∣∣∣∣∫ Lz

0
|ψν,p(x, z)|2 ∆V(x, z)

∆m
dz
∣∣∣∣2.
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Modelling

Initial condition

Strategy

We want to initialize the system under the following constraints:

Fulfill electrical neutrality at the source contact:∫ Lz

0
ND(0, z) dz =

∫ Lz

0
N(0, z) dz.

Have a thermodynamical equilibrium for the system, i.e. a distribution which is
a zero for both the BTE and the scattering operator.

(Cope with the former work of Carlos and Andrés.)

Step 1: the potential at the metallic contacts

Solve Schrödinger-Poisson for the following density:

N[V] =
2
π

meκBTL

~2

∑
ν,p

√
mx,νmy,ν ln

(
1 + e−

εν,p[V](x)−εF
κBTL

)
|ψν,p[V](x, z)|2

with homogeneous Neumann boundary conditions everywhere except at gate
contacts. We retain the profile of V at the contacts: Vb(z) = V(0, z).
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Modelling

Initial condition

Step 2: the thermodynamical equilibrium

Solve Schrödinger-Poisson problem for the following density:

N[V] =

∫ Lz
0 ND(0, z) dz∑

ν′,p′
√

mx,νmy,νe−
εν,p[Vb]
κBTL

∑
ν,p

√
mx,νmy,νe−

εν,p[V](x)
κBTL |ψν,p[V](x, z)|2

with Dirichlet conditions
at the four metallic
contacts and gates,
homogeneous Neumann
elsewhere. Now the
surface densities are of
the form

%eq
ν,p = Ce−

εν,p(x)
κBTL and

are, therefore, a zero for
both Boltzmann and the
scattering operator.
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Iterative schemes for the Schrödinger-Poisson block

The Newton scheme

The functional

Solving the Schrödinger-Poisson block

− ~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

− div [εR∇V] = − q
ε0

(N[V]− ND)

is equivalt to seeking for the zero, under the constraints of the Schrödinger equation,
of the functional P[V]

P[V] = −div (εR∇V) +
q
ε0

(N[V]− ND) ,

The scheme

which is achieved by means of a Newton-Raphson iterative scheme

dP(Vold,Vnew − Vold) = −P[Vold], d = Gâteaux-derivative.
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Iterative schemes for the Schrödinger-Poisson block

The iterations

Derivatives

The Gâteaux-derivatives of the eigenproperties are needed:

dεν,p(V,U) = −q
∫

U(ζ)|ψν,p[V](ζ)|2 dζ

dψν,p(V,U) = −q
∑
p′ 6=p

∫
U(ζ)ψν,p[V](ζ)ψν,p′ [V](ζ) dζ

εν,p[V]− εν,p′ [V]
ψν,p′ [V](z).

Iterations

After computing the Gâteaux-derivative of the density and developping calculations,
we are led to a Poisson-like equation

− div (εR∇Vnew) +

∫ Lz

0
A[Vold](z, ζ)Vnew(ζ)dζ

=− q
ε0

(
N[Vold]− ND

)
+

∫ Lz

0
A[Vold](z, ζ)Vold(ζ)dζ,

where A[V] is essentially the Gâteaux-derivative of the density N[V].
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Iterative schemes for the Schrödinger-Poisson block

Comparison Newton-Raphson vs. Gummel

Gummel

−div (εR∇Vnew) +
q2

ε0 kB TL
N Vnew = − q

ε0
(N − ND) +

q2

ε0 kB TL
N Vold

Newton-Raphson

−div (εR∇Vnew)+

∫ Lz

0
A(z, ζ)Vnew(ζ)dζ = − q

ε0
(N − ND)+

∫ Lz

0
A(z, ζ)Vold(ζ)dζ

Comparison
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Iterative schemes for the Schrödinger-Poisson block

Comparison Newton-Raphson vs. Gummel
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Iterative schemes for the Schrödinger-Poisson block

Framework
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Solvers for Schrödinger and Poisson

Numerical methods
We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

−~2

2
d
dz

[
1

mz,ν

dψν,p
dz

]
− q (V + Vc)ψν,p = εν,pψν,p

is discretized by alternate finite differences for the derivatives then the symmetric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

−div [εR∇V] +

∫ Lz

0
A(z, ζ)V(ζ) dζ = rhs

The derivatives are discretized by finite differences in alternate directions, the integral
is computed via trapezoid rule. The system is preconditioned by the Crout version of
the Incomplete LU factorization. Then, the system is solved by the IDRs method.
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0
A(z, ζ)V(ζ) dζ = rhs

The derivatives are discretized by finite differences in alternate directions, the integral
is computed via trapezoid rule. The system is preconditioned by the Crout version of
the Incomplete LU factorization. Then, the system is solved by the IDRs method.
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Numerical methods for the BTE

Adimensionalization of the wave-vector space

The wave-vector space is adimensionalized by a change of variables into ellipsoidal
variables, in order to better integrate the scattering operator and to have a simple
expression for the kinetic energy and related magnitudes.

Ellipsoidal coordinated

The wave-vector for the ν th valley reads:

(k̃x, k̃y) =

√
meκBTL

~
√

2w(1 + ανw)
(√

mx,ν cos(φ),
√

my,ν sin(φ)
)
.

The Jacobian

The magnitude sν(w) represents the dimensionless Jacobian of the change of
variables in the wave-vector space:

sν(w) =

∣∣∣∣det
∂ (kx, ky)

∂ (w, φ)

∣∣∣∣ =
√

mx,νmy,ν(1 + 2ανw).
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Numerical methods for the BTE

BTE in ellipsoidal coordinates

Let the flux coefficients

a1
ν(w, φ) =

√
2w(1 + ανw) cos(φ)

√
mx,ν

1
1 + 2ανw

a2
ν,p(x,w, φ) = −∂εν,p

∂x
1

1 + 2ανw

√
2w(1 + ανw) cos(φ)

√
mx,ν

a3
ν,p(x,w, φ) =

∂εν,p
∂x

sin(φ)
√

mx,ν
√

2w(1 + ανw)
.

Conservation-law form

∂Φν,p
∂t

+
∂

∂x

[
a1
νΦν,p

]
+

∂

∂w

[
a2
ν,pΦν,p

]
+

∂

∂φ

[
a3
ν,pΦν,p

]
= Qν,p[Φ]s(w)



The model Numerical schemes Experiments Acknowledgements

Numerical methods for the BTE

BTE in ellipsoidal coordinates

Let the flux coefficients

a1
ν(w, φ) =

√
2w(1 + ανw) cos(φ)

√
mx,ν

1
1 + 2ανw

a2
ν,p(x,w, φ) = −∂εν,p

∂x
1

1 + 2ανw

√
2w(1 + ανw) cos(φ)

√
mx,ν

a3
ν,p(x,w, φ) =

∂εν,p
∂x

sin(φ)
√

mx,ν
√

2w(1 + ανw)
.

Conservation-law form

∂Φν,p
∂t

+
∂

∂x

[
a1
νΦν,p

]
+

∂

∂w

[
a2
ν,pΦν,p

]
+

∂

∂φ

[
a3
ν,pΦν,p

]
= Qν,p[Φ]s(w)



The model Numerical schemes Experiments Acknowledgements

Numerical methods for the BTE

Runge-Kutta time integration

We use a Runge-Kutta time discretization.

Runge-Kutta

We advance in time by the third order Total Variation Diminishing Runge-Kutta
scheme: if the evolution equation reads

Hν,p(Φ) := − ∂

∂x

[
a1
νΦν,p

]
− ∂

∂w

[
a2
ν,pΦν,p

]
− ∂

∂φ

[
a3
ν,pΦν,p

]
+Qν,p[Φ]s(w)

(no explicit time-dependency), then

1 Φ
(1)
ν,p = ∆tHν,p(Φn)

2 Φ
(2)
ν,p = 3

4 Φn
ν,p + 1

4 Φ
(1)
ν,p + 1

4 ∆tHν,p(Φ(1))

3 Φn+1 = 1
3 Φn

ν,p + 2
3 Φ

(2)
ν,p + 2

3 Hν,p(Φ(2))
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Numerical methods for the BTE

Boundary conditions for the BTE

x-derivative

We use inflow/outflow b.c.: for the incoming particles

fν,p(t,−x,w, φ) =
%eq
ν,p(0)

%ν,p(0)
fν,p(t, 0,w, φ),

so as to try having
∫
R2 fν,p(t, 0, k) dk = %eq

ν,p. For the outgoing particles, we just use
homogeneous Neumann b.c.

force the density to stay close

to the equilibrium density

for the incoming particles

=

Homogeneous Neumann

for the ougoing particles
=

drainsource
contact contact

x

φ (periodic)
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Numerical methods for the BTE

Boundary conditions for the BTE

w-derivative

w = 0 is no real boundary; ghost points at (−w, φ) are physical points at (w, φ+ π).
At w = wmax there should be no particles, for properly chosen meshes: just use
homogeneous Neumann b.c.

This is no real border,

so homogeneous

Neumann is taken.

Anyway, no particles

should be there.

wmax

φ+π

w

−w

physical point

at 

ghost point at

(w,      )φ
φ

0

 π

−1−2−3

0 1 2

for a     −shiftedπ angle. 

are physical points

Ghost points for negative energy

2π

(m+N  /2)%Nφ φ

m

w=0

(−w,   ) = physical point at (w,       )φ φ+π

(E
N

E
R

G
Y

, 
A

N
G

L
E

)−
V

IE
W

W
A

V
E

 V
E

C
T

O
R

 V
IE

W

Remark that we must have an even number of φ-points in order to impose the b.c.
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Numerical methods for the BTE

Boundary conditions for the BTE

φ-derivative

As φ represents an angle, periodicity conditions are taken.

Ν    −1φ

Νφ

Ν   +1φ

= ghost points = mesh points

α ν2w(1+       ) 

α ν2w(1+       ) 

Ν    −1φ

Ν   +1φ

Νφ

w

φ

2π

0

1

2

−2

k

0

1

2

−1
−2

cos(     )

sin(      )φ

φm ν, x

m ν, y

0

−1

cartesian−
view ellipsoidal−

view
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Numerical methods for the BTE

Integrating the scattering operator

Elastic phenomena

Qν,p[Φ]sν(w) = CQ1
∑

p′

1
W(ν,p′)↔(ν,p)

I{Γ0≥0}

×
[

sν(w)

∫ 2π

φ′=0
Φν,p′

(
Γ0, φ

′) dφ′ − 2πΦν,psν (Γ0)

]

Energy gap

When electrons change their state from (ν, p) to (ν′, p′), energy jumps appear:

Γ0(x,w) = εtot
ν,p(x,w)− εν′,p′(x).

Remark, nevertheless, that they do not exchange energies with the phonons (elastic
interaction).
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Numerical methods for the BTE

Integrating the scattering operator

Here go the formulae for the integration of the collisional operator in the ellipsoidal
dimensionless variables.

Inelastic phenomena

Qν,p[Φ]sν(w)

=CQsν(w)
∑
ν′,p′

γν′→νNν′→ν
W(ν′,p′)↔(ν,p)

I{Γ−≥0}

∫ 2π

φ′=0
Φν′,p′

(
Γ′−, φ

′) dφ′

+CQsν(w)
∑
ν′,p′

γν′→ν(Nν′→ν + 1)

W(ν′,p′)↔(ν,p)
I{Γ+≥0}

∫ 2π

φ′=0
Φν′,p′

(
Γ+, φ

′) dφ′

−CQ2πΦν,p(w, φ)
∑
ν′,p′

γν→ν′Nν→ν′
W(ν,p)↔(ν′,p′)

I{Γ+≥0}sν′ (Γ+)

−CQ2πΦν,p(w, φ)
∑
ν′,p′

γν→ν′(Nν→ν′ + 1)

W(ν,p)↔(ν′,p′)
I{Γ−≥0}sν′ (Γ−)
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Numerical methods for the BTE

Integrating the scattering operator

Energy gaps

When electrons change their state from (ν, p) to (ν′, p′), energy jumps appear:

Γ±(x,w) = εtot
ν,p(x,w)− εν′,p′(x)± ~ω

κBTL

Remark that, for inelastic interactions, they exchange energies ~ω with the phonons.

Occupation numbers

The occupation numbers read

Nν→ν′ =

√
mx,νmy,ν

mx,ν′my,ν′
1+2αν
1+2αν′

e
~ω
κBTL + 1(

e
~ω
κBTL + 1

)(
e

~ω
κBTL − 1

) ,

for intra-valley phenomena (γν→ν′ = 0 for ν′ 6= ν), reduce to the well-known

N =
1

e
~ω
κBTL − 1

.
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Numerical methods for the BTE

Summary

Up to some constants here omitted, the system rewrites in dimensionless form:

(Boltzmann) ∂Φν,p
∂t

+
∂

∂x

[
a1
νΦν,p

]
+

∂

∂w

[
a2
ν,pΦν,p

]
+

∂

∂φ

[
a3
ν,pΦν,p

]
= Qν,p[Φ]s(w)

(Schrödinger) − d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

(Poisson) − div [εR∇V] = − (N[V]− ND)
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Parallelization on GPU

Overall design of the solver

CPU GPU

initialization

while (t < t      )max

compute macroscopic

compute macroscopic

compute macroscopic

t=t+   t∆
R

u
n
g
e−

K
u
tt

a 
1
/3

R
u
n
g
e−

K
u
tt

a 
2
/3

R
u
n
g
e−

K
u
tt

a 
3
/3

n

n,1

n,2 n+1

n,2

n,1

compute eigenstates

compute eigenstates

compute eigenstates

magnitudes

magnitudes

magnitudes

advance             

advance              Φ Φ

Φadvance             Φ

Φ Φ
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Parallelization on GPU

Advancing the pdf

GPU

integrate scattering
operator

compute  w−partial
derivative

compute    −partialφ
derivative

compute x−partial
derivative

advance in time
via Runge−Kutta

advance Φ
µ

Φ
ν =

ap
p
ro

x
im

at
e 

B
T

E
’s

 r
h
s
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Parallelization on GPU

Computation of the eigenstates
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Long-time behavior
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Long-time behavior

Long-time behavior

We propose now some results relative to the long-time behavior of the system.
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Parallel
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Parallel

Parallel performances on CPU

First attempt of parallelization was through on CPU through MPI.
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Parallel

Parallel performances on GPU
Even if the implementation is naïve, and the heavy calculations for the eigenproblem
are still performed on the CPU, GPU (GForce GTX 560) is 12 times faster than a
mono-core version on the CPU (Intel i7 2.67 GHz).
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Parallel

Parallel performances on GPU

The bottleneck is right now, of course, the computation of the eigenstates.
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Parallel

Computation of the eigenstates
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Parallel

Solver for the linear system

Jac. SSOR ILU ILUT ILUC I+S SAINV
BiCG 5.75953 4.67186 4.69768 2.89633 1.87511 8.84185 10.707
CGS crashes 2.90456 3.12915 2.55958 1.31232 crashes crashes

BiCGSTAB 3.47888 2.74935 3.32032 2.6743 1.36501 4.77781 6.93841
GPBiCG 4.098 crashes 3.90308 2.76353 1.50866 3.35362 7.07733

BiCGSafe 3.73337 2.57626 3.53839 2.85944 1.44334 3.45814 6.59097

IDR 4.66235 crashes 3.25359 2.4266 1.22059 3.29809 10.1493
BiCR 5.75036 4.60254 21.5609 2.92173 1.72047 8.73526 10.4333
CRS crashes 2.91688 3.43545 2.77804 1.37458 3.09012 crashes

BiCRSTAB 3.77746 2.91424 3.60662 2.93915 1.5394 4.88846 7.11683
GPBiCR 4.34782 4.82217 4.22561 3.23639 1.68045 3.41992 7.49258

BiCRSafe 4.0317 2.83897 3.53579 2.88131 1.39457 3.57357 6.62867
TFQMR crashes 4.35389 4.33049 3.27572 1.4939 crashes crashes

Orthomin 18.8732 7.22245 6.37847 2.90776 2.94495 14.5761 27.3695
GMRES 11.0778 6.84632 5.66822 2.71964 2.0399 12.522 19.4598

FGMRES 14.1687 22.8808 7.74984 3.51644 2.91216 13.7353 20.1428
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Parallel

Profiling IDRs method

A parallel implementation of the IDRs method (with s = 2) has been realized, using
the CUBLAS and CUSPARSE libraries. At the state of the art, performances are
disappointing: on GPU the code is ≈ 11 times slower... Two main problems:

Need for conversion of matrix from the output of the preconditioner (ILU_LIS
format) to the input of the solver (CSR format).

Need for a reduction inside the IDR iterations and transfer of a value from the
device memory to the host memory (drops the speedup from 2.5 to 0.17).
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Parallel

Middle-term to-do list for the code

1 Fully implement the ILUC preconditioner on GPU.

2 Avoid matrix format conversions from the preconditioner to the IDRs solver.
3 Avoid memory transfer from GPU to CPU inside the iterative method.

4 Parallelize the computation of the eigenstates, either on CPU or on GPU.
5 Optimize all that can be optimized. (MAJOR TASK!)
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Comparison to Monte-Carlo

Comparison to Monte-Carlo

(c) For a VD = 0.1 V bias (d) For a VD = 0.5 V bias

(e) For a VD = 0.1 V bias (f) For a VD = 0.5 V bias
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Comparison to Monte-Carlo

Comparison to Monte-Carlo
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Plasma oscillations (from the one-valley solver)
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Plasma oscillations (from the one-valley solver)

Mass and temperature oscillations
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Plasma oscillations (from the one-valley solver)

Numerically-computed oscillations

The plasma frequency is given by

ωp =

√
q2 Ne

εR ε0 m∗
.

Nhigh
D εR m? Ne ωnum ωp Ratio Expected

(×1026m−3) (×1026m−3) (×1014s−1) (×1014s−1)
ωnum
ωref

Ratio

1 11.7 0.5 .400 ωref = 1.344 1.475 1 /

2 11.7 0.5 .783 2.051 2.064 1.52
√

2
4 11.7 0.5 1.544 2.813 2.899 2.09 2
1 5.85 0.5 .400 1.848 2.086 1.37

√
2
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