		Experiments	Acknowledgements
000000	00000000000	000000	

Implementation on a high-performance computing platform of a deterministic solver for Double-Gate MOSFETs

Francesco Vecil, José Miguel Mantas

Santiago de Compostela, ECMI 2016

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

	Experiments	Acknowledgements

Outline

- Introduction
- Modelling
- 2 Numerical schemes
 - Numerical methods
 - Hybrid parallelization

3 Experiments

- Parallel
- Comparison to Monte-Carlo

The model	Experiments	Acknowledgements
• 0 0000		
Introduction		
Outline		

The model Introduction

- Modelling
- Numerical schemes
 - Numerical methods
 - Hybrid parallelization

Experiments

- Parallel
- Comparison to Monte-Carlo

The gates

The metallic gates act as a "tap": they open or close the channel.

The electrons' confinement

Electrons are confined inside a 3.15 V-deep well along the transversal dimension.

The doping

The $p^+ - p - p^+$ doping attemps to control the conductivity of the device.

The model	Experiments	Acknowledgements
00000		
Modelling		
Outline		

The model

- Introduction
- Modelling

Numerical schemes

- Numerical methods
- Hybrid parallelization

Experiments

- Parallel
- Comparison to Monte-Carlo

Dimensiona	al coupling		
Modelling			
000000	00000000000	000000	
The model	Numerical schemes	Experiments	Acknowledgements

Dimensional coupling

Electrons are waves along the transversal dimension, particles otherwise.

Description of the longitudinal dimension

One Boltzmann Transport Equation for each pair $(\nu, p) \in \{1, 2, 3\} \times \{1, \dots, N_{sbn}\}$

$$\frac{\partial f_{\nu,p}}{\partial t} + v_{x,\nu} \frac{\partial f_{\nu,p}}{\partial x} - \frac{1}{\hbar} \frac{\partial \epsilon_{\nu,p}}{\partial x} \frac{\partial f_{\nu,p}}{\partial k_x} = \mathcal{Q}_{\nu,p}[f]$$

Dimension	al coupling		
Modelling			
000000	00000000000	000000	
The model	Numerical schemes	Experiments	Acknowledgements

Dimensional coupling

Electrons are waves along the transversal dimension, particles otherwise.

Description of the longitudinal dimension

One Boltzmann Transport Equation for each pair $(\nu, p) \in \{1, 2, 3\} \times \{1, \dots, N_{sbn}\}$

$$\frac{\partial f_{\nu,p}}{\partial t} + v_{x,\nu} \frac{\partial f_{\nu,p}}{\partial x} - \frac{1}{\hbar} \frac{\partial \epsilon_{\nu,p}}{\partial x} \frac{\partial f_{\nu,p}}{\partial k_x} = \mathcal{Q}_{\nu,p}[f]$$
longitudinal dimension (particles)

|▲□▶▲圖▶▲≧▶▲≧▶ 差 のへで

The model		Experiments	Acknowledgements
000000			
Modelling			
Dimension	al coupling		

Description of the transversal dimension

A set of 1D Schrödinger eigenvalue problems:

$$-\frac{\hbar^2}{2}\frac{\mathrm{d}}{\mathrm{d}z}\left[\frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}}{\mathrm{d}z}\right] - q\left(V+V_c\right)\psi_{\nu,p} = \epsilon_{\nu,p}\,\psi_{\nu,p}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The model		Experiments	Acknowledgements
00000			
Modelling			
Dimension	al coupling		

Electrostatic field

The 2D Poisson equation couples the "classical" and the "quantum" dimensions:

$$\operatorname{div}_{x,z}\left[\varepsilon_{R}\nabla_{x,z}V\right] = \frac{q}{\varepsilon_{0}}\left(2\sum_{\nu=1}^{3}\sum_{p=1}^{N_{\mathrm{sbn}}}\int_{\mathbb{R}^{2}}f_{\nu,p}\,\mathrm{d}\boldsymbol{k}\,\left|\psi_{\nu,p}\right|^{2}-N_{D}\right).$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

	Numerical schemes	Experiments	Acknowledgements
	••••••		
Numerical methods			
Outline			

- Introduction
- Modelling

2 Numerical schemes

- Numerical methods
- Hybrid parallelization

- Parallel
- Comparison to Monte-Carlo

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
Numerical methods			
Transport part			

BTE's

After changing variables from Cartesian to ellipsoidal for k, the set of BTE's rewrite

$$\frac{\partial \Phi_{\nu,p}}{\partial t} + \frac{\partial}{\partial x} \left[a_{\nu}^{1} \Phi_{\nu,p} \right] + \frac{\partial}{\partial w} \left[a_{\nu,p}^{2} \Phi_{\nu,p} \right] + \frac{\partial}{\partial \phi} \left[a_{\nu,p}^{3} \Phi_{\nu,p} \right] = \mathcal{Q}_{\nu,p} [\mathbf{\Phi}] s_{\nu}(w),$$

with $a_{\nu,p}^2$ and $a_{\nu,p}^3$ representing the electrostatic force.

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
Numerical methods			
Transport part			

Time discretization

Third-order Total Variation Diminishing (TVD) Runge-Kutta scheme:

$$\Phi^{1} = \Phi^{n} + \Delta t \boldsymbol{H}(\Phi^{n}),$$

$$\Phi^{2} = \frac{3}{4} \Phi^{n} + \frac{\Phi^{1}}{4} + \frac{\Delta t}{4} \boldsymbol{H}(\Phi^{1}),$$

$$\Phi^{n+1} = \frac{\Phi^{n}}{3} + \frac{2}{3} \Phi^{2} + \frac{2}{3} \Delta t \boldsymbol{H}(\Phi^{2})$$

where *H* are the right-hand sides of the BTE's:

$$H_{\nu,p}(\mathbf{\Phi}) := -\frac{\partial}{\partial x} \left[a_{\nu}^{1} \Phi_{\nu,p} \right] - \frac{\partial}{\partial w} \left[a_{\nu,p}^{2} \Phi_{\nu,p} \right] - \frac{\partial}{\partial \phi} \left[a_{\nu,p}^{3} \Phi_{\nu,p} \right] + \mathcal{Q}_{\nu,p}[\mathbf{\Phi}] s_{\nu}(w).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
Numerical methods			
Transport part	t		

Partial derivatives

The three partial derivatives $\frac{\partial}{\partial x} \left[a_{\nu}^1 \Phi_{\nu,p} \right]$, $\frac{\partial}{\partial w} \left[a_{\nu,p}^2 \Phi_{\nu,p} \right]$ and $\frac{\partial}{\partial \phi} \left[a_{\nu,p}^3 \Phi_{\nu,p} \right]$ are approximated *line by line* using a WENO routine for finite differences.

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
Numerical methods			
Transport part			

Scattering operator

Explicit formulae for the scattering operator are (neglecting many constants):

$$\begin{aligned} \mathcal{Q}_{\nu,p}[\Phi] \, s_{\nu}(w) &= s_{\nu}(w) \sum_{\nu',p'} \frac{\int \left[\mathbb{I}_{\Gamma_{-}} \, \Phi_{\nu',p'}(\Gamma_{-},\phi') + \mathbb{I}_{\Gamma_{+}} \, \Phi_{\nu',p'}(\Gamma_{+},\phi') \right] \mathrm{d}\phi'}{W_{(\nu',p')\leftrightarrow(\nu,p)}} \\ &- 2\pi \, \Phi_{\nu,p}(w,\phi) \sum_{\nu',p'} \frac{\mathbb{I}_{\Gamma_{+}} \, s_{\nu'}\left(\Gamma_{+}\right) + \mathbb{I}_{\Gamma_{-}} \, s_{\nu'}\left(\Gamma_{-}\right)}{W_{(\nu,p)\leftrightarrow(\nu',p')}} \end{aligned}$$

with W being the overlap integral

$$\frac{1}{W_{(\nu,p)\leftrightarrow(\nu',p')}} = \int |\psi_{\nu,p}|^2 |\psi_{\nu',p'}|^2 \,\mathrm{d}z.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

	Numerical schemes	Experiments	Acknowledgements
	0000000000		
Numerical methods			

Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{\mathrm{d}}{\mathrm{d}z}\left[\frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}}{\mathrm{d}z}\right] - q\left(V+V_c\right)\psi_{\nu,p} = \epsilon_{\nu,p}\,\psi_{\nu,p}$$
$$\operatorname{div}_{x,z}\left[\varepsilon_R\nabla_{x,z}V\right] = \frac{q}{\varepsilon_0}\left(2\sum_{\nu=1}^3\sum_{p=1}^{N_{\mathrm{sbn}}}\varrho_{\nu,p}\,\left|\psi_{\nu,p}\right|^2 - N_D\right).$$

Input/output

surf. densities $\rho(x) \longrightarrow$ subbands $\epsilon(x)$, wave functions $\psi(x, z)$, potential V(x, z).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
Numerical methods			

Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{\mathrm{d}}{\mathrm{d}z}\left[\frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}}{\mathrm{d}z}\right] - q\left(V+V_c\right)\psi_{\nu,p} = \epsilon_{\nu,p}\,\psi_{\nu,p}$$
$$\operatorname{div}_{x,z}\left[\varepsilon_R\nabla_{x,z}V\right] = \frac{q}{\varepsilon_0}\left(2\sum_{\nu=1}^3\sum_{p=1}^{N_{\mathrm{sbn}}}\varrho_{\nu,p}\,\left|\psi_{\nu,p}\right|^2 - N_D\right).$$

Input/output

surf. densities $\rho(x) \longrightarrow$ subbands $\epsilon(x)$, wave functions $\psi(x, z)$, potential V(x, z).

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
Numerical methods			

Reformulating the problem

The Schrödinger-Poisson problem (here written extremely simplified) is solved by a Newton-Raphson iterative scheme seeking for the zero of

$$P[V] = -\Delta V + \sum_{\nu,p} \varrho_{\nu,p} |\psi_{\nu,p}|^2 \quad \text{under} \quad \left(\frac{d^2}{dz^2} - V\right) \psi_{\nu,p} = \epsilon_{\nu,p} \psi_{\nu,p}.$$

The iterative scheme

We are led to a Poisson-like equation to update the guess for the potential V

$$-\Delta V^{\text{new}} + \int \mathcal{A}(z,\zeta) V^{\text{new}}(\zeta) \mathrm{d}\zeta = -\sum_{\nu,p} \varrho_{\nu,p} \left| \psi_{\nu,p}^{\text{old}} \right|^2 + \int \mathcal{A}(z,\zeta) V^{\text{old}}(\zeta) \mathrm{d}\zeta.$$

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
Numerical methods			

Reformulating the problem

The Schrödinger-Poisson problem (here written extremely simplified) is solved by a Newton-Raphson iterative scheme seeking for the zero of

$$P[V] = -\Delta V + \sum_{\nu,p} \varrho_{\nu,p} |\psi_{\nu,p}|^2 \quad \text{under} \quad \left(\frac{d^2}{dz^2} - V\right) \psi_{\nu,p} = \epsilon_{\nu,p} \psi_{\nu,p}.$$

The iterative scheme

We are led to a Poisson-like equation to update the guess for the potential V

$$-\Delta V^{\text{new}} + \int \mathcal{A}(z,\zeta) V^{\text{new}}(\zeta) \mathrm{d}\zeta = -\sum_{\nu,p} \varrho_{\nu,p} \left| \psi_{\nu,p}^{\text{old}} \right|^2 + \int \mathcal{A}(z,\zeta) V^{\text{old}}(\zeta) \mathrm{d}\zeta.$$

▲□▶▲圖▶▲圖▶▲圖▶ ■ のへの

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
Numerical methods			
The confin	ed dimension		

The Newton-Raphson kernels

$$\mathcal{A}(z,\zeta) = 2\sum_{\nu,p} \sum_{p'\neq p} \frac{\varrho_{\nu,p} - \varrho_{\nu,p'}}{\epsilon_{\nu,p'}^{\text{old}} - \epsilon_{\nu,p}^{\text{old}}} \psi_{\nu,p}^{\text{old}}(\zeta) \psi_{\nu,p'}^{\text{old}}(\zeta) \psi_{\nu,p'}^{\text{old}}(z) \psi_{\nu,p}^{\text{old}}(z).$$

Solver for the Schrödinger equation

Each of the 3 × N_x eigenvalue problems $\left(\frac{d^2}{dz^2} - V\right)\psi_{\nu,p} = \epsilon_{\nu,p}\psi_{\nu,p}$ is independently solved by LAPACK's **DSTEQR**.

Solver for the Poisson-like equation

The linear system on V^{nev}

$$-\Delta V^{\text{new}} + \int \mathcal{A}(z,\zeta) V^{\text{new}}(\zeta) \mathrm{d}\zeta = -\sum_{\nu,p} \varrho_{\nu,p} \left| \psi_{\nu,p}^{\text{old}} \right|^2 + \int \mathcal{A}(z,\zeta) V^{\text{old}}(\zeta) \mathrm{d}\zeta.$$

is preconditioned using ILUC, then solved by the IDR method.

	Numerical schemes	Experiments	Acknowledgements
	000000000000		
Numerical methods			
The confine	ed dimension		

The Newton-Raphson kernels

$$\mathcal{A}(z,\zeta) = 2\sum_{\nu,p} \sum_{p'\neq p} \frac{\varrho_{\nu,p} - \varrho_{\nu,p'}}{\epsilon_{\nu,p'}^{\mathrm{old}} - \epsilon_{\nu,p}^{\mathrm{old}}} \psi_{\nu,p}^{\mathrm{old}}(\zeta) \psi_{\nu,p'}^{\mathrm{old}}(\zeta) \psi_{\nu,p'}^{\mathrm{old}}(z) \psi_{\nu,p}^{\mathrm{old}}(z).$$

Solver for the Schrödinger equation

Each of the 3 × N_x eigenvalue problems $\left(\frac{d^2}{dz^2} - V\right)\psi_{\nu,p} = \epsilon_{\nu,p}\psi_{\nu,p}$ is independently solved by LAPACK's **DSTEQR**.

Solver for the Poisson-like equation

The linear system on V^{nev}

$$-\Delta V^{\text{new}} + \int \mathcal{A}(z,\zeta) V^{\text{new}}(\zeta) \mathrm{d}\zeta = -\sum_{\nu,p} \varrho_{\nu,p} \left| \psi_{\nu,p}^{\text{old}} \right|^2 + \int \mathcal{A}(z,\zeta) V^{\text{old}}(\zeta) \mathrm{d}\zeta.$$

is preconditioned using ILUC, then solved by the IDR method.

200

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
Numerical methods			
The confine	ed dimension		

The Newton-Raphson kernels

$$\mathcal{A}(z,\zeta) = 2\sum_{\nu,p} \sum_{p'\neq p} \frac{\varrho_{\nu,p} - \varrho_{\nu,p'}}{\epsilon_{\nu,p'}^{\mathrm{old}} - \epsilon_{\nu,p}^{\mathrm{old}}} \psi_{\nu,p}^{\mathrm{old}}(\zeta) \psi_{\nu,p'}^{\mathrm{old}}(\zeta) \psi_{\nu,p'}^{\mathrm{old}}(z) \psi_{\nu,p}^{\mathrm{old}}(z).$$

Solver for the Schrödinger equation

Each of the 3 × N_x eigenvalue problems $\left(\frac{d^2}{dz^2} - V\right)\psi_{\nu,p} = \epsilon_{\nu,p}\psi_{\nu,p}$ is independently solved by LAPACK's **DSTEQR**.

Solver for the Poisson-like equation

The linear system on V^{new}

$$-\Delta V^{\text{new}} + \int \mathcal{A}(z,\zeta) V^{\text{new}}(\zeta) \mathrm{d}\zeta = -\sum_{\nu,p} \varrho_{\nu,p} \left| \psi_{\nu,p}^{\text{old}} \right|^2 + \int \mathcal{A}(z,\zeta) V^{\text{old}}(\zeta) \mathrm{d}\zeta.$$

is preconditioned using ILUC, then solved by the IDR method.

	Numerical schemes	Experiments	Acknowledgements
	000000000000000000000000000000000000000		
Hybrid parallelization			
Outline			

- Introduction
- Modelling

2 Numerical schemes

- Numerical methods
- Hybrid parallelization

- Parallel
- Comparison to Monte-Carlo

The model	Numerical schemes	Experiments	Acknowledgements
	000000000000000000000000000000000000000		
Hybrid parallelization			

Overall design of the solver

	Numerical schemes	Experiments	Acknowledgements
	000000000000		
Hybrid parallelization			

Main computational phases

The scatterings phase (on the GPU)

$$\begin{aligned} \mathcal{Q}_{\nu,p}[\Phi] \, s_{\nu}(w) &= s_{\nu}(w) \sum_{\nu',p'} \frac{\int \left[\mathbb{I}_{\Gamma_{-}} \, \Phi_{\nu',p'}(\Gamma_{-},\phi') + \mathbb{I}_{\Gamma_{+}} \, \Phi_{\nu',p'}(\Gamma_{+},\phi') \right] \, \mathrm{d}\phi'}{W_{(\nu',p')\leftrightarrow(\nu,p)}} \\ &- 2\pi \, \Phi_{\nu,p}(w,\phi) \sum_{\nu',p'} \frac{\mathbb{I}_{\Gamma_{+}} \, s_{\nu'}\left(\Gamma_{+}\right) + \mathbb{I}_{\Gamma_{-}} \, s_{\nu'}\left(\Gamma_{-}\right)}{W_{(\nu,p)\leftrightarrow(\nu',p')}}. \end{aligned}$$

- $W_{(\nu,p)\leftrightarrow(\nu',p')}$ is precomputed.
- The operator requires $7 \times 3 \times N_{sbn} \times N_x \times N_w \times N_{\phi}$ independent ϕ -integrations on total (\approx 59, 000, 000 for the "standard" meshes).
- Loop on the scattering phenomenon, and $3 \times N_{\text{sbn}} \times N_x \times N_w \times N_\phi$ threads created at each time.

The WENO phase (GPU)

The computation of $\frac{\partial}{\partial x} \left[a_{\nu}^{1} \Phi_{\nu,p} \right]$ is performed on the GPU, using $3 \times N_{\text{sbn}} \times N_{w} \times N_{\phi}$ threads (no N_{x}). Similarly for the other dimensions.

	Numerical schemes	Experiments	Acknowledgements
	000000000000		
Hybrid parallelization			

Main computational phases

The scatterings phase (on the GPU)

$$\begin{aligned} \mathcal{Q}_{\nu,p}[\Phi] \, s_{\nu}(w) &= s_{\nu}(w) \sum_{\nu',p'} \frac{\int \left[\mathbb{I}_{\Gamma_{-}} \, \Phi_{\nu',p'}(\Gamma_{-},\phi') + \mathbb{I}_{\Gamma_{+}} \, \Phi_{\nu',p'}(\Gamma_{+},\phi') \right] \, \mathrm{d}\phi'}{W_{(\nu',p')\leftrightarrow(\nu,p)}} \\ &- 2\pi \, \Phi_{\nu,p}(w,\phi) \sum_{\nu',p'} \frac{\mathbb{I}_{\Gamma_{+}} \, s_{\nu'}\left(\Gamma_{+}\right) + \mathbb{I}_{\Gamma_{-}} \, s_{\nu'}\left(\Gamma_{-}\right)}{W_{(\nu,p)\leftrightarrow(\nu',p')}}. \end{aligned}$$

- $W_{(\nu,p)\leftrightarrow(\nu',p')}$ is precomputed.
- The operator requires $7 \times 3 \times N_{sbn} \times N_x \times N_w \times N_{\phi}$ independent ϕ -integrations on total (\approx 59, 000, 000 for the "standard" meshes).
- Loop on the scattering phenomenon, and $3 \times N_{\text{sbn}} \times N_x \times N_w \times N_\phi$ threads created at each time.

The **WENO** phase (GPU)

The computation of $\frac{\partial}{\partial x} \left[a_{\nu}^{1} \Phi_{\nu,p} \right]$ is performed on the GPU, using $3 \times N_{\text{sbn}} \times N_{w} \times N_{\phi}$ threads (no N_{x}). Similarly for the other dimensions.

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
Hybrid parallelization			
Main com	outational phases		

The update V phase (hybrid)

• The Newton-Raphson kernel is computed on the GPU as (x-dep. omitted)

$$\mathcal{A}(z_{j}, z_{j'}) = 2 \sum_{\nu, p} \psi_{\nu, p}^{\text{old}}(z_{j'}) \psi_{\nu, p}^{\text{old}}(z_{j}) \sum_{p' \neq p} \underbrace{\frac{\varrho_{\nu, p} - \varrho_{\nu, p'}}{\epsilon_{\nu, p'}^{\text{old}} - \epsilon_{\nu, p}^{\text{old}}}}_{\text{precomputed}} \psi_{\nu, p'}^{\text{old}}(z_{j'}) \psi_{\nu, p'}^{\text{old}}(z_{j}).$$

using shared memory, so that threads in the same block share the same x.

• The linear system is constructed, preconditioned and solved on the CPU

$$-\Delta V^{\text{new}} + \int \mathcal{A}(z,\zeta) V^{\text{new}}(\zeta) \mathrm{d}\zeta = -\sum_{\nu,p} \varrho_{\nu,p} \left| \psi_{\nu,p}^{\text{old}} \right|^2 + \int \mathcal{A}(z,\zeta) V^{\text{old}}(\zeta) \mathrm{d}\zeta.$$

The **Schrödinger** phase (CPU via OpenMP)

We parallelize via OpenMP the diagonalization of the Schrödinger matrices

$$-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}z}\left(\frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}}{\mathrm{d}z}\right) - V\psi_{\nu,p} = \epsilon_{\nu,p}\,\psi_{\nu,p}.$$

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
Hybrid parallelization			
Main com	outational phases		

The update V phase (hybrid)

• The Newton-Raphson kernel is computed on the GPU as (*x*-dep. omitted)

$$\mathcal{A}(z_{j}, z_{j'}) = 2 \sum_{\nu, p} \psi_{\nu, p}^{\text{old}}(z_{j'}) \psi_{\nu, p}^{\text{old}}(z_{j}) \sum_{p' \neq p} \underbrace{\frac{\varrho_{\nu, p} - \varrho_{\nu, p'}}{\epsilon_{\nu, p'}^{\text{old}} - \epsilon_{\nu, p}^{\text{old}}}}_{\text{precomputed}} \psi_{\nu, p'}^{\text{old}}(z_{j'}) \psi_{\nu, p'}^{\text{old}}(z_{j}).$$

using shared memory, so that threads in the same block share the same x.

• The linear system is constructed, preconditioned and solved on the CPU

$$-\Delta V^{\text{new}} + \int \mathcal{A}(z,\zeta) V^{\text{new}}(\zeta) \mathrm{d}\zeta = -\sum_{\nu,p} \varrho_{\nu,p} \left| \psi_{\nu,p}^{\text{old}} \right|^2 + \int \mathcal{A}(z,\zeta) V^{\text{old}}(\zeta) \mathrm{d}\zeta.$$

The Schrödinger phase (CPU via OpenMP)

We parallelize via OpenMP the diagonalization of the Schrödinger matrices

$$-\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}z}\left(\frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}}{\mathrm{d}z}\right)-V\psi_{\nu,p}=\epsilon_{\nu,p}\,\psi_{\nu,p}.$$

	Experiments	Acknowledgements
	000000	
Parallel		
Outline		

The model

- Introduction
- Modelling

Numerical schemes

- Numerical methods
- Hybrid parallelization

3 Experiments

- Parallel
- Comparison to Monte-Carlo

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - のへで

 The model
 Numerical schemes
 Experiments
 Acknowledgements

 000000
 00000000000
 000000
 Parallel

Performances OpenMP/CUDA

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

	Experiments	Acknowledgements
	000000	
Comparison to Monte-Carlo		
Outline		

The model

- Introduction
- Modelling

Numerical schemes

- Numerical methods
- Hybrid parallelization

3 Experiments

- Parallel
- Comparison to Monte-Carlo

	Experiments	Acknowledgements
	000000	
Comparison to Monte-Carlo		

Comparison to Monte-Carlo

3

	Experiments	Acknowledgements
	000000	
Comparison to Monte-Carlo		

Comparison to Monte-Carlo

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

The	model

Numerical schemes

Experiments 000000 Acknowledgements

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

¡GRACIAS!

Se agradecen los proyectos **MTM2011-27739-C04-02** y **MTM2014-52056-P** financiados por el Ministerio de Economía y Competitividad, y el Fondo Europeo de Desarrollo Regional.

francesco.vecil@gmail.com