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About the scaling
In 1971, the Intel 4004 processor had 1000 transistors, whose channel length was
10000 nm. In 2003 the Intel Pentium IV had 50 million. Nowadays, for instance,
Intel’s i7-4650U has 1.3 billion transistors, whose channel is 22 nm long. The
shortest transistor in the market is 14 nm long.

Why is it important?
Smaller MOSFETs allow for the construction of smaller devices with better
performances; moreover, they allow silicon and energy saving, due to the lower
voltages needed to switch on or off the transistor.
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Modelling

The confinement

Dimensional coupling
Electrons are particles along the x-dimension, waves along the z-dimension.

Description of the confinement
A set of 1D Schrödinger eigenvalue problems describe the electrons along z.

−~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

Subbands and wave functions

The eigenvalues {εν,p}(ν,p)∈{1,2,3}×Z>0 represent the energy levels, called subbands
in physics.
The eigenfunctions {ψν,p(·)}(ν,p)∈{1,2,3}×Z>0 are called wave functions in physics.

Electron population

The subbands decompose the electron population of the ν th valley into independent
populations. The densities are indexed on the pair (ν, p).
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Modelling

The unconfined dimension

BTE

The Boltzmann Transport Equation (one for each pair (ν, p)) reads

∂fν,p
∂t

+

free motion︷ ︸︸ ︷
1
~
∂εkin
ν

∂kx

∂fν,p
∂x
−

force field︷ ︸︸ ︷
1
~
∂εν,p
∂x

∂fν,p
∂kx

=

scatterings︷ ︸︸ ︷
Qν,p[f ] ,

fν,p(t = 0, x, k) = %eq
ν,p(x)︸ ︷︷ ︸

equil. dens.

Mν(k)︸ ︷︷ ︸
Maxw.

.
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Modelling

The model

BTE

The Boltzmann Transport Equation (one for each pair (ν, p)) reads

∂fν,p
∂t

+
1
~
∂εkin
ν

∂kx

∂fν,p
∂x
− 1

~
∂εν,p
∂x

∂fν,p
∂kx

= Qν,p[f ].

Schrödinger-Poisson block

− ~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

− divx,z [εR∇x,zV] = − q
ε0

(N[V]− ND) , N[V] = 2
∑
ν,p

%ν,p |ψν,p[V]|2

These equations cannot be decoupled because we need the eigenfunctions to compute
the potential, and we need the potential to compute the eigenfunctions.
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Modelling

The model

The electron-phonon interactions

The electron-phonon operator takes into account the phonon scattering mechanism. It
reads

Qν,p[f ] =
∑

s

∑
ν′,p′

∫
R2

[
Ss

(ν′,p′,k′)→(ν,p,k)fν′,p′(k′)− Ss
(ν,p,k)→(ν′,p′,k′)fν,p(k)

]
dk′.

Structure of the Ss

The missing dimension of the wave-vector k ∈ R2, instead of k ∈ R3, is replaced by
an overlap integral W(ν,p)↔(ν′,p′):

Ss
(ν,p,k)→(ν′,p′,k′) = Cν→ν′

1
W(ν,p)↔(ν′,p′)

δ
(
εtot
ν′,p′(k′)− εtot

ν,p(k)± some energy
)

1
W(ν,p)↔(ν′,p′)

=

∫ Lz

0
|ψν,p|2|ψν′,p′ |2 dz, [W] = m.
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Iterative schemes for the Schrödinger-Poisson block

The Newton scheme

The functional

Solving the Schrödinger-Poisson block

− ~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

− div [εR∇V] = − q
ε0

(
2
∑
ν,p

%ν,p |ψν,p[V]|2 − ND

)

is equivalt to seeking for the zero, under the constraints of the Schrödinger equation,
of the functional P[V]

P[V] = −div (εR∇V) +
q
ε0

(
2
∑
ν,p

%ν,p |ψν,p[V]|2 − ND

)
,

The scheme

which is achieved by means of a Newton-Raphson iterative scheme

dP(V(k),V(k+1) − V(k)) = −P[V(k)], d = directional derivative.
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Iterative schemes for the Schrödinger-Poisson block

Newton-Raphson

Newton-Raphson

− divx,z

[
εR(x, z)∇V(k+1)(x, z)

]
+

∫
A(k)(x, z, ζ) V(k+1)(x, ζ) dζ

= −2
∑
ν,p

%ν,p

∣∣∣ψ(k)
ν,p[V]

∣∣∣2 +

∫
A(k)(x, z, ζ) V(k)(x, ζ) dζ.

with

A(k)(x, z, ζ) = 2
∑
ν,p

∑
p′ 6=p

%ν,p(x)− %ν,p′(x)

ε
(k)
ν,p′(x)− ε(k)

ν,p(x)

× ψ(k)
ν,p(x, ζ)ψ(k)

ν,p′(x, ζ)ψ(k)
ν,p′(x, z)ψ(k)

ν,p(x, z).
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Iterative schemes for the Schrödinger-Poisson block

Framework

ρ ν,p,i

ε ν,p,i ψ ν,p,i,j

s+1

s+1 s+1

pick an initial
guess for V

Schroedinger

compute densities

Schroedinger

test convergence

compute densities

yes

no

update V
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Solvers for Schrödinger and Poisson

Numerical methods
We need to solve the Schrödinger eigenvalue problem and Poisson equations.

The Schrödinger equation

Equation

−~2

2
d
dz

[
1

mz,ν

dψν,p
dz

]
− q (V + Vc)ψν,p = εν,pψν,p

is discretized by alternate finite differences for the derivatives then the symmetric
matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation

We need to solve equations like

−div [εR∇V] +

∫ Lz

0
A(z, ζ)V(ζ) dζ = rhs

The derivatives are discretized by finite differences in alternate directions, the integral
is computed via trapezoid rule. The system is preconditioned by the Crout version of
the Incomplete LU factorization. Then, the system is solved by the IDRs method.
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Numerical methods for the BTE

Adimensionalization of the wave-vector space

The wave-vector space is adimensionalized by a change of variables into ellipsoidal
variables, in order to better integrate the scattering operator and to have a simple
expression for the kinetic energy and related magnitudes.

Ellipsoidal coordinated

The wave-vector for the ν th valley reads:

(k̃x, k̃y) =

√
meκBTL

~
√

2w(1 + ανw)
(√

mx,ν cos(φ),
√

my,ν sin(φ)
)
.

The Jacobian

The magnitude sν(w) represents the dimensionless Jacobian of the change of
variables in the wave-vector space:

sν(w) =

∣∣∣∣det
∂ (kx, ky)

∂ (w, φ)

∣∣∣∣ =
√

mx,νmy,ν(1 + 2ανw).
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Numerical methods for the BTE

BTE in ellipsoidal coordinates

Let the flux coefficients

a1
ν(w, φ) =

√
2w(1 + ανw) cos(φ)

√
mx,ν

1
1 + 2ανw

a2
ν,p(x,w, φ) = −∂εν,p

∂x
1

1 + 2ανw

√
2w(1 + ανw) cos(φ)

√
mx,ν

a3
ν,p(x,w, φ) =

∂εν,p
∂x

sin(φ)
√

mx,ν
√

2w(1 + ανw)
.

Conservation-law form

∂Φν,p
∂t

+
∂

∂x

[
a1
νΦν,p

]
+

∂

∂w

[
a2
ν,pΦν,p

]
+

∂

∂φ

[
a3
ν,pΦν,p

]
= Qν,p[Φ]s(w)
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Numerical methods for the BTE

Runge-Kutta time integration

We use a Runge-Kutta time discretization.

Runge-Kutta

We advance in time by the third order Total Variation Diminishing Runge-Kutta
scheme: if the evolution equation reads

Hν,p(Φ) := − ∂

∂x

[
a1
νΦν,p

]
− ∂

∂w

[
a2
ν,pΦν,p

]
− ∂

∂φ

[
a3
ν,pΦν,p

]
+Qν,p[Φ]s(w)

(no explicit time-dependency), then

1 Φ
(1)
ν,p = ∆tHν,p(Φn)

2 Φ
(2)
ν,p = 3

4 Φn
ν,p + 1

4 Φ
(1)
ν,p + 1

4 ∆tHν,p(Φ(1))

3 Φn+1 = 1
3 Φn

ν,p + 2
3 Φ

(2)
ν,p + 2

3 Hν,p(Φ(2))
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Numerical methods for the BTE

Integrating the scattering operator

Here go the formulae for the integration of the collisional operator in the ellipsoidal
dimensionless variables.

Inelastic phenomena

Qν,p[Φ]sν(w)

=CQsν(w)
∑
ν′,p′

γν′→νNν′→ν
W(ν′,p′)↔(ν,p)

I{Γ−≥0}

∫ 2π

φ′=0
Φν′,p′

(
Γ′−, φ

′) dφ′

+CQsν(w)
∑
ν′,p′

γν′→ν(Nν′→ν + 1)

W(ν′,p′)↔(ν,p)
I{Γ+≥0}

∫ 2π

φ′=0
Φν′,p′

(
Γ+, φ

′) dφ′

−CQ2πΦν,p(w, φ)
∑
ν′,p′

γν→ν′Nν→ν′
W(ν,p)↔(ν′,p′)

I{Γ+≥0}sν′ (Γ+)

−CQ2πΦν,p(w, φ)
∑
ν′,p′

γν→ν′(Nν→ν′ + 1)

W(ν,p)↔(ν′,p′)
I{Γ−≥0}sν′ (Γ−)
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Numerical methods for the BTE

Summary

Up to some constants here omitted, the system rewrites in dimensionless form:

(Boltzmann) ∂Φν,p
∂t

+
∂

∂x

[
a1
νΦν,p

]
+

∂

∂w

[
a2
ν,pΦν,p

]
+

∂

∂φ

[
a3
ν,pΦν,p

]
= Qν,p[Φ]s(w)


(Schrödinger) − d

dz

[
1

mz,ν

dψν,p[V]

dz

]
− (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

(Poisson) −div [εR∇V] = − (N[V]− ND)
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Hybrid parallelization on CPU/GPU

Overall design of the solver

go to the next time step

initializationCPU GPU

BTE Φ
n

Φ
n,1

(ITER)

BTE
n,1

Φ Φ
n,2

compute eigenstates
(ITER)

BTE Φ
n,2

Φ
n+1

(ITER)
compute eigenstates

compute
macrosc. magnitudes

compute eigenstates
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Parallel

Parallel performances on GPU
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Parallel

Parallel performances on GPU

The bottleneck is, at the state of the art, the integration of the scattering operator.
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Comparison to Monte-Carlo

Comparison to Monte-Carlo

(a) For a VD = 0.1 V bias (b) For a VD = 0.5 V bias

(c) For a VD = 0.1 V bias (d) For a VD = 0.5 V bias
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