Implementation on a high-performance platform of a hybrid parallel solver for DG-MOSFETs

F. Vecil, J.M. Mantas, M.J. Cáceres, C. Sampedro, A. Godoy, F. Gámiz

Granada, 19 de junio de 2017

Outline

(1) The model

- Introduction
- Modelling
(2) Numerical schemes
- Iterative schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Numerical methods for the BTE
- Hybrid parallelization on CPU/GPU
(3) Experiments
- Parallel
- Comparison to Monte-Carlo

Outline

(1) The model

- Introduction
- Modelling
(2) Numerical schemes
- Iterative schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Numerical methods for the BTE
- Hybrid parallelization on CPU/GPU
(3) Experiments
- Parallel
- Comparison to Monte-Carlo

Geometry

About the scaling

In 1971, the Intel 4004 processor had 1000 transistors, whose channel length was 10000 nm . In 2003 the Intel Pentium IV had 50 million. Nowadays, for instance, Intel's i7-4650U has 1.3 billion transistors, whose channel is 22 nm long. The shortest transistor in the market is 14 nm long.

Why is it important?

Smaller MOSFETs allow for the construction of smaller devices with better performances; moreover, they allow silicon and energy saving, due to the lower voltages needed to switch on or off the transistor.

Outline

(1) The model

- Introduction
- Modelling
(2) Numerical schemes
- Iterative schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Numerical methods for the BTE
- Hybrid parallelization on CPU/GPU
(3) Experiments
- Parallel
- Comparison to Monte-Carlo

The confinement

Dimensional coupling

Electrons are particles along the x-dimension, waves along the z-dimension.

Description of the confinement
A set of 1D Schrödinger eigenvalue problems describe the electrons along z.

Subbands and wave functions
The eigenvalues $\left\{\epsilon_{1, n}\right\}_{(\mu, n) \in\{1,2,3\} \times z>0}$ represent the energy levels, called subbands in physics.
The eigenfunctions $\left\{\psi_{\nu, p}(\cdot)\right\}_{(\nu, p) \in\{1,2,3\} \times \mathbb{Z}_{>0}}$ are called wave functions in physics.

Electron population

The subbands decompose the electron population of the $\nu^{\text {th }}$ valley into independent populations. The densities are indexed on the pair (ν, p).

The confinement

Dimensional coupling

Electrons are particles along the x-dimension, waves along the z-dimension.

Description of the confinement
A set of 1D Schrödinger eigenvalue problems describe the electrons along z.

$$
-\frac{\hbar^{2}}{2} \frac{\mathrm{~d}}{\mathrm{~d} z}\left[\frac{1}{m_{z, \nu}} \frac{\mathrm{~d} \psi_{\nu, p}[V]}{\mathrm{d} z}\right]-q\left(V+V_{c}\right) \psi_{\nu, p}[V]=\epsilon_{\nu, p}[V] \psi_{\nu, p}[V]
$$

Subbands and wave functions

The eigenvalues $\left\{\epsilon_{\nu, p}\right\}_{(\nu, p) \in\{1,2,3\} \times \mathbb{Z}_{>0}}$ represent the energy levels, called subbands in physics.
The eigenfunctions $\left\{\psi_{\nu, p}(\cdot)\right\}_{(\nu, p) \in\{1,2,3\} \times \mathbb{Z}_{>0}}$ are called wave functions in physics.

Electron population

The subbands decompose the electron population of the $\nu^{\text {th }}$ valley into independent populations. The densities are indexed on the pair (ν, p).

The unconfined dimension

BTE

The Boltzmann Transport Equation (one for each pair (ν, p)) reads

$$
\begin{aligned}
& \frac{\partial f_{\nu, p}}{\partial t}+\overbrace{\frac{1}{\hbar} \frac{\partial \epsilon_{\nu}^{\mathrm{kin}}}{\partial k_{x}} \frac{\partial f_{\nu, p}}{\partial x}-\overbrace{\frac{1}{\hbar} \frac{\partial \epsilon_{\nu, p}}{\partial x} \frac{\partial f_{\nu, p}}{\partial k_{x}}}^{\text {free motion }}=\overbrace{\mathcal{Q}_{\nu, p}[f]}^{\text {force field }},}^{\text {scatterings }}, \\
& f_{\nu, p}(t=0, x, \boldsymbol{k})=\underbrace{\varrho_{\nu, p}^{\text {eq }(x)}}_{\text {equil. dens. Maxw. }} \underbrace{M_{\nu}(\boldsymbol{k})} .
\end{aligned}
$$

The model

BTE

The Boltzmann Transport Equation (one for each pair (ν, p)) reads

$$
\frac{\partial f_{\nu, p}}{\partial t}+\frac{1}{\hbar} \frac{\partial \epsilon_{\nu}^{\mathrm{kin}}}{\partial k_{x}} \frac{\partial f_{\nu, p}}{\partial x}-\frac{1}{\hbar} \frac{\partial \epsilon_{\nu, p}}{\partial x} \frac{\partial f_{\nu, p}}{\partial k_{x}}=\mathcal{Q}_{\nu, p}[f] .
$$

Schrödinger-Poisson block

These equations cannot be decoupled because we need the eigenfunctions to compute the potential, and we need the potential to compute the eigenfunctions.

The model

BTE

The Boltzmann Transport Equation (one for each pair (ν, p)) reads

$$
\frac{\partial f_{\nu, p}}{\partial t}+\frac{1}{\hbar} \frac{\partial \epsilon_{\nu}^{\mathrm{kin}}}{\partial k_{x}} \frac{\partial f_{\nu, p}}{\partial x}-\frac{1}{\hbar} \frac{\partial \epsilon_{\nu, p}}{\partial x} \frac{\partial f_{\nu, p}}{\partial k_{x}}=\mathcal{Q}_{\nu, p}[f] .
$$

Schrödinger-Poisson block

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2} \frac{\mathrm{~d}}{\mathrm{~d} z}\left[\frac{1}{m_{z, \nu}} \frac{\mathrm{~d} \psi_{\nu, p}[V]}{\mathrm{d} z}\right]-q\left(V+V_{c}\right) \psi_{\nu, p}[V]=\epsilon_{\nu, p}[V] \psi_{\nu, p}[V] \\
& -\operatorname{div}_{x, z}\left[\varepsilon_{R} \nabla_{x, z} V\right]=-\frac{q}{\varepsilon_{0}}\left(N[V]-N_{D}\right), \quad N[V]=2 \sum_{\nu, p} \varrho_{\nu, p}\left|\psi_{\nu, p}[V]\right|^{2}
\end{aligned}
$$

These equations cannot be decoupled because we need the eigenfunctions to compute the potential, and we need the potential to compute the eigenfunctions.

The model

The electron-phonon interactions
The electron-phonon operator takes into account the phonon scattering mechanism. It reads

$$
\mathcal{Q}_{\nu, p}[f]=\sum_{s} \sum_{\nu^{\prime}, p^{\prime}} \int_{\mathbb{R}^{2}}\left[S_{\left(\nu^{\prime}, p^{\prime}, \boldsymbol{k}^{\prime}\right) \rightarrow(\nu, p, \boldsymbol{k})}^{s} f_{\nu^{\prime}, p^{\prime}}\left(\boldsymbol{k}^{\prime}\right)-S_{(\nu, p, \boldsymbol{k}) \rightarrow\left(\nu^{\prime}, p^{\prime}, \boldsymbol{k}^{\prime}\right)}^{s} f_{\nu, p}(\boldsymbol{k})\right] \mathrm{d} \boldsymbol{k}^{\prime}
$$

Structure of the S
The missing dimension of the wave-vector $k \in \mathbb{R}^{2}$, instead of $k \in \mathbb{R}^{3}$, is replaced by an overlap integral $W_{(\nu, p) \leftrightarrow\left(\nu^{\prime}, p^{\prime}\right)}$:

The model

The electron-phonon interactions
The electron-phonon operator takes into account the phonon scattering mechanism. It reads

$$
\mathcal{Q}_{\nu, p}[f]=\sum_{s} \sum_{\nu^{\prime}, p^{\prime}} \int_{\mathbb{R}^{2}}\left[S_{\left(\nu^{\prime}, p^{\prime}, \boldsymbol{k}^{\prime}\right) \rightarrow(\nu, p, \boldsymbol{k})}^{S} f_{\nu^{\prime}, p^{\prime}}\left(\boldsymbol{k}^{\prime}\right)-S_{(\nu, p, \boldsymbol{k}) \rightarrow\left(\nu^{\prime}, p^{\prime}, \boldsymbol{k}^{\prime}\right)}^{S} f_{\nu, p}(\boldsymbol{k})\right] \mathrm{d} \boldsymbol{k}^{\prime}
$$

Structure of the S^{S}

The missing dimension of the wave-vector $\boldsymbol{k} \in \mathbb{R}^{2}$, instead of $\boldsymbol{k} \in \mathbb{R}^{3}$, is replaced by an overlap integral $W_{(\nu, p) \leftrightarrow\left(\nu^{\prime}, p^{\prime}\right)}$:

$$
\begin{aligned}
& S_{(\nu, p, \boldsymbol{k}) \rightarrow\left(\nu^{\prime}, p^{\prime}, \boldsymbol{k}^{\prime}\right)}^{s}=C_{\nu \rightarrow \nu^{\prime}} \frac{1}{W_{(\nu, p) \leftrightarrow\left(\nu^{\prime}, p^{\prime}\right)}} \delta\left(\epsilon_{\nu^{\prime}, p^{\prime}}^{\mathrm{tot}}\left(\boldsymbol{k}^{\prime}\right)-\epsilon_{\nu, p}^{\text {tot }}(\boldsymbol{k}) \pm \text { some energy }\right) \\
& \frac{1}{W_{(\nu, p) \leftrightarrow\left(\nu^{\prime}, p^{\prime}\right)}}=\int_{0}^{L_{z}}\left|\psi_{\nu, p}\right|^{2}\left|\psi_{\nu^{\prime}, p^{\prime}}\right|^{2} \mathrm{~d} z, \quad[W]=m .
\end{aligned}
$$

Outline

(1) The model

- Introduction
- Modelling
(2) Numerical schemes
- Iterative schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Numerical methods for the BTE
- Hybrid parallelization on CPU/GPUExperiments
- Parallel
- Comparison to Monte-Carlo

The Newton scheme

The functional
Solving the Schrödinger-Poisson block

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2} \frac{\mathrm{~d}}{\mathrm{~d} z}\left[\frac{1}{m_{z, \nu}} \frac{\mathrm{~d} \psi_{\nu, p}[V]}{\mathrm{d} z}\right]-q\left(V+V_{c}\right) \psi_{\nu, p}[V]=\epsilon_{\nu, p}[V] \psi_{\nu, p}[V] \\
& -\operatorname{div}\left[\varepsilon_{R} \nabla V\right]=-\frac{q}{\varepsilon_{0}}\left(2 \sum_{\nu, p} \varrho_{\nu, p}\left|\psi_{\nu, p}[V]\right|^{2}-N_{D}\right)
\end{aligned}
$$

is equivalt to seeking for the zero, under the constraints of the Schrödinger equation, of the functional $P[V]$

$$
P[V]=-\operatorname{div}\left(\varepsilon_{R} \nabla V\right)+\frac{q}{\varepsilon_{0}}\left(2 \sum_{\nu, p} \varrho_{\nu, p}\left|\psi_{\nu, p}[V]\right|^{2}-N_{D}\right)
$$

The scheme

which is achieved by means of a Newton-Raphson iterative scheme

The Newton scheme

The functional
Solving the Schrödinger-Poisson block

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2} \frac{\mathrm{~d}}{\mathrm{~d} z}\left[\frac{1}{m_{z, \nu}} \frac{\mathrm{~d} \psi_{\nu, p}[V]}{\mathrm{d} z}\right]-q\left(V+V_{c}\right) \psi_{\nu, p}[V]=\epsilon_{\nu, p}[V] \psi_{\nu, p}[V] \\
& -\operatorname{div}\left[\varepsilon_{R} \nabla V\right]=-\frac{q}{\varepsilon_{0}}\left(2 \sum_{\nu, p} \varrho_{\nu, p}\left|\psi_{\nu, p}[V]\right|^{2}-N_{D}\right)
\end{aligned}
$$

is equivalt to seeking for the zero, under the constraints of the Schrödinger equation, of the functional $P[V]$

$$
P[V]=-\operatorname{div}\left(\varepsilon_{R} \nabla V\right)+\frac{q}{\varepsilon_{0}}\left(2 \sum_{\nu, p} \varrho_{\nu, p}\left|\psi_{\nu, p}[V]\right|^{2}-N_{D}\right)
$$

The scheme

which is achieved by means of a Newton-Raphson iterative scheme

$$
\mathrm{d} P\left(V^{(k)}, V^{(k+1)}-V^{(k)}\right)=-P\left[V^{(k)}\right], \quad \mathrm{d}=\text { directional derivative. }
$$

Newton-Raphson

Newton-Raphson

$$
\begin{aligned}
& -\operatorname{div}_{x, z}\left[\varepsilon_{\mathrm{R}}(x, z) \nabla V^{(k+1)}(x, z)\right]+\int \mathcal{A}^{(k)}(x, z, \zeta) V^{(k+1)}(x, \zeta) \mathrm{d} \zeta \\
& =-2 \sum_{\nu, p} \varrho_{\nu, p}\left|\psi_{\nu, p}^{(k)}[V]\right|^{2}+\int \mathcal{A}^{(k)}(x, z, \zeta) V^{(k)}(x, \zeta) \mathrm{d} \zeta
\end{aligned}
$$

with

$$
\begin{aligned}
\mathcal{A}^{(k)}(x, z, \zeta) & =2 \sum_{\nu, p} \sum_{p^{\prime} \neq p} \frac{\varrho_{\nu, p}(x)-\varrho_{\nu, p^{\prime}}(x)}{\epsilon_{\nu, p^{\prime}}^{(k)}(x)-\epsilon_{\nu, p}^{(k)}(x)} \\
& \times \psi_{\nu, p}^{(k)}(x, \zeta) \psi_{\nu, p^{\prime}}^{(k)}(x, \zeta) \psi_{\nu, p^{\prime}}^{(k)}(x, z) \psi_{\nu, p}^{(k)}(x, z)
\end{aligned}
$$

Framework

Outline

(1) The model

- Introduction
- Modelling
(2) Numerical schemes
- Iterative schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Numerical methods for the BTE
- Hybrid parallelization on CPU/GPU
(3) Experiments
- Parallel
- Comparison to Monte-Carlo

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.
The Schrödinger equation
Equation

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation
We need to solve equations like

$$
-\operatorname{div}\left[\varepsilon_{R} \nabla V\right]+\int_{0}^{L_{z}} \mathcal{A}(z, \zeta) V(\zeta) \mathrm{d} \zeta=\mathrm{rhs}
$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule. The system is preconditioned by the Crout version of
the Incomplete LU factorization. Then, the system is solved by the IDRs method.

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.
The Schrödinger equation
Equation

$$
-\frac{\hbar^{2}}{2} \frac{\mathrm{~d}}{\mathrm{~d} z}\left[\frac{1}{m_{z, \nu}} \frac{\mathrm{~d} \psi_{\nu, p}}{\mathrm{~d} z}\right]-q\left(V+V_{c}\right) \psi_{\nu, p}=\epsilon_{\nu, p} \psi_{\nu, p}
$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation
We need to solve equations like

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule. The system is preconditioned by the Crout version of the Incomplete LU factorization. Then, the system is solved by the IDRs method.

Numerical methods

We need to solve the Schrödinger eigenvalue problem and Poisson equations.
The Schrödinger equation
Equation

$$
-\frac{\hbar^{2}}{2} \frac{\mathrm{~d}}{\mathrm{~d} z}\left[\frac{1}{m_{z, \nu}} \frac{\mathrm{~d} \psi_{\nu, p}}{\mathrm{~d} z}\right]-q\left(V+V_{c}\right) \psi_{\nu, p}=\epsilon_{\nu, p} \psi_{\nu, p}
$$

is discretized by alternate finite differences for the derivatives then the symmetric matrix is diagonalized by a LAPACK routine called DSTEQR.

The Poisson equation
We need to solve equations like

$$
-\operatorname{div}\left[\varepsilon_{R} \nabla V\right]+\int_{0}^{L_{z}} \mathcal{A}(z, \zeta) V(\zeta) \mathrm{d} \zeta=\mathrm{rhs}
$$

The derivatives are discretized by finite differences in alternate directions, the integral is computed via trapezoid rule. The system is preconditioned by the Crout version of the Incomplete LU factorization. Then, the system is solved by the IDRs method.

Outline

(1) The model

- Introduction
- Modelling
(2) Numerical schemes
- Iterative schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Numerical methods for the BTE
- Hybrid parallelization on CPU/GPU
(3) Experiments
- Parallel
- Comparison to Monte-Carlo

Adimensionalization of the wave-vector space

The wave-vector space is adimensionalized by a change of variables into ellipsoidal variables, in order to better integrate the scattering operator and to have a simple expression for the kinetic energy and related magnitudes.

Ellipsoidal coordinated

The wave-vector for the $\nu^{\text {th }}$ valley reads:

The Jacobian
The magnitude $s_{\nu}(w)$ represents the dimensionless Jacobian of the change of variables in the wave-vector space:

Adimensionalization of the wave-vector space

The wave-vector space is adimensionalized by a change of variables into ellipsoidal variables, in order to better integrate the scattering operator and to have a simple expression for the kinetic energy and related magnitudes.

Ellipsoidal coordinated

The wave-vector for the $\nu^{\text {th }}$ valley reads:

$$
\left(\tilde{k}_{x}, \tilde{k}_{y}\right)=\frac{\sqrt{m_{\mathrm{e}} \kappa_{\mathrm{B}} T_{\mathrm{L}}}}{\hbar} \sqrt{2 w\left(1+\alpha_{\nu} w\right)}\left(\sqrt{m_{x, \nu}} \cos (\phi), \sqrt{m_{y, \nu}} \sin (\phi)\right) .
$$

The Jacobian
The magnitude $s_{\nu}(w)$ represents the dimensionless Jacobian of the change of variables in the wave-vector space:

$$
s_{\nu}(w)=\left|\operatorname{det} \frac{\partial\left(k_{x}, k_{y}\right)}{\partial(w, \phi)}\right|=\sqrt{m_{x, \nu} m_{y, \nu}}\left(1+2 \alpha_{\nu} w\right)
$$

BTE in ellipsoidal coordinates

Let the flux coefficients

$$
\begin{aligned}
a_{\nu}^{1}(w, \phi) & =\frac{\sqrt{2 w\left(1+\alpha_{\nu} w\right)} \cos (\phi)}{\sqrt{m_{x, \nu}}} \frac{1}{1+2 \alpha_{\nu} w} \\
a_{\nu, p}^{2}(x, w, \phi) & =-\frac{\partial \epsilon_{\nu, p}}{\partial x} \frac{1}{1+2 \alpha_{\nu} w} \frac{\sqrt{2 w\left(1+\alpha_{\nu} w\right)} \cos (\phi)}{\sqrt{m_{x, \nu}}} \\
a_{\nu, p}^{3}(x, w, \phi) & =\frac{\partial \epsilon_{\nu, p}}{\partial x} \frac{\sin (\phi)}{\sqrt{m_{x, \nu}} \sqrt{2 w\left(1+\alpha_{\nu} w\right)}}
\end{aligned}
$$

BTE in ellipsoidal coordinates

Let the flux coefficients

$$
\begin{aligned}
a_{\nu}^{1}(w, \phi) & =\frac{\sqrt{2 w\left(1+\alpha_{\nu} w\right)} \cos (\phi)}{\sqrt{m_{x, \nu}}} \frac{1}{1+2 \alpha_{\nu} w} \\
a_{\nu, p}^{2}(x, w, \phi) & =-\frac{\partial \epsilon_{\nu, p}}{\partial x} \frac{1}{1+2 \alpha_{\nu} w} \frac{\sqrt{2 w\left(1+\alpha_{\nu} w\right)} \cos (\phi)}{\sqrt{m_{x, \nu}}} \\
a_{\nu, p}^{3}(x, w, \phi) & =\frac{\partial \epsilon_{\nu, p}}{\partial x} \frac{\sin (\phi)}{\sqrt{m_{x, \nu}} \sqrt{2 w\left(1+\alpha_{\nu} w\right)}}
\end{aligned}
$$

Conservation-law form

$$
\frac{\partial \Phi_{\nu, p}}{\partial t}+\frac{\partial}{\partial x}\left[a_{\nu}^{1} \Phi_{\nu, p}\right]+\frac{\partial}{\partial w}\left[a_{\nu, p}^{2} \Phi_{\nu, p}\right]+\frac{\partial}{\partial \phi}\left[a_{\nu, p}^{3} \Phi_{\nu, p}\right]=\mathcal{Q}_{\nu, p}[\Phi] s(w)
$$

Runge-Kutta time integration

We use a Runge-Kutta time discretization.

Runge-Kutta

We advance in time by the third order Total Variation Diminishing Runge-Kutta scheme: if the evolution equation reads

$$
H_{\nu, p}(\Phi):=-\frac{\partial}{\partial x}\left[a_{\nu}^{1} \Phi_{\nu, p}\right]-\frac{\partial}{\partial w}\left[a_{\nu, p}^{2} \Phi_{\nu, p}\right]-\frac{\partial}{\partial \phi}\left[a_{\nu, p}^{3} \Phi_{\nu, p}\right]+\mathcal{Q}_{\nu, p}[\Phi] s(w)
$$

(no explicit time-dependency), then
(1) $\Phi_{\nu, p}^{(1)}=\Delta t H_{\nu, p}\left(\Phi^{n}\right)$
(2) $\Phi_{\nu, p}^{(2)}=\frac{3}{4} \Phi_{\nu, p}^{n}+\frac{1}{4} \Phi_{\nu, p}^{(1)}+\frac{1}{4} \Delta t H_{\nu, p}\left(\Phi^{(1)}\right)$
(3) $\Phi^{n+1}=\frac{1}{3} \Phi_{\nu, p}^{n}+\frac{2}{3} \Phi_{\nu, p}^{(2)}+\frac{2}{3} H_{\nu, p}\left(\Phi^{(2)}\right)$

Numerical methods for the BTE

Integrating the scattering operator

Here go the formulae for the integration of the collisional operator in the ellipsoidal dimensionless variables.

Inelastic phenomena

$$
\begin{aligned}
& \mathcal{Q}_{\nu, p}[\Phi] s_{\nu}(w) \\
= & C^{\mathcal{Q}} s_{\nu}(w) \sum_{\nu^{\prime}, p^{\prime}} \frac{\gamma_{\nu^{\prime} \rightarrow \nu} N_{\nu^{\prime} \rightarrow \nu}}{W_{\left(\nu^{\prime}, p^{\prime}\right) \leftrightarrow(\nu, p)}} \mathbb{I}_{\left\{\Gamma_{-} \geq 0\right\}} \int_{\phi^{\prime}=0}^{2 \pi} \Phi_{\nu^{\prime}, p^{\prime}}\left(\Gamma_{-}^{\prime}, \phi^{\prime}\right) \mathrm{d} \phi^{\prime} \\
+ & C^{\mathcal{Q}} s_{\nu}(w) \sum_{\nu^{\prime}, p^{\prime}} \frac{\gamma_{\nu^{\prime} \rightarrow \nu}\left(N_{\nu^{\prime} \rightarrow \nu}+1\right)}{W_{\left(\nu^{\prime}, p^{\prime}\right) \leftrightarrow(\nu, p)}} \mathbb{I}_{\left\{\Gamma_{+} \geq 0\right\}} \int_{\phi^{\prime}=0}^{2 \pi} \Phi_{\nu^{\prime}, p^{\prime}}\left(\Gamma_{+}, \phi^{\prime}\right) \mathrm{d} \phi^{\prime} \\
- & C^{\mathcal{Q}} 2 \pi \Phi_{\nu, p}(w, \phi) \sum_{\nu^{\prime}, p^{\prime}} \frac{\gamma_{\nu \rightarrow \nu^{\prime}} N_{\nu \rightarrow \nu^{\prime}}}{W_{(\nu, p) \leftrightarrow\left(\nu^{\prime}, p^{\prime}\right)}} \mathbb{I}_{\left\{\Gamma_{+} \geq 0\right\}} s_{\nu^{\prime}}\left(\Gamma_{+}\right) \\
- & C^{\mathcal{Q}} 2 \pi \Phi_{\nu, p}(w, \phi) \sum_{\nu^{\prime}, p^{\prime}} \frac{\gamma_{\nu \rightarrow \nu^{\prime}}\left(N_{\nu \rightarrow \nu^{\prime}}+1\right)}{W_{(\nu, p) \leftrightarrow\left(\nu^{\prime}, p^{\prime}\right)}} \mathbb{I}_{\left\{\Gamma_{-} \geq 0\right\}} s_{\nu^{\prime}}\left(\Gamma_{-}\right)
\end{aligned}
$$

Summary

Up to some constants here omitted, the system rewrites in dimensionless form:
(Boltzmann) $\frac{\partial \Phi_{\nu, p}}{\partial t}+\frac{\partial}{\partial x}\left[a_{\nu}^{1} \Phi_{\nu, p}\right]+\frac{\partial}{\partial w}\left[a_{\nu, p}^{2} \Phi_{\nu, p}\right]+\frac{\partial}{\partial \phi}\left[a_{\nu, p}^{3} \Phi_{\nu, p}\right]=\mathcal{Q}_{\nu, p}[\Phi] s(w)$

$$
\begin{cases}\text { (Schrödinger) } & -\frac{\mathrm{d}}{\mathrm{~d} z}\left[\frac{1}{m_{z, \nu}} \frac{\mathrm{~d} \psi_{\nu, p}[V]}{\mathrm{d} z}\right]-\left(V+V_{c}\right) \psi_{\nu, p}[V]=\epsilon_{\nu, p}[V] \psi_{\nu, p}[V] \\ \text { (Poisson) } & -\operatorname{div}\left[\varepsilon_{R} \nabla V\right]=-\left(N[V]-N_{D}\right)\end{cases}
$$

Outline

(1) The model

- Introduction
- Modelling
(2) Numerical schemes
- Iterative schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Numerical methods for the BTE
- Hybrid parallelization on CPU/GPU
(3) Experiments
- Parallel
- Comparison to Monte-Carlo

Hybrid parallelization on CPU/GPU

Overall design of the solver

Parallel

Outline

(1) The model

- Introduction
- Modelling
(2) Numerical schemes
- Iterative schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Numerical methods for the BTE
- Hybrid parallelization on CPU/GPU
(3) Experiments
- Parallel
- Comparison to Monte-Carlo

Parallel

Parallel performances on GPU

Parallel

Parallel performances on GPU

The bottleneck is, at the state of the art, the integration of the scattering operator.

Outline

The model- Introduction
- Modelling
(2) Numerical schemes
- Iterative schemes for the Schrödinger-Poisson block
- Solvers for Schrödinger and Poisson
- Numerical methods for the BTE
- Hybrid parallelization on CPU/GPU
(3) Experiments
- Parallel
- Comparison to Monte-Carlo

Comparison to Monte-Carlo

(a) For a $V_{\mathrm{D}}=0.1 \mathrm{~V}$ bias

(c) For a $V_{\mathrm{D}}=0.1 \mathrm{~V}$ bias

(b) For a $V_{\mathrm{D}}=0.5 \mathrm{~V}$ bias

(d) For a $V_{D}=0.5$ Vias

Comparison to Monte-Carlo

Comparison to Monte-Carlo

- N. Ben Abdallah, M.J. Cáceres, J.A. Carrillo, F. Vecil (2009) A deterministic solver for a hybrid quantum-classical transport model in nanoMOSFETs, Journal of Computational Physics 228 (17) 6553-6571.
- F. Vecil, and J.M. Mantas, M.J. Cáceres, C. Sampedro, A. Godoy, F. Gámiz (2014) A parallel deterministic solver for the Schrödinger-Poisson-Boltzmann system in ultra-short DG-MOSFETs: Comparison with Monte-Carlo, Computers and Mathematics with Applications 67 (9) 1703-1721.

Los autores agradecen los proyectos MTM2011-27739-C04-02 y MTM2014-52056-P financiados por el Ministerio de Economía y competitividad, y el Fondo Europeo de Desarrollo Regional.

