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Introduction
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About the scaling
In 1971, the Intel 4004 processor had 1000 transistors, whose channel length was
10000 nm. In 2003 the Intel Pentium IV had 50 million. Nowadays, for instance,
Intel’s i7-4650U has 1.3 billion transistors, whose channel is 22 nm long. The
shortest transistor in the market is 14 nm long.

Why is it important?
Smaller MOSFETs allow for the construction of smaller devices with better
performances; moreover, they allow silicon and energy saving, due to the lower
voltages needed to switch on or off the transistor.
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Modelling

The modeling

2D model
We assume invariance of the distrubition function along the perpendicular unconfined
dimension.

Dimensional coupling
Electrons are considered as particles along the unconfined dimension, as waves
along the confined dimension.

Deterministic model
We use Boltzmann Transport Equations (BTEs) for the unconfined dimension and
steady-state Schrödinger equations for the confined dimension. Hence, we provide a
high-dimensional, fully-deterministic solver, whose goal is to provide reference
results for Monte-Carlo or macroscopic solvers, which are faster but coarser.

Electron populations
Due to silicon’s physical properties, the electron populations is split into three
independent valleys, indexed on ν. Moreover, the confinement decomposes ν th

valley’s electron population into independent energy levels indexed on p.
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Modelling

The modeling

Description of the confinement
A set of 1D Schrödinger eigenvalue problems describe the electrons along z.

−~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

Description of the unconfined dimension

The BTEs, one for each pair (ν, p), along x reads

∂fν,p
∂t

+

free motion︷ ︸︸ ︷
1
~
∂εkin
ν

∂kx

∂fν,p
∂x
−

force field︷ ︸︸ ︷
1
~
∂εν,p
∂x

∂fν,p
∂kx

=

scatterings︷ ︸︸ ︷
Qν,p[f ] .

Electrostatic field

Poisson’s equation couples x and z: −divx,z [εR∇x,zV] = − q
ε0

(N[V]− ND).

Here appears the volume density N[V] = 2
∑
ν,p

∫
R2

fν,p dk |ψν,p[V]|2.
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The modeling

The scattering operator
The scattering operator reads,

Qν,p[f ] =
∑

s

∑
ν′,p′

∫
R2

[
Ss

(ν′,p′,k′)→(ν,p,k)fν′,p′(k′)− Ss
(ν,p,k)→(ν′,p′,k′)fν,p(k)

]
dk′.

Electron-phonon interactions
For the seven electron-phonon interactions, scattering rates read (up to constants)

Ss,ph =

∫ Lz

0
|ψν,p|2|ψν′,p′ |2 dz · δ

(
εtot
ν′,p′(k

′)− εtot
ν,p(k)± some energy

)
.

Surface roughness
For the SR phenomenon, scattering rates have form (up to constants)

Ss,SR
=

∣∣∣∣∫ Lz

0
|ψν,p(x, z)|2 ∆V(x, z) dz

∣∣∣∣2 · 1(
1 +
|k− k′|2

2

)3/2
· δ
(
ε

tot
ν,p(k)− εtot

ν,p(k′)
)
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Dimensions

Meshes
Magnitudes are adimensionalized. Wave-vector space uses ellipsoidal variables
(k̃x, k̃y) =

√
meκBTL

~

√
2w(1 + ανw)

(√
mx,ν cos(φ),√my,ν sin(φ)

)
. Globally, the

problem spans on a 7-dimensional space:
(i). The valley ν ∈ {0, 1, 2}.

(ii). The energy level p ∈ {0, . . . ,Nsbn − 1}.

(iii). The longitudinal dimension (unconfined) xi = i× 1
Nx − 1︸ ︷︷ ︸

∆x

.

(iv). The transversal dimension (confined) zj = j× 1
Nz − 1︸ ︷︷ ︸

∆z

.

(v). The energy w` = (`+ 0.5)× wmax

Nw − 1︸ ︷︷ ︸
∆w

(vi). The angle φm = m× 2π
Nφ︸︷︷︸
∆φ

.

(vii). The time step, adapted following a Courant-Friedrichs-Lewy condition.
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Iterative schemes for the Schrödinger-Poisson block

The Newton scheme

Applying a Newton-Raphson scheme to the adimensionalized, discretized
Schrödinger-Poisson block leads to iteratively solving a linear system followed by an
eigenvalue/eigenvector problem.

The linear system

At iteration k, we refine the potential V by L(k) V(k+1) = R(k), where

L(k) V(k+1) =− div
[
εR∇V(k+1)

]
+

∫
A(k)(x, z, ζ)V(k+1)(x, ζ) dζ

R(k) =− N(k)(x, z) +
∫
A(k)(x, z, ζ)V(k)(x, ζ) dζ.

The Schrödinger equation
We compute eigenvalues and eigenvectors of a tridiagonal symmetric matrix:

dj =

 1/4
mz,ν,i,j−1

+
1/2

mz,ν,i,j
+

1/4
mz,ν,i,j+1

∆z2
− Vi,j

 , ej =

− 1/4
mz,ν,i,j

+
1/4

mz,ν,i,j+1

∆z2

 .
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Numerical methods for the BTE
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Numerical methods for the BTE

Schemes

Time discretization
We use the Total-Variation-Diminishing Runge-Kutta scheme of order 3. It is robust,
but its explicitness constraints the time stepping.

Partial derivatives
We use fifth-order WENO (non-oscillatory) schemes to approximate them.

Scattering operator
Explicit, but numerically costly, formulae are obtained.
For example, for the electron-phonon elastic phenomena, we have

Qµ,gain
ν,p,i,` = Cµ

Nsbn−1∑
p′=0

Wν,p,ν,p′,i · 1I
(

Γ
0
ν,p,ν,p′,i,` ≥ 0

)
× sν(w`) · LI

[
Φ̃

s
ν,p′,i,·

] (
Γ

0
ν,p,ν,p′,i,`

)

and

Qµ,loss
ν,p,i,`,m = −Cµ 2π · Φs

ν,p,i,`,m

Nsbn−1∑
p′=0

Wν,p,ν,p′,i × 1I
(

Γ
0
ν,p,ν,p′,i,` ≥ 0

)
· sν
(

Γ
0
ν,p,ν,p′,i,`

)
.
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Hybrid parallelization on CPU/GPU

Overall design of the solver

go to the next time step

initializationCPU GPU

BTE Φ
n

Φ
n,1

(ITER)

BTE
n,1

Φ Φ
n,2

compute eigenstates
(ITER)

BTE Φ
n,2

Φ
n+1

(ITER)
compute eigenstates

compute
macrosc. magnitudes

compute eigenstates
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Hybrid parallelization on CPU/GPU

Cuda programming model on GPU
Programming Model

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v9.0 | 10

Grid

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Figure 6 Grid of Thread Blocks

The number of threads per block and the number of blocks per grid specified in the
<<<...>>> syntax can be of type int or dim3. Two-dimensional blocks or grids can be
specified as in the example above.

Each block within the grid can be identified by a one-dimensional, two-dimensional,
or three-dimensional index accessible within the kernel through the built-in blockIdx
variable. The dimension of the thread block is accessible within the kernel through the
built-in blockDim variable.

(from book CUDA C Programming Guide)
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Hybrid parallelization on CPU/GPU

Some remarks on the Cuda implementation

Fine grain
Fine-grain paradigm exploited as much as possible: many threads, each of them with
a light weight.

Shared memory
Use of block’s shared memory to minimize reads from DRAM or to load data from
DRAM in a coalescent manner.

Bank conflicts
Attention on avoiding bank conflicts when accessing shared memory.

Overlap
Overlapping computations between GPU and CPU whenever data are independent.
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Speedups

Performances of the hybrid code
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Speedups

Relative weights
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Speedups

Cuda kernels

rank kernel/function name phase avg exec time Gflops/s
1 GPU_integrate_PHONONS_loss BTE 32.8 ms 539
2 GPU_approx_partf_PHI BTE 10.7 ms 598
3 GPU_approx_partf_W BTE 10.6 ms 284
4 GPU_approx_partf_X BTE 6.66 ms 389
5 GPU_set_fluxes_a3 BTE 2.92 ms 226
6 GPU_compute_integrated_pdf_energy DENS 1.81 ms 9
7 GPU_integrate_PHONONS_gain BTE 2.47 ms 275
8 GPU_perform_RK_2_3 BTE 3.59 ms 28
9 GPU_perform_RK_3_3 BTE 3.59 ms 28

10 GPU_perform_RK_1_3 BTE 2.90 ms 11
11 GPU_compute_Wm1 BTE .297 ms 16
12 GPU_integrated_phitilde DENS .160 ms 2

Top performance on Tesla 40(c) GPU is 1430 Gflops/s.
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Speedups

Middle-term to-do list for the code

Surface roughness
Complete the analysis of the results with the surface roughness. (In progress, in
collaboration with José Miguel Mantas and María José Cáceres.)

GPU implementation
Fully implement the solvers on the GPU to avoid memory transfer between host and
graphic card. (In progress, in collaboration with José Miguel Mantas, Pedro Alonso
and Antonio Vidal.)
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