▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Hybrid parallel deterministic solver for DG-MOSFETs

Francesco Vecil, José Miguel Mantas

ECMI 2018, Budapest, 2018/06/19

		Experiments	Acknowledgements
000000	000000000	00000	

Outline

- Introduction
- Modelling

- Dimensions
- Iterative schemes for the Schrödinger-Poisson block
- Numerical methods for the BTE
- Hybrid parallelization on CPU/GPU

3 Experiments

Speedups

The model	Experiments	Acknowledgements
• 0 0000		
Introduction		
Outline		

Modelling

Numerical schemes

- Dimensions
- Iterative schemes for the Schrödinger-Poisson block
- Numerical methods for the BTE
- Hybrid parallelization on CPU/GPU

3 Experiments

• Speedups

About the scaling

In 1971, the Intel 4004 processor had 1000 transistors, whose channel length was 10000 nm. In 2003 the Intel Pentium IV had 50 million. Nowadays, for instance, Intel's i7-4650U has 1.3 billion transistors, whose channel is 22 nm long. The shortest transistor in the market is 14 nm long.

Why is it important?

Smaller MOSFETs allow for the construction of smaller devices with better performances; moreover, they allow silicon and energy saving, due to the lower voltages needed to switch on or off the transistor.

The model	Experiments	Acknowledgements
00000		
Modelling		
Outline		

The model

- Introduction
- Modelling

Numerical schemes

- Dimensions
- Iterative schemes for the Schrödinger-Poisson block
- Numerical methods for the BTE
- Hybrid parallelization on CPU/GPU

3 Experiments

• Speedups

The model	Experiments	Acknowledgements
000000		
Modelling		
The modeling		

We assume invariance of the distrubition function along the perpendicular unconfined dimension.

Dimensional coupling

Electrons are considered as **particles** along the unconfined dimension, as **waves** along the confined dimension.

Deterministic model

We use Boltzmann Transport Equations (BTEs) for the unconfined dimension and steady-state Schrödinger equations for the confined dimension. Hence, we provide a **high-dimensional**, **fully-deterministic** solver, whose goal is to provide reference results for Monte-Carlo or macroscopic solvers, which are faster but coarser.

Electron populations

The model	Numerical schemes	Experiments	Acknowledgements
000000	000000000	00000	
Modelling			
The modeling			

We assume invariance of the distrubition function along the perpendicular unconfined dimension.

Dimensional coupling

Electrons are considered as **particles** along the unconfined dimension, as **waves** along the confined dimension.

Deterministic model

We use Boltzmann Transport Equations (BTEs) for the unconfined dimension and steady-state Schrödinger equations for the confined dimension. Hence, we provide a **high-dimensional**, **fully-deterministic** solver, whose goal is to provide reference results for Monte-Carlo or macroscopic solvers, which are faster but coarser.

Electron populations

The model	Numerical schemes	Experiments	Acknowledgements
000000	000000000	00000	
Modelling			
The modeling			

We assume invariance of the distrubition function along the perpendicular unconfined dimension.

Dimensional coupling

Electrons are considered as **particles** along the unconfined dimension, as **waves** along the confined dimension.

Deterministic model

We use Boltzmann Transport Equations (BTEs) for the unconfined dimension and steady-state Schrödinger equations for the confined dimension. Hence, we provide a **high-dimensional**, **fully-deterministic** solver, whose goal is to provide reference results for Monte-Carlo or macroscopic solvers, which are faster but coarser.

Electron populations

The model	Numerical schemes	Experiments	Acknowledgements
000000	000000000	00000	
Modelling			
The modeling			

We assume invariance of the distrubition function along the perpendicular unconfined dimension.

Dimensional coupling

Electrons are considered as **particles** along the unconfined dimension, as **waves** along the confined dimension.

Deterministic model

We use Boltzmann Transport Equations (BTEs) for the unconfined dimension and steady-state Schrödinger equations for the confined dimension. Hence, we provide a **high-dimensional**, **fully-deterministic** solver, whose goal is to provide reference results for Monte-Carlo or macroscopic solvers, which are faster but coarser.

Electron populations

The model	Experiments	Acknowledgements
000000		
Modelling		
The modeling		

Description of the confinement

A set of 1D Schrödinger eigenvalue problems describe the electrons along z.

$$-\frac{\hbar^2}{2}\frac{\mathrm{d}}{\mathrm{d}z}\left[\frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}[V]}{\mathrm{d}z}\right] - q\left(V+V_c\right)\psi_{\nu,p}[V] = \epsilon_{\nu,p}[V]\psi_{\nu,p}[V]$$

Description of the unconfined dimension

The BTEs, one for each pair (ν, p) , along x reads

Electrostatic field

Poisson's equation couples x and z: $-\operatorname{div}_{x,z} [\varepsilon_R \nabla_{x,z} V] = -\frac{q}{\varepsilon_0} (N[V] - N_D).$ Here appears the volume density $N[V] = 2 \sum_{\nu,p} \int_{\mathbb{R}^2} f_{\nu,p} \, \mathrm{d}\mathbf{k} \, |\psi_{\nu,p}[V]|^2.$

The model	Experiments	Acknowledgements
000000		
Modelling		
The modeling		

Description of the confinement

A set of 1D Schrödinger eigenvalue problems describe the electrons along z.

$$-\frac{\hbar^2}{2}\frac{\mathrm{d}}{\mathrm{d}z}\left[\frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}[V]}{\mathrm{d}z}\right] - q\left(V+V_c\right)\psi_{\nu,p}[V] = \epsilon_{\nu,p}[V]\psi_{\nu,p}[V]$$

Description of the unconfined dimension

The BTEs, one for each pair (ν, p) , along x reads

Electrostatic field

Poisson's equation couples x and z: $-\operatorname{div}_{x,z} [\varepsilon_R \nabla_{x,z} V] = -\frac{q}{\varepsilon_0} (N[V] - N_D).$ Here appears the volume density $N[V] = 2 \sum_{\nu, p} \int_{\mathbb{R}^2} f_{\nu, p} \, \mathrm{d}k \, |\psi_{\nu, p}[V]|^2.$

The model	Experiments	Acknowledgements
000000		
Modelling		
The modeling		

Description of the confinement

A set of 1D Schrödinger eigenvalue problems describe the electrons along z.

$$-\frac{\hbar^2}{2}\frac{\mathrm{d}}{\mathrm{d}z}\left[\frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}[V]}{\mathrm{d}z}\right] - q\left(V+V_c\right)\psi_{\nu,p}[V] = \epsilon_{\nu,p}[V]\psi_{\nu,p}[V]$$

Description of the unconfined dimension

The BTEs, one for each pair (ν, p) , along x reads

Electrostatic field

Poisson's equation couples x and z: $-\operatorname{div}_{x,z} [\varepsilon_R \nabla_{x,z} V] = -\frac{q}{\varepsilon_0} (N[V] - N_D).$ Here appears the volume density $N[V] = 2 \sum_{\nu,p} \int_{\mathbb{R}^2} f_{\nu,p} \, \mathrm{d} \boldsymbol{k} \, |\psi_{\nu,p}[V]|^2.$

The model	Experiments	Acknowledgements
00000		
Modelling		
The modeling		

The scattering operator

The scattering operator reads,

$$\mathcal{Q}_{\nu,p}[f] = \sum_{s} \sum_{\nu',p'} \int_{\mathbb{R}^2} \left[S^s_{(\nu',p',k')\to(\nu,p,k)} f_{\nu',p'}(k') - S^s_{(\nu,p,k)\to(\nu',p',k')} f_{\nu,p}(k) \right] \, \mathrm{d}k'.$$

Electron-phonon interactions

For the seven electron-phonon interactions, scattering rates read (up to constants)

$$S^{s,\text{ph}} = \int_0^{L_z} |\psi_{\nu,p}|^2 |\psi_{\nu',p'}|^2 \,\mathrm{d}z \cdot \delta\left(\epsilon_{\nu',p'}^{\text{tot}}(k') - \epsilon_{\nu,p}^{\text{tot}}(k) \pm \text{some energy}\right).$$

Surface roughness

For the SR phenomenon, scattering rates have form (up to constants)

$$S^{s,\text{SR}} = \left| \int_0^{L_z} |\psi_{\nu,p}(x,z)|^2 \, \Delta V(x,z) \, \mathrm{d}z \right|^2 \cdot \frac{1}{\left(1 + \frac{|k-k'|^2}{2}\right)^{3/2}} \cdot \delta\left(\epsilon_{\nu,p}^{\text{tot}}(k) - \epsilon_{\nu,p}^{\text{tot}}(k')\right)$$

The model	Numerical schemes	Experiments	Acknowledgements
00000	000000000	00000	
Modelling			
The modeling			

The scattering operator

The scattering operator reads,

$$\mathcal{Q}_{\nu,p}[f] = \sum_{s} \sum_{\nu',p'} \int_{\mathbb{R}^2} \left[S^s_{(\nu',p',k')\to(\nu,p,k)} f_{\nu',p'}(k') - S^s_{(\nu,p,k)\to(\nu',p',k')} f_{\nu,p}(k) \right] \, \mathrm{d}k'.$$

Electron-phonon interactions

For the seven electron-phonon interactions, scattering rates read (up to constants)

$$S^{s,\text{ph}} = \int_0^{L_z} |\psi_{\nu,p}|^2 |\psi_{\nu',p'}|^2 \, \mathrm{d}z \cdot \delta\left(\epsilon_{\nu',p'}^{\text{tot}}(\boldsymbol{k}') - \epsilon_{\nu,p}^{\text{tot}}(\boldsymbol{k}) \pm \text{some energy}\right).$$

Surface roughness

For the SR phenomenon, scattering rates have form (up to constants)

$$S^{s,SR} = \left| \int_0^{L_z} |\psi_{\nu,p}(x,z)|^2 \, \Delta V(x,z) \, \mathrm{d}z \right|^2 \cdot \frac{1}{\left(1 + \frac{|k-k'|^2}{2}\right)^{3/2}} \cdot \delta\left(\epsilon_{\nu,p}^{\mathrm{tot}}(k) - \epsilon_{\nu,p}^{\mathrm{tot}}(k')\right)$$

The model	Numerical schemes	Experiments	Acknowledgements
00000	000000000	00000	
Modelling			
The modeling			

The scattering operator

The scattering operator reads,

$$\mathcal{Q}_{\nu,p}[f] = \sum_{s} \sum_{\nu',p'} \int_{\mathbb{R}^2} \left[S^s_{(\nu',p',k')\to(\nu,p,k)} f_{\nu',p'}(k') - S^s_{(\nu,p,k)\to(\nu',p',k')} f_{\nu,p}(k) \right] \, \mathrm{d}k'.$$

Electron-phonon interactions

For the seven electron-phonon interactions, scattering rates read (up to constants)

$$S^{s,\text{ph}} = \int_0^{L_z} |\psi_{\nu,p}|^2 |\psi_{\nu',p'}|^2 \,\mathrm{d} z \cdot \delta\left(\epsilon_{\nu',p'}^{\text{tot}}(\boldsymbol{k}') - \epsilon_{\nu,p}^{\text{tot}}(\boldsymbol{k}) \pm \text{some energy}\right).$$

Surface roughness

For the SR phenomenon, scattering rates have form (up to constants)

$$S^{s,SR} = \left| \int_0^{L_z} |\psi_{\nu,p}(x,z)|^2 \, \Delta V(x,z) \, \mathrm{d}z \right|^2 \cdot \frac{1}{\left(1 + \frac{|\boldsymbol{k} - \boldsymbol{k'}|^2}{2} \right)^{3/2}} \cdot \delta\left(\epsilon_{\nu,p}^{\mathrm{tot}}(\boldsymbol{k}) - \epsilon_{\nu,p}^{\mathrm{tot}}(\boldsymbol{k'}) \right)$$

	Numerical schemes	Experiments	Acknowledgements
	••••••		
Dimensions			
Outline			

- Introduction
- Modelling

2 Numerical schemes

Dimensions

- Iterative schemes for the Schrödinger-Poisson block
- Numerical methods for the BTE
- Hybrid parallelization on CPU/GPU

• Speedups

Meshes			
Dimensions			
000000	000000000	00000	
The model	Numerical schemes	Experiments	Acknowledgements

Magnitudes are adimensionalized. Wave-vector space uses ellipsoidal variables $(\tilde{k}_x, \tilde{k}_y) = \frac{\sqrt{m_c \kappa_B T_L}}{\hbar} \sqrt{2w(1 + \alpha_\nu w)} \left(\sqrt{m_{x,\nu}} \cos(\phi), \sqrt{m_{y,\nu}} \sin(\phi)\right)$. Globally, the problem spans on a 7-dimensional space:

- (i). The valley $\nu \in \{0, 1, 2\}$.
- (ii). The energy level $p \in \{0, ..., N_{sbn} 1\}$.

(iii). The longitudinal dimension (unconfined) $x_i = i \times \frac{1}{N_x - 1}$.

(iv). The transversal dimension (confined) $z_j = j \times \frac{1}{N_z - 1}$.

(v). The energy
$$w_{\ell} = (\ell + 0.5) \times \underbrace{\frac{w_{\text{max}}}{N_w - 1}}_{\Delta w}$$

(vi). The angle $\phi_m = m \times \underbrace{\frac{2\pi}{N_{\phi}}}_{\Delta \phi}$.

(vii). The time step, adapted following a Courant-Friedrichs-Lewy condition.

	Numerical schemes	Experiments	Acknowledgements
	00000000		
Iterative schemes for the Sch	rödinger-Poisson block		
Outline			

The model

- Introduction
- Modelling

Numerical schemes

Dimensions

• Iterative schemes for the Schrödinger-Poisson block

- Numerical methods for the BTE
- Hybrid parallelization on CPU/GPU

3 Experiments

• Speedups

The model	Numerical schemes	Experiments	Acknowledgements
	00000000		
Iterative schemes for the Sch	rödinger-Poisson block		
The Newt	on scheme		

Applying a Newton-Raphson scheme to the adimensionalized, discretized Schrödinger-Poisson block leads to iteratively solving a linear system followed by an eigenvalue/eigenvector problem.

The linear system

At iteration k, we refine the potential V by $L^{(k)} V^{(k+1)} = R^{(k)}$, where

$$L^{(k)} V^{(k+1)} = -\operatorname{div} \left[\varepsilon_{\mathsf{R}} \nabla V^{(k+1)} \right] + \int \mathcal{A}^{(k)}(x, z, \zeta) V^{(k+1)}(x, \zeta) \, \mathrm{d}\zeta$$
$$R^{(k)} = -N^{(k)}(x, z) + \int \mathcal{A}^{(k)}(x, z, \zeta) V^{(k)}(x, \zeta) \, \mathrm{d}\zeta.$$

The Schrödinger equation

We compute eigenvalues and eigenvectors of a tridiagonal symmetric matrix:

$$d_j = \left(\frac{\frac{1/4}{m_{z,\nu,i,j-1}} + \frac{1/2}{m_{z,\nu,i,j}} + \frac{1/4}{m_{z,\nu,i,j+1}}}{\Delta z^2} - V_{i,j}\right), \qquad e_j = \left(-\frac{\frac{1/4}{m_{z,\nu,i,j}} + \frac{1/4}{m_{z,\nu,i,j+1}}}{\Delta z^2}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

The model	Numerical schemes	Experiments	Acknowledgements
	00000000		
Iterative schemes for the Sch	rödinger-Poisson block		
The Newt	on scheme		

Applying a Newton-Raphson scheme to the adimensionalized, discretized Schrödinger-Poisson block leads to iteratively solving a linear system followed by an eigenvalue/eigenvector problem.

The linear system

At iteration k, we refine the potential V by $L^{(k)} V^{(k+1)} = R^{(k)}$, where

$$L^{(k)} V^{(k+1)} = -\operatorname{div} \left[\varepsilon_{\mathsf{R}} \nabla V^{(k+1)} \right] + \int \mathcal{A}^{(k)}(x, z, \zeta) V^{(k+1)}(x, \zeta) \, \mathrm{d}\zeta$$
$$R^{(k)} = -N^{(k)}(x, z) + \int \mathcal{A}^{(k)}(x, z, \zeta) V^{(k)}(x, \zeta) \, \mathrm{d}\zeta.$$

The Schrödinger equation

We compute eigenvalues and eigenvectors of a tridiagonal symmetric matrix:

$$d_j = \left(\frac{\frac{1/4}{m_{z,\nu,i,j-1}} + \frac{1/2}{m_{z,\nu,i,j}} + \frac{1/4}{m_{z,\nu,i,j+1}}}{\Delta z^2} - V_{i,j}\right), \qquad e_j = \left(-\frac{\frac{1/4}{m_{z,\nu,i,j}} + \frac{1/4}{m_{z,\nu,i,j+1}}}{\Delta z^2}\right)$$

	Numerical schemes	Experiments	Acknowledgements
	000000000		
Numerical methods for the BTE			
Outline			

The model

- Introduction
- Modelling

Numerical schemes

- Dimensions
- Iterative schemes for the Schrödinger-Poisson block

• Numerical methods for the BTE

Hybrid parallelization on CPU/GPU

3 Experiments

• Speedups

	Numerical schemes	Experiments	Acknowledgements
	000000000		
Numerical methods for the BTE			
Schemes			

Time discretization

We use the Total-Variation-Diminishing Runge-Kutta scheme of order 3. It is robust, but its explicitness constraints the time stepping.

Partial derivatives

We use fifth-order WENO (non-oscillatory) schemes to approximate them.

Scattering operator

Explicit, but numerically costly, formulae are obtained. For example, for the electron-phonon elastic phenomena, we have

$$\mathcal{Q}_{\nu,p,i,\ell}^{\mu,\min} = \mathcal{C}^{\mu} \sum_{p'=0}^{N_{\text{sbn}}-1} \mathcal{W}_{\nu,p,\nu,p',i} \cdot \mathbb{I}\left(\Gamma_{\nu,p,\nu,p',i,\ell}^{0} \ge 0\right) \times s_{\nu}(w_{\ell}) \cdot \operatorname{LI}\left[\tilde{\Phi}_{\nu,p',i,\ell}^{s}\right] \left(\Gamma_{\nu,p,\nu,p',i,\ell}^{0}\right)$$

and

$$\mathcal{Q}_{\nu,p,i,\ell,m}^{\mu,\text{loss}} = -\mathcal{C}^{\mu} \, 2\pi \cdot \Phi_{\nu,p,i,\ell,m}^{s} \sum_{p'=0}^{N_{\text{sbn}}-1} \mathcal{W}_{\nu,p,\nu,p',i} \times \mathbb{I}\left(\Gamma_{\nu,p,\nu,p',i,\ell}^{0} \ge 0\right) \cdot s_{\nu}\left(\Gamma_{\nu,p,\nu,p',i,\ell}^{0}\right).$$

	Numerical schemes	Experiments	Acknowledgements
	000000000		
Numerical methods for the BTE			
Schemes			

Time discretization

We use the Total-Variation-Diminishing Runge-Kutta scheme of order 3. It is robust, but its explicitness constraints the time stepping.

Partial derivatives

We use fifth-order WENO (non-oscillatory) schemes to approximate them.

Scattering operator

Explicit, but numerically costly, formulae are obtained. For example, for the electron-phonon elastic phenomena, we have

$$\mathcal{Q}_{\nu,p,i,\ell}^{\mu,\min} = \mathcal{C}^{\mu} \sum_{p'=0}^{N_{\text{sbn}}-1} \mathcal{W}_{\nu,p,\nu,p',i} \cdot \mathbb{I}\left(\Gamma_{\nu,p,\nu,p',i,\ell}^{0} \ge 0\right) \times s_{\nu}(w_{\ell}) \cdot \mathbb{LI}\left[\tilde{\Phi}_{\nu,p',i,\ell}^{s}\right] \left(\Gamma_{\nu,p,\nu,p',i,\ell}^{0}\right)$$

and

$$\mathcal{Q}_{\nu,p,i,\ell,m}^{\mu,\text{loss}} = -\mathcal{C}^{\mu} \, 2\pi \cdot \Phi_{\nu,p,i,\ell,m}^{s} \sum_{p'=0}^{N_{\text{sbn}}-1} \mathcal{W}_{\nu,p,\nu,p',i} \times \mathbb{I}\left(\Gamma_{\nu,p,\nu,p',i,\ell}^{0} \ge 0\right) \cdot s_{\nu}\left(\Gamma_{\nu,p,\nu,p',i,\ell}^{0}\right).$$

	Numerical schemes	Experiments	Acknowledgements
	000000000		
Numerical methods for the BTE			
Schemes			

Time discretization

We use the Total-Variation-Diminishing Runge-Kutta scheme of order 3. It is robust, but its explicitness constraints the time stepping.

Partial derivatives

We use fifth-order WENO (non-oscillatory) schemes to approximate them.

Scattering operator

Explicit, but numerically costly, formulae are obtained. For example, for the electron-phonon elastic phenomena, we have

$$\mathcal{Q}_{\nu,p,i,\ell}^{\mu,\text{gain}} = \mathcal{C}^{\mu} \sum_{p'=0}^{N_{\text{sbn}}-1} \mathcal{W}_{\nu,p,\nu,p',i} \cdot \mathbf{I}\left(\Gamma_{\nu,p,\nu,p',i,\ell}^{0} \ge 0\right) \times s_{\nu}(w_{\ell}) \cdot \operatorname{LI}\left[\tilde{\Phi}_{\nu,p',i,\ell}^{s}\right] \left(\Gamma_{\nu,p,\nu,p',i,\ell}^{0}\right)$$

and

$$\mathcal{Q}_{\nu,p,i,\ell,m}^{\mu,\text{loss}} = -\mathcal{C}^{\mu} \, 2\pi \cdot \Phi_{\nu,p,i,\ell,m}^{s} \sum_{p'=0}^{N_{\text{sbn}}-1} \mathcal{W}_{\nu,p,\nu,p',i} \times \mathbf{I}\left(\Gamma_{\nu,p,\nu,p',i,\ell}^{0} \ge 0\right) \cdot s_{\nu}\left(\Gamma_{\nu,p,\nu,p',i,\ell}^{0}\right).$$

	Numerical schemes	Experiments	Acknowledgements
	0000000000		
Hybrid parallelization on CPU/	GPU		
Outline			

The model

- Introduction
- Modelling

Numerical schemes

- Dimensions
- Iterative schemes for the Schrödinger-Poisson block
- Numerical methods for the BTE

• Hybrid parallelization on CPU/GPU

3 Experiments

Speedups

	Numerical schemes	Experiments	Acknowledgements
	0000000000		
Hybrid parallelization on CPU/GPU			

Overall design of the solver

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The model

Numerical schemes

Experiments

Acknowledgements

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hybrid parallelization on CPU/GPU

Cuda programming model on GPU

(from book CUDA C Programming Guide)

Some remarks on the Cuda implementation

Fine grain

Fine-grain paradigm exploited as much as possible: many threads, each of them with a light weight.

Shared memory

Use of block's shared memory to minimize reads from DRAM or to load data from DRAM in a coalescent manner.

Bank conflicts

Attention on avoiding bank conflicts when accessing shared memory.

Overlap

Overlapping computations between GPU and CPU whenever data are independent.

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

	Numerical schemes	Experiments	Acknowledgemen
	000000000		
Hybrid parallelization on CPU/GPU			

Some remarks on the Cuda implementation

Fine grain

Fine-grain paradigm exploited as much as possible: many threads, each of them with a light weight.

Shared memory

Use of block's shared memory to minimize reads from DRAM or to load data from DRAM in a coalescent manner.

Bank conflicts

Attention on avoiding bank conflicts when accessing shared memory.

Overlap

Overlapping computations between GPU and CPU whenever data are independent.

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

	Numerical schemes	Experiments	Acknowledgemen
	000000000		
Hybrid parallelization on CPU/GPU			

Some remarks on the Cuda implementation

Fine grain

Fine-grain paradigm exploited as much as possible: many threads, each of them with a light weight.

Shared memory

Use of block's shared memory to minimize reads from DRAM or to load data from DRAM in a coalescent manner.

Bank conflicts

Attention on avoiding bank conflicts when accessing shared memory.

Overlap

Overlapping computations between GPU and CPU whenever data are independent.

▲□▶▲□▶▲□▶▲□▶ □ のQで

	Numerical schemes	Experiments	Acknowledgement
	000000000		
Hybrid parallelization on CPU/GPU			

Some remarks on the Cuda implementation

Fine grain

Fine-grain paradigm exploited as much as possible: many threads, each of them with a light weight.

Shared memory

Use of block's shared memory to minimize reads from DRAM or to load data from DRAM in a coalescent manner.

Bank conflicts

Attention on avoiding bank conflicts when accessing shared memory.

Overlap

Overlapping computations between GPU and CPU whenever data are independent.

▲□▶▲□▶▲□▶▲□▶ □ のQで

	Experiments	Acknowledgements
	00000	
Speedups		
Outline		

The model

- Introduction
- Modelling

2 Numerical scher

- Dimensions
- Iterative schemes for the Schrödinger-Poisson block
- Numerical methods for the BTE
- Hybrid parallelization on CPU/GPU

3 Experiments• Speedups

The model	Numerical schemes	Experiments	Acknowledgements
		00000	
Speedups			
Performan	ces of the hybrid co	de	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

		Experiments	Acknowledgements
000000	000000000	00000	
Speedups			
Relative w	veights		

▲ロト▲圖ト▲目ト▲目ト 目 のへの

	Experiments	Acknowledgements
	00000	
Speedups		
Cuda kernels		

rank	kernel/function name	phase	avg exec time	Gflops/s
1	GPU_integrate_PHONONS_loss	BTE	32.8 ms	539
2	GPU_approx_partf_PHI	BTE	10.7 ms	598
3	GPU_approx_partf_W	BTE	10.6 ms	284
4	GPU_approx_partf_X	BTE	6.66 ms	389
5	GPU_set_fluxes_a3	BTE	2.92 ms	226
6	GPU_compute_integrated_pdf_energy	DENS	1.81 ms	9
7	GPU_integrate_PHONONS_gain	BTE	2.47 ms	275
8	GPU_perform_RK_2_3	BTE	3.59 ms	28
9	GPU_perform_RK_3_3	BTE	3.59 ms	28
10	GPU_perform_RK_1_3	BTE	2.90 ms	11
11	GPU_compute_Wm1	BTE	.297 ms	16
12	GPU_integrated_phitilde	DENS	.160 ms	2

Top performance on Tesla 40(c) GPU is 1430 Gflops/s.

The model
Numerical schemes
Experiments
Acknowledgements

000000
0000000
00000
Speedups

Middle-term to-do list for the code

Surface roughness

Complete the analysis of the results with the surface roughness. (In progress, in collaboration with José Miguel Mantas and María José Cáceres.)

GPU implementation

Fully implement the solvers on the GPU to avoid memory transfer between host and graphic card. (In progress, in collaboration with José Miguel Mantas, Pedro Alonso and Antonio Vidal.)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Middle-term to-do list for the code

Surface roughness

Complete the analysis of the results with the surface roughness. (In progress, in collaboration with José Miguel Mantas and María José Cáceres.)

GPU implementation

Fully implement the solvers on the GPU to avoid memory transfer between host and graphic card. (In progress, in collaboration with José Miguel Mantas, Pedro Alonso and Antonio Vidal.)

▲□▶▲□▶▲□▶▲□▶ □ のQで

GRAZIE!

The authors acknowledge Spanish projects **MTM2011-27739-C04-02** and **MTM2014-52056-P** and the European Fund for Development.