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Introduction
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About the scaling
In 1971, the Intel 4004 processor had 1000 transistors, whose channel length was
10000 nm. In 2003 the Intel Pentium IV was 130 nm long. As of 2019, Intel’s
i3-8121U x86 CPU uses 10-nm long CMOS finFET technology. Though, it seems
less efficient than i3-8130U x86 CPU based on 14-nm technology.

Why is it important?
Smaller MOSFETs allow for the construction of smaller devices with better
performances; moreover, they allow silicon and energy saving, due to the lower
voltages needed to switch on or off the transistor.
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Modelling

The confinement

Dimensional coupling
Electrons are particles along the x-dimension (longitudinal, transport), waves along
the z-dimension (transversal, quantum).

source channel drain

particles

w
av
es

1
6

1
n
m

n
m

n
m

5nm 10nm 5nm



Publications The model Numerical schemes Parallelization Experiments Acknowledgements

Modelling

The confinement

Description of the confinement
A set of 1D steady-state Schrödinger eigenproblems describe z-dimension for each
valley ν ∈ {1, 2, 3} (valleys are physical properties of the semiconductor).

−~2

2
d
dz

[
1

mz,ν

dψν,p
dz

]
− q (V + Vc)ψν,p = εν,pψν,p

input: V
output: {εν,p, ψν,p}p≥1

Effects of the confinement
The confinement produces a discretization of the electrons’ energy levels, and a split
of the electron population.

Quantized magnitudes

The eigenvalues {εν,p(x)}p≥1 represent the energy levels.
The eigenfunctions {ψν,p(x, z)}p≥1 are called wave functions in physics.
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Modelling

The unconfined dimension

Classical transport along x


∂fν,p
∂t

+

free motion︷ ︸︸ ︷
1
~
∂εkin
ν

∂kx

∂fν,p
∂x
−

force field︷ ︸︸ ︷
1
~
∂εν,p
∂x

∂fν,p
∂kx

=

scatterings︷ ︸︸ ︷
Qν,p[f ]


(ν,p)

Boltzmann
Transport
Equations

The electron-phonon interactions

Each of the seven electron-phonon scattering mechanisms has structure:

Qν,p[f ](x, k) =
∑
ν′,p′

∫
R2

[
S(ν′,p′,k′)→(ν,p,k)fν′,p′(k′)− S(ν,p,k)→(ν′,p′,k′)fν,p(k)

]
dk′,

where S(ν,p,k)→(ν′,p′,k′) = Cν→ν′ 1
W(ν,p)↔(ν′,p′)

δ
(
εtot
ν′,p′(k′)− εtot

ν,p(k)± energy
)

and 1
W(ν,p)↔(ν′,p′)

=
∫ Lz

0 |ψν,p|
2|ψν′,p′ |2 dz is called overlap integral.
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Modelling

The model

BTE

The Boltzmann Transport Equation (one for each pair (ν, p)) reads

∂fν,p
∂t

+
1
~
∂εkin
ν

∂kx

∂fν,p
∂x
− 1

~
∂εν,p
∂x

∂fν,p
∂kx

= Qν,p[f ].

Schrödinger-Poisson block

− ~2

2
d
dz

[
1

mz,ν

dψν,p
dz

]
− q (V + Vc)ψν,p = εν,pψν,p

input: V
output: {εν,p, ψν,p}p≥1

− divx,z [εR∇x,zV] = − q
ε0

(
2
∑
ν,p

%ν,p[f ] |ψν,p|2 − ND

)
input: ψν,p
output: V

These equations cannot be decoupled because we need the eigenfunctions to compute
the potential, and we need the potential to compute the eigenfunctions.
Seen as a block: input: %ν,p[f ] −→ output: {εν,p, ψν,p}(ν,p).
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Time integration

Time integration

Adimensionalization

After complete adimensionalization, and in particular by a change of variables into
ellipsoidal variables for k, we obtain the pdf in conservation-law form

∂Φν,p
∂t

= − ∂

∂x

[
a1
νΦν,p

]
− ∂

∂w

[
a2
ν,pΦν,p

]
− ∂

∂φ

[
a3
ν,pΦν,p

]
+Qν,p[Φ]s(w)︸ ︷︷ ︸

Hν,p(Φ)

Runge-Kutta

We advance in time by the third order Total Variation Diminishing Runge-Kutta
scheme (no explicit time-dependency):

1 Φn,1
ν,p = ∆tHν,p(Φn)

2 Φn,2
ν,p = 3

4 Φn
ν,p + 1

4 Φn,1
ν,p + 1

4 ∆tHν,p(Φn,1)

3 Φn+1 = 1
3 Φn

ν,p + 2
3 Φn,2

ν,p + 2
3 Hν,p(Φn,2)
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Transport

Transport part

Partial derivatives

The three partial derivatives are approximated by means of WENO methods.

Inelastic phenomena

Qν,p[Φ]sν(w)

=CQsν(w)
∑
ν′,p′

γν′→νNν′→ν
W(ν′,p′)↔(ν,p)

I{Γ−≥0}

∫ 2π

φ′=0
Φν′,p′

(
Γ′−, φ

′) dφ′

+CQsν(w)
∑
ν′,p′

γν′→ν(Nν′→ν + 1)

W(ν′,p′)↔(ν,p)
I{Γ+≥0}

∫ 2π

φ′=0
Φν′,p′

(
Γ+, φ

′) dφ′

−CQ2πΦν,p(w, φ)
∑
ν′,p′

γν→ν′Nν→ν′
W(ν,p)↔(ν′,p′)

I{Γ+≥0}sν′ (Γ+)

−CQ2πΦν,p(w, φ)
∑
ν′,p′

γν→ν′(Nν→ν′ + 1)

W(ν,p)↔(ν′,p′)
I{Γ−≥0}sν′ (Γ−)
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Confinement

The Newton scheme

Iterative scheme

The Schrödinger-Poisson block

− ~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

− div [εR∇V] = − q
ε0

(
2
∑
ν,p

%ν,p |ψν,p[V]|2 − ND

)

is solved thanks to a Newton-Raphson iterative methods. After calculations, the
scheme boils down to refining (indexed on k)

− divx,z

[
εR(x, z)∇V(k+1)(x, z)

]
+

∫
A(k)(x, z, ζ) V(k+1)(x, ζ) dζ

= −2
∑
ν,p

%ν,p

∣∣∣ψ(k)
ν,p[V]

∣∣∣2 +

∫
A(k)(x, z, ζ) V(k)(x, ζ) dζ

which represents a linear system on V(k+1). We iterate on k until convergence.
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Confinement

Framework

ρ ν,p,i

ε ν,p,i ψ ν,p,i,j

s+1

s+1 s+1

pick an initial
guess for V

Schroedinger

compute densities

Schroedinger

test convergence

compute densities

yes

no

update V
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Summary

Summary

The dimensions

(i). The valley (the silicon band structure) ν ∈ {0, 1, 2}.
(ii). The subband (the energy level’s index): p ∈ {0, . . . ,Nsbn − 1}.

(iii). The longitudinal dimension (unconfined): xi = i× 1
Nx − 1︸ ︷︷ ︸

∆x

.

(iv). The transversal dimension (confined): zj = j× 1
Nz − 1︸ ︷︷ ︸

∆z

.

(v). The energy: w` = (`+ 0.5)× wmax

Nw − 1︸ ︷︷ ︸
∆w

.

(vi). The angle: φm = m× 2π
Nφ︸︷︷︸
∆φ

.

(vii). As for the time step, it is adapted following a CFL condition.
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Summary

Summary: the transport part

The magnitudes

dimensions N 1 2 3 4 5 RAM (KB)
Φν,p,i,`,m 5 m ` p ν i ≈ 130000
Dν,p,i,`,m 5 m ` p ν i ≈ 130000
Qν,p,i,`,m 5 m ` p ν i ≈ 130000
Hν,p,i,`,m 5 m ` p ν i ≈ 130000
Wν,p,ν′,p′,i 5 p′ ν′ p ν i ≈ 165

Φ̃ν,p,i,` 4 ` p ν i ≈ 2740
dimensions N 1 2 3 4 5 RAM and DRAM (KB)

εν,p,i 3 p ν i ≈ 28
%ν,p,i 3 p ν i ≈ 28
ψν,p,i,j 4 j p ν i ≈ 1800

dimensions N 1 2 3 4 5 DRAM (KB)
Vi,j 2 j i ≈ 33

Nν,p,i,j 4 p ν j i ≈ 1800
Ai,j,j′ 3 j′ j i ≈ 2140
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Summary

Summary: the transport part

WENO

∂

∂x

[
a1 · Φs

]
ν,p,i,`,m

≈

(
̂a1

ν,`,m · Φs
ν,p,·,`,m

)
i+ 1

2

−
(

̂a1
ν,`,m · Φs

ν,p,·,`,m

)
i− 1

2

∆x
,

∂

∂w

[
a2,s · Φs

]
ν,p,i,`,m

≈

(
̂a2,s

ν,p,i,·,m · Φs
ν,p,i,·,m

)
`+ 1

2

−
(

̂a2,s
ν,p,i,·,m · Φs

ν,p,i,·,m

)
`− 1

2

∆w
,

∂

∂φ

[
a3,s · Φs

]
ν,p,i,`,m

≈

(
̂a3,s

ν,p,i,`,· · Φs
ν,p,i,`,·

)
m+ 1

2

−
(

̂a3,s
ν,p,i,`,· · Φs

ν,p,i,`,·

)
m− 1

2

∆φ
.
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Summary

Summary: the transport part

Scatterings

Qµ,gain
ν,p,i,` = Cµ 2

Nsbn−1∑
p′=0

2∑
ν′=0

Wν,p,ν′,p′,i{
1I
(

Γµ,+ν,p,ν′,p′,i,` ≥ 0
)
· (Nµν′,ν + 1) · sν′(w`) · LI

[
Φ̃ν′,p′,i,·

] (
Γµ,+ν,p,ν′,p′,i,`

)
+1I
(

Γµ,−ν,p,ν′,p′,i,` ≥ 0
)
· Nµν′,ν · sν(w`) · LI

[
Φ̃ν′,p′,i,·

] (
Γµ,−ν,p,ν′,p′,i,`

)}

Qµ,loss
ν,p,i,`,m = −Cµ 4πΦs

ν,p,i,`,m

Nsbn−1∑
p′=0

2∑
ν′=0

Wν,p,ν′,p′,i{
1I
(

Γµ,+ν,p,ν′,p′,i,` ≥ 0
)

Nµν,ν′ · sν′
(

Γµ,+ν,p,ν′,p′,i,`

)
+1I
(

Γµ,−ν,p,ν′,p′,i,` ≥ 0
)

+ (Nµν,ν′ + 1) · sν′
(

Γµ,−ν,p,ν′,p′,i,`

)}
.
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Summary

Summary: the transport part

Scatterings

The overlap integral is: Wν,p,ν′,p′,i = ∆z
Nz−2∑
j=1

|ψν,p,i,j|2 |ψν′,p′,i,j|2 .

The φ-integrated distribution function is Φ̃ν,p,i,` := ∆φ

Nφ−1∑
m=0

Φs
ν,p,i,`,m.

The linear interpolation is:

LI
[
Φ̃ν,p,i,·

]
(Γ) :=

Φ̃ν,p,i,`u − Φ̃ν,p,i,`d

∆w
· Γ +

w`u · Φ̃ν,p,i,`d − w`d · Φ̃ν,p,i,`u

∆w
× 1I (Γ ≥ 0 ∧ `d ≤ Nw − 2)

Surface densities

The surface densities are %ν,p,i = ∆w
Nw−1∑
`=0

Φ̃ν,p,i,`.
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Summary

Summary: the confinement

Schrödinger

We have to compute selected eigenvalues and eigenvectors of matrices whose

elements in the diagonal are

 1/4
mz,ν,i,j−1

+ 1/2
mz,ν,i,j

+ 1/4
mz,ν,i,j+1

∆z2 − Vi,j


j=1,...,Nz−2

and in the sub- and super-diagonals are

− 1/4
mz,ν,i,j

+ 1/4
mz,ν,i,j+1

∆z2


j=1,Nz−3

.

We have 195 independent problems of diagonalization of 63× 63 matrices.
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Summary

Summary: the confinement

The linear system

(
div
[
εR∇V(k+1)

])
i,j

=

(
1
2 (εR)i−1,j + 1

2 (εR)i,j

∆x2

)
V(k+1)

i−1,j +

(
1
2 (εR)i,j−1 + 1

2 (εR)i,j

∆z2

)
V(k+1)

i,j−1

−

(
1
2 (εR)i−1,j + (εR)i,j + 1

2 (εR)i+1,j

∆x2 +
1
2 (εR)i,j−1 + (εR)i,j + 1

2 (εR)i,j+1

∆z2

)
V(k+1)

i,j

+

(
1
2 (εR)i,j + 1

2 (εR)i,j+1

∆z2

)
V(k+1)

i,j+1 +

(
1
2 (εR)i,j + 1

2 (εR)i+1,j

∆x2

)
V(k+1)

i+1,j

+
∆z
2
·

Nz−2∑
j′=0

A(k)
i,j,j′ V(k+1)

i,j′ +

Nz−1∑
j′=1

A(k)
i,j,j′ V(k+1)

i,j′

 = right hand side

where A(k)
i,j,j′ = 2

∑
ν,p

∑
p′ 6=p

%s+1
ν,p,i−%

s+1
ν,p′,i

ε
(k)
ν,p′,i−ε

(k)
ν,p,i

× ψ(k)
ν,p,i,j′ ψ

(k)
ν,p′,i,j′ ψ

(k)
ν,p′,i,j ψ

(k)
ν,p,i,j

The matrix is square of order 4225, has 129 diagonals and is sparse (98%).
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Hybrid parallelization on CPU/GPU

CUDA and openMP

The language

The solver is implemented in C++.

The iterative part ITER

The iterative scheme is solved on the CPU, and is parallelized using openMP.

The transport part BTE

The transport part is fully solved on the GPU, by means of CUDA extensions to C++.
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Hybrid parallelization on CPU/GPU

Overall design of the solver

Here we depict one Runge-Kutta step. Note the overlap of some computations.

Φ
s+1

set fluxes

RK Φ Φ
s+1s

DENS: Φ
~

ρ
s+1 s+1

x−derivative on ITER: ε ψ
s+1 s+1

V
s+1

w−derivative on 

φ −derivative on

Φ

Φ

s

s

scatterings on Φ
s

Φ
s

Φ
~ s

ρ
s

ε
s

ψ
s

V
s

x−der. on Φ
s

BTE
phase



Publications The model Numerical schemes Parallelization Experiments Acknowledgements

Hybrid parallelization on CPU/GPU

Some remarks

Memory usage

The only magnitudes that are allocated on both the RAM (CPU) and the DRAM
(GPU) are:

%ν,p(x), that the GPU transfers to the CPU (about 28 KB).

εν,p(x), that the CPU transfers to the GPU (about 28 KB).

ψν,p(x, z), that the CPU transfers to the GPU (about 1800 KB).

All the other magnitudes are either only on the RAM or only on the DRAM.

Linear system

For the linear system, the Library of Iterative Solvers (LIS) has been used. An
iterative method has been chosen, the BICGSTAB, preconditioned by ILUT.

Eigenproblems

The dsgetr LAPACK routine is exploited for the computation of eigenstates and
eigenvalues (bounded to 6, in our configuration).
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Hybrid parallelization on CPU/GPU

Some remarks

Overlap

The x-derivative
∂

∂x

[
a1
νΦν,p

]
and the ITER block can be performed simultaneously,

because the flux coefficient a1
ν is constant in time, hence it does not depend on the

eigenstates.

Shared memory

Use of shared memory for the sake of coalescent reading when the data distribution
in the DRAM is not favourable. This is exploited for the computations of the
w-derivative, the φ-derivative, the φ-integration of the pdf and the integration of the
loss part of the scattering operator.

Bank conflicts

Reading from the shared memory must be performed carefully in order to avoid bank
conflicts.
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Speedups and GigaFlops/s

Speedups

Version step BTE DENS ITER FD-WENO-5 scatt. lin. sys. Schröd. NR kernel

sequential 19.82 18.56 0.044 1.22 3.69 13.70 0.59 0.23 0.37
OMP 2-core 10.05 9.35 0.024 0.67 1.87 6.89 0.34 0.12 0.19
OMP 4-core 5.60 5.18 0.0146 0.40 1.03 3.82 0.207 0.066 0.106
OMP 6-core 4.05 3.72 0.011 0.317 0.74 2.74 0.167 0.048 0.076
OMP 8-core 3.32 3.04 0.0103 0.27 0.61 2.24 0.145 0.04 0.063
OMP 10-core 2.83 2.58 0.0086 0.24 0.618 1.8 0.136 0.032 0.051
OMP 12-core 2.39 2.16 0.0075 0.21 0.53 1.5 0.119 0.026 0.042
OMP 14-core 2.07 1.85 0.0068 0.208 0.46 1.28 0.121 0.022 0.036
OMP 16-core 1.73 1.53 0.0062 0.199 0.31 1.12 0.119 0.02 0.032

OMP 16-core/GPU 0.47 0.21 0.00618 0.26 0.087 0.105 0.15 0.03 0.05
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Speedups and GigaFlops/s

Main computational phases
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Speedups and GigaFlops/s

GFlops/s

kernel avg. time GFlops/s
phonons, loss 32.8 ms 539
φ-derivative 10.7 ms 598
w-derivative 10.6 ms 284
x-derivative 6.66 ms 389

a3 computation 2.92 ms 226
φ-integrated pdf 1.81 ms 9
phonons, gain 2.47 ms 275
RK, 2nd stage 3.59 ms 28
RK, 3rd stage 3.59 ms 28
RK, 1st stage 2.90 ms 11

overlap integral .297 ms 16
surface densities .160 ms 2
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