| Publications |  | Parallelization | Experiments | Acknowledgements |
|--------------|--|-----------------|-------------|------------------|
|              |  |                 |             |                  |
|              |  |                 |             |                  |
|              |  |                 |             |                  |

## Hybrid implementation of a deterministic solver for DG-MOSFETs

## <u>Francesco Vecil</u> (Laboratoire de Mathématiques Blaise Pascal, Université Clermont Auvergne),

José Miguel Mantas (Dpto. de Lenguajes y Sistemas Informáticos, ETS Ingeniería Informática y Telecomunicaciones, Universidad de Granada)

Valencia, 2019/07/18

| Publications |         |         | Parallelization | Experiments | Acknowledgements |
|--------------|---------|---------|-----------------|-------------|------------------|
|              | 0000000 | 0000000 | 0000000000000   | 0000        |                  |
|              |         |         |                 |             |                  |
|              |         |         |                 |             |                  |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

## Outline





## The model

- Introduction
- Modelling



## Numerical schemes

- Time integration
- Transport
- Confinement

## Parallelization

- Summary
- Hybrid parallelization on CPU/GPU

#### Experiments 5

Speedups and GigaFlops/s

| Publications | The model | Numerical schemes | Parallelization | Experiments<br>0000 |  |
|--------------|-----------|-------------------|-----------------|---------------------|--|
| Publicat     | tions     |                   |                 |                     |  |

- N. Ben Abdallah, M.J. Cáceres, J.A. Carrillo, F. Vecil (2009) A deterministic solver for a hybrid quantum-classical transport model in nanoMOSFETs, Journal of Computational Physics 228 (17) 6553–6571.
- F. Vecil, J.M. Mantas, M.J. Cáceres, C. Sampedro, A. Godoy, F. Gámiz (2014) *A parallel deterministic solver for the Schrödinger–Poisson–Boltzmann system in ultra-short DG-MOSFETs: Comparison with Monte-Carlo*, Computers and Mathematics with Applications 67 (9) 1703–1721.
- F. Vecil, J.M. Mantas *Hybrid openMP-CUDA parallel implementation of a deterministic solver for ultra-short DG-MOSFETs*, International Journal of High Performance Computing Applications, awaiting final decision.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

| Publications | The model | Parallelization | Experiments | Acknowledgements |
|--------------|-----------|-----------------|-------------|------------------|
|              | 000000    |                 |             |                  |
| Introduction |           |                 |             |                  |
| Outline      |           |                 |             |                  |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで





## The modelIntroduction

- Modelling
- 3 Numerical schemes
  - Time integration
  - Transport
  - Confinement

## Parallelization

- Summary
- Hybrid parallelization on CPU/GPU

## 5 Experiments

• Speedups and GigaFlops/s

| Publications | The model | Numerical schemes | Parallelization | Experiments | Acknowledgements |
|--------------|-----------|-------------------|-----------------|-------------|------------------|
|              | 000000    | 0000000           | 000000000000    | 0000        |                  |
| Introduction |           |                   |                 |             |                  |
| Geome        | etry      |                   |                 |             |                  |



### About the scaling

In 1971, the Intel 4004 processor had 1000 transistors, whose channel length was 10000 nm. In 2003 the Intel Pentium IV was 130 nm long. As of 2019, Intel's i3-8121U x86 CPU uses 10-nm long CMOS finFET technology. Though, it seems less efficient than i3-8130U x86 CPU based on 14-nm technology.

## Why is it important?

Smaller MOSFETs allow for the construction of smaller devices with better performances; moreover, they allow silicon and energy saving, due to the lower voltages needed to switch on or off the transistor.

| Publications | The model | Parallelization | Experiments | Acknowledgements |
|--------------|-----------|-----------------|-------------|------------------|
|              | 0000000   |                 |             |                  |
| Modelling    |           |                 |             |                  |
| Outline      |           |                 |             |                  |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで





#### The model

- Introduction
- Modelling



- Time integration
- Transport
- Confinement

### Parallelization

- Summary
- Hybrid parallelization on CPU/GPU

## 5 Experiments

• Speedups and GigaFlops/s

| Publications | The model |   | Parallelization | Experiments | Acknowledgements |
|--------------|-----------|---|-----------------|-------------|------------------|
|              | 0000000   |   |                 |             |                  |
| Modelling    |           |   |                 |             |                  |
| The co       | onfinemen | t |                 |             |                  |

### **Dimensional coupling**

Electrons are **particles** along the *x*-dimension (longitudinal, transport), **waves** along the *z*-dimension (transversal, quantum).



▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

| Publications | The model |   | Parallelization | Experiments | Acknowledgements |
|--------------|-----------|---|-----------------|-------------|------------------|
|              | 0000000   |   |                 |             |                  |
| Modelling    |           |   |                 |             |                  |
| The co       | onfinemen | t |                 |             |                  |

## **Description of the confinement**

A set of 1D steady-state Schrödinger eigenproblems describe *z*-dimension for each valley  $\nu \in \{1, 2, 3\}$  (valleys are physical properties of the semiconductor).

$$-\frac{\hbar^2}{2}\frac{\mathrm{d}}{\mathrm{d}z}\begin{bmatrix}\frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}}{\mathrm{d}z}\end{bmatrix} - q\left(V+V_c\right)\psi_{\nu,p} = \epsilon_{\nu,p}\psi_{\nu,p} \qquad \begin{array}{c} \text{input: } V\\ \text{output: } \{\epsilon_{\nu,p},\psi_{\nu,p}\}_{p\geq 1} \end{bmatrix}$$

### Effects of the confinement

The confinement produces a discretization of the electrons' energy levels, and a split of the electron population.

## **Quantized magnitudes**

The eigenvalues  $\{\epsilon_{\nu,p}(x)\}_{p\geq 1}$  represent the *energy levels*. The eigenfunctions  $\{\psi_{\nu,p}(x,z)\}_{p\geq 1}$  are called *wave functions* in physics.

| Publications | The model |   | Parallelization | Experiments | Acknowledgements |
|--------------|-----------|---|-----------------|-------------|------------------|
|              | 0000000   |   |                 |             |                  |
| Modelling    |           |   |                 |             |                  |
| The co       | onfinemen | t |                 |             |                  |

## **Description of the confinement**

A set of 1D steady-state Schrödinger eigenproblems describe *z*-dimension for each valley  $\nu \in \{1, 2, 3\}$  (valleys are physical properties of the semiconductor).

$$-\frac{\hbar^2}{2}\frac{\mathrm{d}}{\mathrm{d}z}\left[\frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}}{\mathrm{d}z}\right] - q\left(V+V_c\right)\psi_{\nu,p} = \epsilon_{\nu,p}\psi_{\nu,p} \qquad \begin{array}{c} \text{input: } V\\ \text{output: } \{\epsilon_{\nu,p},\psi_{\nu,p}\}_{p\geq 1} \end{array}$$

### Effects of the confinement

The confinement produces a discretization of the electrons' energy levels, and a split of the electron population.

▲□▶▲□▶▲□▶▲□▶ □ のQで

### **Quantized magnitudes**

The eigenvalues  $\{\epsilon_{\nu,p}(x)\}_{p\geq 1}$  represent the *energy levels*. The eigenfunctions  $\{\psi_{\nu,p}(x,z)\}_{p\geq 1}$  are called *wave functions* in physics.

| Publications | The model |   | Parallelization | Experiments | Acknowledgements |
|--------------|-----------|---|-----------------|-------------|------------------|
|              | 0000000   |   |                 |             |                  |
| Modelling    |           |   |                 |             |                  |
| The co       | onfinemen | t |                 |             |                  |

## **Description of the confinement**

A set of 1D steady-state Schrödinger eigenproblems describe *z*-dimension for each valley  $\nu \in \{1, 2, 3\}$  (valleys are physical properties of the semiconductor).

$$-\frac{\hbar^2}{2}\frac{\mathrm{d}}{\mathrm{d}z} \begin{bmatrix} \frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}}{\mathrm{d}z} \end{bmatrix} - q\left(V + V_c\right)\psi_{\nu,p} = \epsilon_{\nu,p}\psi_{\nu,p} \qquad \begin{array}{c} \text{input: } V \\ \text{output: } \{\epsilon_{\nu,p},\psi_{\nu,p}\}_{p\geq 1} \end{bmatrix}$$

### Effects of the confinement

The confinement produces a discretization of the electrons' energy levels, and a split of the electron population.

### **Quantized magnitudes**

The eigenvalues  $\{\epsilon_{\nu,p}(x)\}_{p\geq 1}$  represent the *energy levels*. The eigenfunctions  $\{\psi_{\nu,p}(x,z)\}_{p\geq 1}$  are called *wave functions* in physics.



### Classical transport along x



#### The electron-phonon interactions

Each of the seven electron-phonon scattering mechanisms has structure:

$$\mathcal{Q}_{\nu,p}[f](x,k) = \sum_{\nu',p'} \int_{\mathbb{R}^2} \left[ S_{(\nu',p',k') \to (\nu,p,k)} f_{\nu',p'}(k') - S_{(\nu,p,k) \to (\nu',p',k')} f_{\nu,p}(k) \right] \, \mathrm{d}k',$$

where  $S_{(\nu,p,k)\to(\nu',p',k')} = C_{\nu\to\nu'} \frac{1}{W_{(\nu,p)\leftrightarrow(\nu',p')}} \delta\left(\epsilon_{\nu',p'}^{\text{tot}}(k') - \epsilon_{\nu,p}^{\text{tot}}(k) \pm \text{energy}\right)$ and  $\frac{1}{W_{(\nu,p)\leftrightarrow(\nu',p')}} = \int_0^{L_z} |\psi_{\nu,p}|^2 |\psi_{\nu',p'}|^2 \, dz$  is called *overlap integral*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 ● のへの



### Classical transport along x



#### The electron-phonon interactions

Each of the seven electron-phonon scattering mechanisms has structure:

$$\mathcal{Q}_{\nu,p}[f](x, \mathbf{k}) = \sum_{\nu', p'} \int_{\mathbb{R}^2} \left[ S_{(\nu', p', \mathbf{k}') \to (\nu, p, \mathbf{k})} f_{\nu', p'}(\mathbf{k}') - S_{(\nu, p, \mathbf{k}) \to (\nu', p', \mathbf{k}')} f_{\nu, p}(\mathbf{k}) \right] \, \mathrm{d}\mathbf{k}',$$

where  $S_{(\nu,p,k)\to(\nu',p',k')} = C_{\nu\to\nu'} \frac{1}{W_{(\nu,p)\leftrightarrow(\nu',p')}} \delta\left(\epsilon_{\nu',p'}^{\text{tot}}(k') - \epsilon_{\nu,p}^{\text{tot}}(k) \pm \text{energy}\right)$ and  $\frac{1}{W_{(\nu,p)\leftrightarrow(\nu',p')}} = \int_0^{L_z} |\psi_{\nu,p}|^2 |\psi_{\nu',p'}|^2 \, dz$  is called *overlap integral*.

| Publications | The model | Parallelization | Experiments | Acknowledgements |
|--------------|-----------|-----------------|-------------|------------------|
|              | 0000000   |                 |             |                  |
| Modelling    |           |                 |             |                  |
| The m        | odel      |                 |             |                  |

## BTE

## The Boltzmann Transport Equation (one for each pair $(\nu, p)$ ) reads

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{1}{\hbar} \frac{\partial \epsilon_{\nu}^{kin}}{\partial k_x} \frac{\partial f_{\nu,p}}{\partial x} - \frac{1}{\hbar} \frac{\partial \epsilon_{\nu,p}}{\partial x} \frac{\partial f_{\nu,p}}{\partial k_x} = \mathcal{Q}_{\nu,p}[f].$$

### Schrödinger-Poisson block

$$-\frac{\hbar^2}{2} \frac{\mathrm{d}}{\mathrm{d}z} \left[ \frac{1}{m_{z,\nu}} \frac{\mathrm{d}\psi_{\nu,p}}{\mathrm{d}z} \right] - q \left( V + V_c \right) \psi_{\nu,p} = \epsilon_{\nu,p} \psi_{\nu,p} \qquad \text{input: } V \\ \text{output: } \{\epsilon_{\nu,p}, \psi_{\nu,p}\}_{p \ge 1} \\ - \operatorname{div}_{x,z} [\varepsilon_R \nabla_{x,z} V] = -\frac{q}{\varepsilon_0} \left( 2 \sum_{\nu, p} \varrho_{\nu,p} [f] |\psi_{\nu,p}|^2 - N_D \right) \qquad \text{input: } \psi_{\nu,p} \\ \text{output: } V \\ \text{These equations cannot be decoupled because we need the eigenfunctions to compute the potential, and we need the potential to compute the eigenfunctions. \\ \text{Seen as a block:} \qquad \text{input: } \varrho_{\nu,p} [f] \longrightarrow \text{output: } \{\epsilon_{\nu,p}, \psi_{\nu,p}\}_{(\nu,p)}. \end{cases}$$

| Publications | The model | Parallelization | Experiments | Acknowledgements |
|--------------|-----------|-----------------|-------------|------------------|
|              | 0000000   |                 |             |                  |
| Modelling    |           |                 |             |                  |
| The m        | odel      |                 |             |                  |

## BTE

The Boltzmann Transport Equation (one for each pair  $(\nu, p)$ ) reads

$$\frac{\partial f_{\nu,p}}{\partial t} + \frac{1}{\hbar} \frac{\partial \epsilon_{\nu}^{kin}}{\partial k_x} \frac{\partial f_{\nu,p}}{\partial x} - \frac{1}{\hbar} \frac{\partial \epsilon_{\nu,p}}{\partial x} \frac{\partial f_{\nu,p}}{\partial k_x} = \mathcal{Q}_{\nu,p}[f].$$

## Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{\mathrm{d}}{\mathrm{d}z}\left[\frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}}{\mathrm{d}z}\right] - q\left(V + V_c\right)\psi_{\nu,p} = \epsilon_{\nu,p}\psi_{\nu,p} \qquad \begin{array}{c} \mathrm{input:}\ V \\ \mathrm{output:}\ \{\epsilon_{\nu,p},\psi_{\nu,p}\}_{p\geq 1} \\ -\operatorname{div}_{x,z}\left[\varepsilon_R \nabla_{x,z}V\right] = -\frac{q}{\varepsilon_0}\left(2\sum_{\nu,p}\varrho_{\nu,p}[f] |\psi_{\nu,p}|^2 - N_D\right) \qquad \begin{array}{c} \mathrm{input:}\ \psi_{\nu,p} \\ \mathrm{output:}\ V \\ \end{array}$$
These equations cannot be decoupled because we need the eigenfunctions to compute the potential, and we need the potential to compute the eigenfunctions. Seen as a block: input:  $\varrho_{\nu,p}[f] \longrightarrow$  output:  $\{\epsilon_{\nu,p},\psi_{\nu,p}\}_{(\nu,p)}$ .

| Publications     | Numerical schemes | Parallelization | Experiments | Acknowledgements |
|------------------|-------------------|-----------------|-------------|------------------|
|                  | 000000            |                 |             |                  |
| Time integration |                   |                 |             |                  |
| Outline          |                   |                 |             |                  |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

## Publications

## 2 The mode

- Introduction
- Modelling

3 Numerical schemes

- Time integration
- Transport
- Confinement

## Parallelization

- Summary
- Hybrid parallelization on CPU/GPU

## **Experiments**

• Speedups and GigaFlops/s

| Publications     |           | Numerical schemes | Parallelization | Experiments | Acknowledgements |
|------------------|-----------|-------------------|-----------------|-------------|------------------|
|                  |           | 000000            |                 |             |                  |
| Time integration |           |                   |                 |             |                  |
| Time in          | tegration |                   |                 |             |                  |

## Adimensionalization

After complete adimensionalization, and in particular by a change of variables into ellipsoidal variables for k, we obtain the pdf in conservation-law form

$$\frac{\partial \Phi_{\nu,p}}{\partial t} = \underbrace{-\frac{\partial}{\partial x} \left[ a_{\nu}^{1} \Phi_{\nu,p} \right] - \frac{\partial}{\partial w} \left[ a_{\nu,p}^{2} \Phi_{\nu,p} \right] - \frac{\partial}{\partial \phi} \left[ a_{\nu,p}^{3} \Phi_{\nu,p} \right] + \mathcal{Q}_{\nu,p} [\Phi] s(w)}_{H_{\nu,p}(\Phi)}$$

### Runge-Kutta

We advance in time by the third order Total Variation Diminishing Runge-Kutta scheme (no explicit time-dependency):

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

$$\Phi_{\nu,p}^{n,1} = \Delta t H_{\nu,p}(\Phi^n) \Phi_{\nu,p}^{n,2} = \frac{3}{4} \Phi_{\nu,p}^n + \frac{1}{4} \Phi_{\nu,p}^{n,1} + \frac{1}{4} \Delta t H_{\nu,p}(\Phi^{n,1}) \Phi^{n+1} = \frac{1}{3} \Phi_{\nu,p}^n + \frac{2}{3} \Phi_{\nu,p}^{n,2} + \frac{2}{3} H_{\nu,p}(\Phi^{n,2})$$

| Publications     |           | Numerical schemes | Parallelization | Experiments | Acknowledgements |
|------------------|-----------|-------------------|-----------------|-------------|------------------|
|                  |           | 000000            |                 |             |                  |
| Time integration |           |                   |                 |             |                  |
| Time in          | tegration |                   |                 |             |                  |

## Adimensionalization

After complete adimensionalization, and in particular by a change of variables into ellipsoidal variables for k, we obtain the pdf in conservation-law form

$$\frac{\partial \Phi_{\nu,p}}{\partial t} = \underbrace{-\frac{\partial}{\partial x} \left[ a_{\nu}^{1} \Phi_{\nu,p} \right] - \frac{\partial}{\partial w} \left[ a_{\nu,p}^{2} \Phi_{\nu,p} \right] - \frac{\partial}{\partial \phi} \left[ a_{\nu,p}^{3} \Phi_{\nu,p} \right] + \mathcal{Q}_{\nu,p} [\Phi] s(w)}_{H_{\nu,p}(\Phi)}}$$

## Runge-Kutta

We advance in time by the third order Total Variation Diminishing Runge-Kutta scheme (no explicit time-dependency):

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

$$\Phi_{\nu,p}^{n,1} = \Delta t H_{\nu,p}(\Phi^n) \Phi_{\nu,p}^{n,2} = \frac{3}{4} \Phi_{\nu,p}^n + \frac{1}{4} \Phi_{\nu,p}^{n,1} + \frac{1}{4} \Delta t H_{\nu,p}(\Phi^{n,1}) \Phi^{n+1} = \frac{1}{3} \Phi_{\nu,p}^n + \frac{2}{3} \Phi_{\nu,p}^{n,2} + \frac{2}{3} H_{\nu,p}(\Phi^{n,2})$$

| Publications |   | Numerical schemes | Parallelization | Experiments | Acknowledgements |
|--------------|---|-------------------|-----------------|-------------|------------------|
|              |   | 000000            |                 |             |                  |
| Transport    |   |                   |                 |             |                  |
| Outline      | • |                   |                 |             |                  |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



## 2 The mode

- Introduction
- Modelling



#### Numerical schemes

• Time integration

### Transport

Confinement

### Parallelization

- Summary
- Hybrid parallelization on CPU/GPU

## 5 Experiments

• Speedups and GigaFlops/s

| Publications | The model | Numerical schemes | Parallelization | Experiments | Acknowledgements |
|--------------|-----------|-------------------|-----------------|-------------|------------------|
|              |           | 0000000           |                 |             |                  |
| Transport    |           |                   |                 |             |                  |
| Transp       | ort part  |                   |                 |             |                  |

## Partial derivatives

The three partial derivatives are approximated by means of WENO methods.

Inelastic phenomena

$$\begin{aligned} \mathcal{Q}_{\nu,p}[\Phi]s_{\nu}(w) \\ = & C^{\mathcal{Q}}s_{\nu}(w) \sum_{\nu',p'} \frac{\gamma_{\nu'\to\nu}N_{\nu'\to\nu}}{W_{(\nu',p')\leftrightarrow(\nu,p)}} \mathbb{I}_{\{\Gamma_{-}\geq 0\}} \int_{\phi'=0}^{2\pi} \Phi_{\nu',p'}\left(\Gamma'_{-},\phi'\right) d\phi' \\ & + & C^{\mathcal{Q}}s_{\nu}(w) \sum_{\nu',p'} \frac{\gamma_{\nu'\to\nu}(N_{\nu'\to\nu}+1)}{W_{(\nu',p')\leftrightarrow(\nu,p)}} \mathbb{I}_{\{\Gamma_{+}\geq 0\}} \int_{\phi'=0}^{2\pi} \Phi_{\nu',p'}\left(\Gamma_{+},\phi'\right) d\phi' \\ & - & C^{\mathcal{Q}}2\pi \Phi_{\nu,p}(w,\phi) \sum_{\nu',p'} \frac{\gamma_{\nu\to\nu'}N_{\nu\to\nu'}}{W_{(\nu,p)\leftrightarrow(\nu',p')}} \mathbb{I}_{\{\Gamma_{+}\geq 0\}}s_{\nu'}\left(\Gamma_{+}\right) \\ & - & C^{\mathcal{Q}}2\pi \Phi_{\nu,p}(w,\phi) \sum_{\nu',p'} \frac{\gamma_{\nu\to\nu'}(N_{\nu\to\nu'}+1)}{W_{(\nu,p)\leftrightarrow(\nu',p')}} \mathbb{I}_{\{\Gamma_{-}\geq 0\}}s_{\nu'}\left(\Gamma_{-}\right) \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

| Publications |          | Numerical schemes | Parallelization | Experiments | Acknowledgements |
|--------------|----------|-------------------|-----------------|-------------|------------------|
|              | 0000000  | 0000000           | 000000000000    | 0000        |                  |
| Transport    |          |                   |                 |             |                  |
| Transp       | ort part |                   |                 |             |                  |

## Partial derivatives

The three partial derivatives are approximated by means of WENO methods.

Inelastic phenomena

$$\begin{split} & \mathcal{Q}_{\nu,p}[\Phi]s_{\nu}(w) \\ = & C^{\mathcal{Q}}s_{\nu}(w) \sum_{\nu',p'} \frac{\gamma_{\nu' \to \nu} N_{\nu' \to \nu}}{W_{(\nu',p') \leftrightarrow (\nu,p)}} \mathbb{I}_{\{\Gamma_{-} \geq 0\}} \int_{\phi'=0}^{2\pi} \Phi_{\nu',p'} \left(\Gamma'_{-}, \phi'\right) \, \mathrm{d}\phi' \\ & + & C^{\mathcal{Q}}s_{\nu}(w) \sum_{\nu',p'} \frac{\gamma_{\nu' \to \nu} (N_{\nu' \to \nu} + 1)}{W_{(\nu',p') \leftrightarrow (\nu,p)}} \mathbb{I}_{\{\Gamma_{+} \geq 0\}} \int_{\phi'=0}^{2\pi} \Phi_{\nu',p'} \left(\Gamma_{+}, \phi'\right) \, \mathrm{d}\phi' \\ & - & C^{\mathcal{Q}}2\pi \Phi_{\nu,p}(w,\phi) \sum_{\nu',p'} \frac{\gamma_{\nu \to \nu'} N_{\nu \to \nu'}}{W_{(\nu,p) \leftrightarrow (\nu',p')}} \mathbb{I}_{\{\Gamma_{+} \geq 0\}}s_{\nu'} \left(\Gamma_{+}\right) \\ & - & C^{\mathcal{Q}}2\pi \Phi_{\nu,p}(w,\phi) \sum_{\nu',p'} \frac{\gamma_{\nu \to \nu'} (N_{\nu \to \nu'} + 1)}{W_{(\nu,p) \leftrightarrow (\nu',p')}} \mathbb{I}_{\{\Gamma_{-} \geq 0\}}s_{\nu'} \left(\Gamma_{-}\right) \end{split}$$

| Publications | Numerical schemes | Parallelization | Experiments | Acknowledgements |
|--------------|-------------------|-----------------|-------------|------------------|
|              | 0000000           |                 |             |                  |
| Confinement  |                   |                 |             |                  |
| Outline      |                   |                 |             |                  |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで



## 2 The mode

- Introduction
- Modelling



### Numerical schemes

- Time integration
- Transport
- Confinement

### Parallelization

- Summary
- Hybrid parallelization on CPU/GPU

## 5 Experiments

• Speedups and GigaFlops/s

| Publications | The model | Numerical schemes | Parallelization | Experiments<br>0000 |  |
|--------------|-----------|-------------------|-----------------|---------------------|--|
| Confinement  |           |                   |                 |                     |  |
| The No       | ewton sch | eme               |                 |                     |  |

### Iterative scheme

The Schrödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{\mathrm{d}}{\mathrm{d}z}\left[\frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}[V]}{\mathrm{d}z}\right] - q\left(V + V_c\right)\psi_{\nu,p}[V] = \epsilon_{\nu,p}[V]\psi_{\nu,p}[V]$$
$$-\operatorname{div}\left[\varepsilon_R\nabla V\right] = -\frac{q}{\varepsilon_0}\left(2\sum_{\nu,p}\varrho_{\nu,p}\left|\psi_{\nu,p}[V]\right|^2 - N_D\right)$$

is solved thanks to a Newton-Raphson iterative methods. After calculations, the scheme boils down to refining (indexed on k)

$$-\operatorname{div}_{x,z} \left[ \varepsilon_{\mathsf{R}}(x,z) \,\nabla V^{(k+1)}(x,z) \right] + \int \mathcal{A}^{(k)}(x,z,\zeta) \,V^{(k+1)}(x,\zeta) \,\mathrm{d}\zeta$$
$$= -2 \sum_{\nu,p} \varrho_{\nu,p} \left| \psi_{\nu,p}^{(k)}[V] \right|^2 + \int \mathcal{A}^{(k)}(x,z,\zeta) \,V^{(k)}(x,\zeta) \,\mathrm{d}\zeta$$

which represents a linear system on  $V^{(k+1)}$ . We iterate on k until convergence.

<□> <@> < 注→ < 注→ < 注→ < 注→ のへ()

| Publications | The model | Numerical schemes | Parallelization | Experiments<br>0000 |  |
|--------------|-----------|-------------------|-----------------|---------------------|--|
| Confinement  |           |                   |                 |                     |  |
| Frame        | work      |                   |                 |                     |  |



| Publications |  | Parallelization        | Experiments | Acknowledgements |
|--------------|--|------------------------|-------------|------------------|
|              |  | • <b>000000</b> 000000 |             |                  |
| Summary      |  |                        |             |                  |
| Outline      |  |                        |             |                  |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

## Publications

## 2 The mode

- Introduction
- Modelling

## Numerical schemes

- Time integration
- Transport
- Confinement

## Parallelization

- Summary
- Hybrid parallelization on CPU/GPU

## Experiments

• Speedups and GigaFlops/s

| Publications |     | Parallelization                         | Experiments | Acknowledgements |
|--------------|-----|-----------------------------------------|-------------|------------------|
|              |     | 000000000000000000000000000000000000000 |             |                  |
| Summary      |     |                                         |             |                  |
| Summ         | ary |                                         |             |                  |

 $\Delta x$ 

## The dimensions

- (i). The valley (the silicon band structure)  $\nu \in \{0, 1, 2\}$ .
- (ii). The subband (the energy level's index):  $p \in \{0, \dots, N_{\text{sbn}} 1\}$ .
- (iii). The longitudinal dimension (unconfined):  $x_i = i \times \frac{1}{N_x 1}$ .

(iv). The transversal dimension (confined): 
$$z_j = j \times \frac{1}{\underbrace{N_z - 1}}$$
.

(v). The energy: 
$$w_{\ell} = (\ell + 0.5) \times \underbrace{\frac{w_{\text{max}}}{N_w - 1}}_{\Delta_w}$$
.  
(vi). The angle:  $\phi_m = m \times \underbrace{\frac{2\pi}{N_{\phi}}}_{\Delta_{\phi}}$ .

(vii). As for the time step, it is adapted following a CFL condition.

| Publications | The model | Numerical schemes | Parallelization | Experiments<br>0000 |  |
|--------------|-----------|-------------------|-----------------|---------------------|--|
| Summary      |           |                   |                 |                     |  |

## The magnitudes

|                                 | dimensions N | 1      | 2      | 3 | 4     | 5 | RAM (KB)          |
|---------------------------------|--------------|--------|--------|---|-------|---|-------------------|
| $\Phi_{\nu,p,i,\ell,m}$         | 5            | m      | l      | p | ν     | i | $\approx 130000$  |
| $D_{ u,p,i,\ell,m}$             | 5            | m      | l      | p | $\nu$ | i | $\approx 130000$  |
| $Q_{ u,p,i,\ell,m}$             | 5            | m      | l      | p | $\nu$ | i | $\approx 130000$  |
| $\mathcal{H}_{\nu,p,i,\ell,m}$  | 5            | m      | l      | p | $\nu$ | i | $\approx 130000$  |
| $\mathcal{W}_{\nu,p,\nu',p',i}$ | 5            | p'     | $\nu'$ | p | $\nu$ | i | $\approx 165$     |
| $	ilde{\Phi}_{ u,p,i,\ell}$     | 4            | $\ell$ | p      | ν | i     |   | $\approx 2740$    |
|                                 | dimensions N | 1      | 2      | 3 | 4     | 5 | RAM and DRAM (KB) |
| $\epsilon_{\nu,p,i}$            | 3            | p      | ν      | i |       |   | $\approx 28$      |
| $\varrho_{\nu,p,i}$             | 3            | p      | ν      | i |       |   | $\approx 28$      |
| $\psi_{\nu,p,i,j}$              | 4            | j      | p      | ν | i     |   | $\approx 1800$    |
|                                 | dimensions N | 1      | 2      | 3 | 4     | 5 | DRAM (KB)         |
| $V_{i,j}$                       | 2            | j      | i      |   |       |   | ≈ 33              |
| $N_{\nu,p,i,j}$                 | 4            | p      | ν      | j | i     |   | $\approx 1800$    |
| $\mathcal{A}_{i,j,j'}$          | 3            | j′     | j      | i |       |   | $\approx 2140$    |

| Publications |  | Parallelization                         | Experiments | Acknowledgements |
|--------------|--|-----------------------------------------|-------------|------------------|
|              |  | 000000000000000000000000000000000000000 |             |                  |
| Summary      |  |                                         |             |                  |
|              |  |                                         |             |                  |

#### **WENO**



$$\frac{\partial}{\partial \phi} \left[ a^{3,s} \cdot \Phi^s \right]_{\nu,p,i,\ell,m} \approx \frac{\left( \widehat{a^{3,s}_{\nu,p,i,\ell,\cdot} \cdot \Phi^s_{\nu,p,i,\ell,\cdot}} \right)_{m+\frac{1}{2}} - \left( \widehat{a^{3,s}_{\nu,p,i,\ell,\cdot} \cdot \Phi^s_{\nu,p,i,\ell,\cdot}} \right)_{m-\frac{1}{2}}}{\Delta \phi}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへの

| Publications |  | Parallelization | Experiments | Acknowledgements |
|--------------|--|-----------------|-------------|------------------|
|              |  | 0000000000000   |             |                  |
| Summary      |  |                 |             |                  |
|              |  |                 |             |                  |

## Scatterings

(

$$\begin{aligned} Q_{\nu,p,i,\ell}^{\mu, \text{gain}} &= \mathcal{C}^{\mu} \, 2 \, \sum_{p'=0}^{N_{\text{sbn}}-1} \sum_{\nu'=0}^{2} \mathcal{W}_{\nu,p,\nu',p',i} \\ \left\{ \mathbf{1} \left( \Gamma_{\nu,p,\nu',p',i,\ell}^{\mu,+} \geq 0 \right) \cdot (N_{\nu',\nu}^{\mu} + 1) \cdot s_{\nu'}(w_{\ell}) \cdot \text{LI} \left[ \tilde{\Phi}_{\nu',p',i,\cdot} \right] \left( \Gamma_{\nu,p,\nu',p',i,\ell}^{\mu,+} \right) \\ &+ \mathbf{1} \left( \Gamma_{\nu,p,\nu',p',i,\ell}^{\mu,-} \geq 0 \right) \cdot N_{\nu',\nu}^{\mu} \cdot s_{\nu}(w_{\ell}) \cdot \text{LI} \left[ \tilde{\Phi}_{\nu',p',i,\cdot} \right] \left( \Gamma_{\nu,p,\nu',p',i,\ell}^{\mu,-} \right) \right\} \\ Q_{\mu,\text{obs}}^{\mu,\text{loss}} &= -\mathcal{C}^{\mu} \, 4\pi \, \Phi_{\nu,p,i,\ell,m}^{s} \sum_{\nu,p,i,\ell}^{N_{\text{sbn}}-1} \sum_{\nu}^{2} \mathcal{W}_{\nu,p,\nu',p',i,\ell} \end{aligned}$$

$$\left\{ \mathbf{I} \left( \Gamma^{\mu,+}_{\nu,p,\nu',p',i,\ell} \ge 0 \right) N^{\mu}_{\nu,\nu'} \cdot s_{\nu'} \left( \Gamma^{\mu,+}_{\nu,p,\nu',p',i,\ell} \right) \\ + \mathbf{I} \left( \Gamma^{\mu,-}_{\nu,p,\nu',p',i,\ell} \ge 0 \right) + \left( N^{\mu}_{\nu,\nu'} + 1 \right) \cdot s_{\nu'} \left( \Gamma^{\mu,-}_{\nu,p,\nu',p',i,\ell} \right) \right\}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへぐ

| Publications |  | Parallelization | Experiments | Acknowledgements |
|--------------|--|-----------------|-------------|------------------|
|              |  | 0000000000000   |             |                  |
| Summary      |  |                 |             |                  |
|              |  |                 |             |                  |

## Scatterings

The overlap integral is: 
$$\mathcal{W}_{\nu,p,\nu',p',i} = \Delta z \sum_{j=1}^{N_c-2} |\psi_{\nu,p,i,j}|^2 |\psi_{\nu',p',i,j}|^2$$
.  
The  $\phi$ -integrated distribution function is  $\tilde{\Phi}_{\nu,p,i,\ell} := \Delta \phi \sum_{m=0}^{N_{\phi}-1} \Phi_{\nu,p,i,\ell,m}^s$ .

The linear interpolation is:

$$\mathrm{LI}\left[\tilde{\Phi}_{\nu,p,i,\cdot}\right](\Gamma) := \frac{\tilde{\Phi}_{\nu,p,i,\ell_{\mathrm{u}}} - \tilde{\Phi}_{\nu,p,i,\ell_{\mathrm{d}}}}{\Delta w} \cdot \Gamma + \frac{w_{\ell_{\mathrm{u}}} \cdot \tilde{\Phi}_{\nu,p,i,\ell_{\mathrm{d}}} - w_{\ell_{\mathrm{d}}} \cdot \tilde{\Phi}_{\nu,p,i,\ell_{\mathrm{u}}}}{\Delta w} \\ \times \mathbb{I}\left(\Gamma \ge 0 \quad \wedge \quad \ell_{\mathrm{d}} \le N_{w} - 2\right)$$

## Surface densities

The surface densities are 
$$\rho_{\nu,p,i} = \Delta w \sum_{\ell=0}^{N_w-1} \tilde{\Phi}_{\nu,p,i,\ell}.$$

| Publications |   |   | Parallelization | Experiments | Acknowledgements |
|--------------|---|---|-----------------|-------------|------------------|
|              |   |   | 000000000000    |             |                  |
| Summary      |   |   |                 |             |                  |
| ~            | 4 | 0 |                 |             |                  |

## Summary: the confinement

### Schrödinger

We have to compute selected eigenvalues and eigenvectors of matrices whose

elements in the diagonal are  $\left(\frac{\frac{1/4}{m_{z,\nu,i,j-1}} + \frac{1/2}{m_{z,\nu,i,j}} + \frac{1/4}{m_{z,\nu,i,j+1}}}{\Delta z^2} - V_{i,j}\right)_{j=1,\dots,N_z-2}$ and in the sub- and super-diagonals are  $\left(-\frac{\frac{1/4}{m_{z,\nu,i,j}} + \frac{1/4}{m_{z,\nu,i,j+1}}}{\Delta z^2}\right)_{j=1,N_z-3}$ We have 195 independent problems of diagonalization of 63 × 63 matrices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

| Publications |  | Parallelization | Experiments | Acknowledgements |
|--------------|--|-----------------|-------------|------------------|
|              |  | 0000000000000   |             |                  |
| Summary      |  |                 |             |                  |

## Summary: the confinement

The linear system

$$\begin{split} & \left( \operatorname{div} \left[ \varepsilon_{\mathsf{R}} \, \nabla V^{(k+1)} \right] \right)_{i,j} \\ &= \left( \frac{\frac{1}{2} (\varepsilon_{\mathsf{R}})_{i-1,j} + \frac{1}{2} (\varepsilon_{\mathsf{R}})_{i,j}}{\Delta x^2} \right) V_{i-1,j}^{(k+1)} + \left( \frac{\frac{1}{2} (\varepsilon_{\mathsf{R}})_{i,j-1} + \frac{1}{2} (\varepsilon_{\mathsf{R}})_{i,j}}{\Delta z^2} \right) V_{i,j-1}^{(k+1)} \\ &- \left( \frac{\frac{1}{2} (\varepsilon_{\mathsf{R}})_{i-1,j} + (\varepsilon_{\mathsf{R}})_{i,j} + \frac{1}{2} (\varepsilon_{\mathsf{R}})_{i+1,j}}{\Delta x^2} + \frac{\frac{1}{2} (\varepsilon_{\mathsf{R}})_{i,j-1} + (\varepsilon_{\mathsf{R}})_{i,j} + \frac{1}{2} (\varepsilon_{\mathsf{R}})_{i,j+1}}{\Delta z^2} \right) V_{i,j}^{(k+1)} \\ &+ \left( \frac{\frac{1}{2} (\varepsilon_{\mathsf{R}})_{i,j} + \frac{1}{2} (\varepsilon_{\mathsf{R}})_{i,j+1}}{\Delta z^2} \right) V_{i,j+1}^{(k+1)} + \left( \frac{\frac{1}{2} (\varepsilon_{\mathsf{R}})_{i,j} + \frac{1}{2} (\varepsilon_{\mathsf{R}})_{i+1,j}}{\Delta x^2} \right) V_{i+1,j}^{(k+1)} \\ &+ \frac{\Delta z}{2} \cdot \left[ \sum_{j'=0}^{N_z - 2} \mathcal{A}_{i,j,j'}^{(k)} \, V_{i,j'}^{(k+1)} + \sum_{j'=1}^{N_z - 1} \mathcal{A}_{i,j,j'}^{(k)} \, V_{i,j'}^{(k+1)} \right] = \text{right hand side} \end{split}$$

where  $\mathcal{A}_{i,j,j'}^{(k)} = 2 \sum_{\nu,p} \sum_{p' \neq p} \frac{\varrho_{\nu,p',i}^{s+1} - \varrho_{\nu,p',i}^{s+1}}{\epsilon_{\nu,p',i}^{(k)} - \epsilon_{\nu,p,i}^{(k)}} \times \psi_{\nu,p,i,j'}^{(k)} \psi_{\nu,p',i,j'}^{(k)} \psi_{\nu,p',i,j}^{(k)} \psi_{\nu,p',i,j}^{(k)} \psi_{\nu,p',i,j}^{(k)} \psi_{\nu,p',i,j}^{(k)}$ The matrix is square of order 4225, has 129 diagonals and is sparse (98%).

| Publications        |                | Parallelization                         | Experiments | Acknowledgements |
|---------------------|----------------|-----------------------------------------|-------------|------------------|
|                     |                | 000000000000000000000000000000000000000 |             |                  |
| Hybrid parallelizat | ion on CPU/GPU |                                         |             |                  |
| Outlin              | e              |                                         |             |                  |

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

## Publications

## 2 The mode

- Introduction
- Modelling

## Numerical schemes

- Time integration
- Transport
- Confinement

## Parallelization

- Summary
- Hybrid parallelization on CPU/GPU

## Experiments

• Speedups and GigaFlops/s

| Publications        |                |    | Parallelization                         | Experiments | Acknowledgements |
|---------------------|----------------|----|-----------------------------------------|-------------|------------------|
|                     |                |    | 000000000000000000000000000000000000000 |             |                  |
| Hybrid parallelizat | ion on CPU/GPU |    |                                         |             |                  |
|                     | and open       | MP |                                         |             |                  |

### The language

The solver is implemented in C++.

### The iterative part ITER

The iterative scheme is solved on the CPU, and is parallelized using openMP.

### The transport part BTE

The transport part is fully solved on the GPU, by means of CUDA extensions to C++.

イロト 不得 とくほ とくほとう

э

| Publications        |                |    | Parallelization                         | Experiments | Acknowledgements |
|---------------------|----------------|----|-----------------------------------------|-------------|------------------|
|                     |                |    | 000000000000000000000000000000000000000 |             |                  |
| Hybrid parallelizat | ion on CPU/GPU |    |                                         |             |                  |
| CUDA                | and open       | MP |                                         |             |                  |

### The language

The solver is implemented in C++.

### The iterative part ITER

The iterative scheme is solved on the CPU, and is parallelized using openMP.

### The transport part BTE

The transport part is fully solved on the GPU, by means of CUDA extensions to C++.

イロト 不得 とうほう 不良 とう

3

| Publications        | The model      | Numerical schemes | Parallelization                         | Experiments | Acknowledgements |
|---------------------|----------------|-------------------|-----------------------------------------|-------------|------------------|
|                     |                |                   | 000000000000000000000000000000000000000 |             |                  |
| Hybrid parallelizat | ion on CPU/GPU |                   |                                         |             |                  |
| CUDA                | and oner       | MP                |                                         |             |                  |

### The language

The solver is implemented in C++.

### The iterative part ITER

The iterative scheme is solved on the CPU, and is parallelized using openMP.

### The transport part BTE

The transport part is fully solved on the GPU, by means of CUDA extensions to C++.

▲□▶▲□▶▲□▶▲□▶ □ のQで

| Overal               | l design o    | f the solver |                                         |             |                  |
|----------------------|---------------|--------------|-----------------------------------------|-------------|------------------|
| Hybrid parallelizati | on on CPU/GPU |              |                                         |             |                  |
|                      |               |              | 000000000000000000000000000000000000000 |             |                  |
| Publications         |               |              | Parallelization                         | Experiments | Acknowledgements |

Here we depict one Runge-Kutta step. Note the overlap of some computations.

ъ



| Publications         |               | Parallelization                         | Experiments | Acknowledgements |
|----------------------|---------------|-----------------------------------------|-------------|------------------|
|                      |               | 000000000000000000000000000000000000000 |             |                  |
| Hybrid parallelizati | on on CPU/GPU |                                         |             |                  |
| Some 1               | remarks       |                                         |             |                  |

## Memory usage

The only magnitudes that are allocated on both the RAM (CPU) and the DRAM (GPU) are:

- $\rho_{\nu,p}(x)$ , that the GPU transfers to the CPU (about 28 KB).
- $\epsilon_{\nu,p}(x)$ , that the CPU transfers to the GPU (about 28 KB).
- $\psi_{\nu,p}(x, z)$ , that the CPU transfers to the GPU (about 1800 KB).

All the other magnitudes are either only on the RAM or only on the DRAM.

### Linear system

For the linear system, the Library of Iterative Solvers (LIS) has been used. An iterative method has been chosen, the BICGSTAB, preconditioned by ILUT.

## Eigenproblems

The dsgetr LAPACK routine is exploited for the computation of eigenstates and eigenvalues (bounded to 6, in our configuration).

イロン 不得 とくほ とくほとう ほ

| Publications         |               | Parallelization                         | Experiments | Acknowledgements |
|----------------------|---------------|-----------------------------------------|-------------|------------------|
|                      |               | 000000000000000000000000000000000000000 |             |                  |
| Hybrid parallelizati | on on CPU/GPU |                                         |             |                  |
| Some 1               | remarks       |                                         |             |                  |

## Memory usage

The only magnitudes that are allocated on both the RAM (CPU) and the DRAM (GPU) are:

- $\rho_{\nu,p}(x)$ , that the GPU transfers to the CPU (about 28 KB).
- $\epsilon_{\nu,p}(x)$ , that the CPU transfers to the GPU (about 28 KB).
- $\psi_{\nu,p}(x,z)$ , that the CPU transfers to the GPU (about 1800 KB).

All the other magnitudes are either only on the RAM or only on the DRAM.

### Linear system

For the linear system, the Library of Iterative Solvers (LIS) has been used. An iterative method has been chosen, the BICGSTAB, preconditioned by ILUT.

## Eigenproblems

The dsgetr LAPACK routine is exploited for the computation of eigenstates and eigenvalues (bounded to 6, in our configuration).

くちゃく ゆやく ゆやく ゆう

| Publications         |               | Parallelization                         | Experiments | Acknowledgements |
|----------------------|---------------|-----------------------------------------|-------------|------------------|
|                      |               | 000000000000000000000000000000000000000 |             |                  |
| Hybrid parallelizati | on on CPU/GPU |                                         |             |                  |
| Some 1               | remarks       |                                         |             |                  |

## Memory usage

The only magnitudes that are allocated on both the RAM (CPU) and the DRAM (GPU) are:

- $\rho_{\nu,p}(x)$ , that the GPU transfers to the CPU (about 28 KB).
- $\epsilon_{\nu,p}(x)$ , that the CPU transfers to the GPU (about 28 KB).
- $\psi_{\nu,p}(x,z)$ , that the CPU transfers to the GPU (about 1800 KB).

All the other magnitudes are either only on the RAM or only on the DRAM.

### Linear system

For the linear system, the Library of Iterative Solvers (LIS) has been used. An iterative method has been chosen, the BICGSTAB, preconditioned by ILUT.

## Eigenproblems

The dsgetr LAPACK routine is exploited for the computation of eigenstates and eigenvalues (bounded to 6, in our configuration).

| Publications        |                | Parallelization | Experiments | Acknowledgements |
|---------------------|----------------|-----------------|-------------|------------------|
|                     |                | 0000000000000   |             |                  |
| Hybrid parallelizat | ion on CPU/GPU |                 |             |                  |
| Some                | remarks        |                 |             |                  |

## Overlap

The *x*-derivative  $\frac{\partial}{\partial x} \left[ a_{\nu}^{1} \Phi_{\nu,p} \right]$  and the *ITER* block can be performed simultaneously, because the flux coefficient  $a_{\nu}^{1}$  is constant in time, hence it does not depend on the eigenstates.

## Shared memory

Use of shared memory for the sake of coalescent reading when the data distribution in the DRAM is not favourable. This is exploited for the computations of the *w*-derivative, the  $\phi$ -derivative, the  $\phi$ -integration of the pdf and the integration of the loss part of the scattering operator.

### Bank conflicts

Reading from the shared memory must be performed carefully in order to avoid bank conflicts.

| Publications        |                | Parallelization | Experiments | Acknowledgements |
|---------------------|----------------|-----------------|-------------|------------------|
|                     |                | 0000000000000   |             |                  |
| Hybrid parallelizat | ion on CPU/GPU |                 |             |                  |
| Some                | remarks        |                 |             |                  |

## Overlap

The *x*-derivative  $\frac{\partial}{\partial x} \left[ a_{\nu}^{1} \Phi_{\nu,p} \right]$  and the *ITER* block can be performed simultaneously, because the flux coefficient  $a_{\nu}^{1}$  is constant in time, hence it does not depend on the eigenstates.

## Shared memory

Use of shared memory for the sake of coalescent reading when the data distribution in the DRAM is not favourable. This is exploited for the computations of the *w*-derivative, the  $\phi$ -derivative, the  $\phi$ -integration of the pdf and the integration of the loss part of the scattering operator.

#### Bank conflicts

Reading from the shared memory must be performed carefully in order to avoid bank conflicts.

| Publications        |                | Parallelization | Experiments | Acknowledgements |
|---------------------|----------------|-----------------|-------------|------------------|
|                     |                | 0000000000000   |             |                  |
| Hybrid parallelizat | ion on CPU/GPU |                 |             |                  |
| Some                | remarks        |                 |             |                  |

## Overlap

The *x*-derivative  $\frac{\partial}{\partial x} \left[ a_{\nu}^{1} \Phi_{\nu,p} \right]$  and the *ITER* block can be performed simultaneously, because the flux coefficient  $a_{\nu}^{1}$  is constant in time, hence it does not depend on the eigenstates.

## Shared memory

Use of shared memory for the sake of coalescent reading when the data distribution in the DRAM is not favourable. This is exploited for the computations of the *w*-derivative, the  $\phi$ -derivative, the  $\phi$ -integration of the pdf and the integration of the loss part of the scattering operator.

### Bank conflicts

Reading from the shared memory must be performed carefully in order to avoid bank conflicts.

| Publications      |         | Parallelization | Experiments | Acknowledgements |
|-------------------|---------|-----------------|-------------|------------------|
|                   |         |                 | 0000        |                  |
| Speedups and Giga | Flops/s |                 |             |                  |
| Outlin            | e       |                 |             |                  |

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

## Publications

## 2 The model

- Introduction
- Modelling

## 3 Numerical schemes

- Time integration
- Transport
- Confinement

## Parallelization

- Summary
- Hybrid parallelization on CPU/GPU

## 5 Experiments

• Speedups and GigaFlops/s

| Publications       |         | Parallelization | Experiments | Acknowledgements |
|--------------------|---------|-----------------|-------------|------------------|
|                    |         |                 | 0000        |                  |
| Speedups and Gigal | Flops/s |                 |             |                  |
| Speedu             | ıps     |                 |             |                  |

| Version         | step  | BTE   | DENS    | ITER  | FD-WENO-5 | scatt. | lin. sys. | Schröd. | NR kernel |
|-----------------|-------|-------|---------|-------|-----------|--------|-----------|---------|-----------|
| sequential      | 19.82 | 18.56 | 0.044   | 1.22  | 3.69      | 13.70  | 0.59      | 0.23    | 0.37      |
| OMP 2-core      | 10.05 | 9.35  | 0.024   | 0.67  | 1.87      | 6.89   | 0.34      | 0.12    | 0.19      |
| OMP 4-core      | 5.60  | 5.18  | 0.0146  | 0.40  | 1.03      | 3.82   | 0.207     | 0.066   | 0.106     |
| OMP 6-core      | 4.05  | 3.72  | 0.011   | 0.317 | 0.74      | 2.74   | 0.167     | 0.048   | 0.076     |
| OMP 8-core      | 3.32  | 3.04  | 0.0103  | 0.27  | 0.61      | 2.24   | 0.145     | 0.04    | 0.063     |
| OMP 10-core     | 2.83  | 2.58  | 0.0086  | 0.24  | 0.618     | 1.8    | 0.136     | 0.032   | 0.051     |
| OMP 12-core     | 2.39  | 2.16  | 0.0075  | 0.21  | 0.53      | 1.5    | 0.119     | 0.026   | 0.042     |
| OMP 14-core     | 2.07  | 1.85  | 0.0068  | 0.208 | 0.46      | 1.28   | 0.121     | 0.022   | 0.036     |
| OMP 16-core     | 1.73  | 1.53  | 0.0062  | 0.199 | 0.31      | 1.12   | 0.119     | 0.02    | 0.032     |
| OMP 16-core/GPU | 0.47  | 0.21  | 0.00618 | 0.26  | 0.087     | 0.105  | 0.15      | 0.03    | 0.05      |

| Publications           |     | Parallelization | Experiments | Acknowledgements |
|------------------------|-----|-----------------|-------------|------------------|
|                        |     |                 | 0000        |                  |
| Speedups and GigaFlops | s/s |                 |             |                  |

## Main computational phases



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

| Publications       |         | Parallelization | Experiments | Acknowledgements |
|--------------------|---------|-----------------|-------------|------------------|
|                    |         |                 | 0000        |                  |
| Speedups and GigaF | Flops/s |                 |             |                  |
| GFlops             | s/s     |                 |             |                  |

| kernel                 | avg. time | GFlops/s |
|------------------------|-----------|----------|
| phonons, loss          | 32.8 ms   | 539      |
| $\phi$ -derivative     | 10.7 ms   | 598      |
| w-derivative           | 10.6 ms   | 284      |
| x-derivative           | 6.66 ms   | 389      |
| $a^3$ computation      | 2.92 ms   | 226      |
| $\phi$ -integrated pdf | 1.81 ms   | 9        |
| phonons, gain          | 2.47 ms   | 275      |
| RK, 2nd stage          | 3.59 ms   | 28       |
| RK, 3rd stage          | 3.59 ms   | 28       |
| RK, 1st stage          | 2.90 ms   | 11       |
| overlap integral       | .297 ms   | 16       |
| surface densities      | .160 ms   | 2        |

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

| Publications |         |         | Parallelization | Experiments | Acknowledgements |
|--------------|---------|---------|-----------------|-------------|------------------|
|              | 0000000 | 0000000 | 000000000000    | 0000        |                  |
|              |         |         |                 |             |                  |

# Gràcies!

Los autores agradecen los proyectos **MTM2014-52056-P** y **MTM2017-85067-P** financiados por el Ministerio de Economía y competitividad, y el Fondo Europeo de Desarrollo Regional (ERDF/FEDER).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●