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Geometry
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About the scaling

In 1971, the Intel 4004 processor had 1000 transistors, whose channel length was
10000 nm. In 2003 the Intel Pentium IV was 130 nm long. As of 2019, Intel’s
13-8121U x86 CPU uses 10-nm long CMOS finFET technology. Though, it seems
less efficient than i3-8130U x86 CPU based on 14-nm technology.

Why is it important?

Smaller MOSFETS allow for the construction of smaller devices with better
performances; moreover, they allow silicon and energy saving, due to the lower
voltages needed to switch on or off the transistor.
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The confinement

Dimensional coupling

Electrons are particles along the x-dimension (longitudinal, transport), waves along
the z-dimension (transversal, quantum).
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The confinement

Description of the confinement

A set of 1D steady-state Schrodinger eigenproblems describe z-dimension for each
valley v € {1,2,3} (valleys are physical properties of the semiconductor).

Ra 1 an,
2 dz |mg, dz

input: V
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The confinement

Description of the confinement

A set of 1D steady-state Schrodinger eigenproblems describe z-dimension for each
valley v € {1,2,3} (valleys are physical properties of the semiconductor).

AL ddy,
mz v dZ

input: V
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v

Effects of the confinement

The confinement produces a discretization of the electrons’ energy levels, and a split
of the electron population.
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The confinement

Description of the confinement

A set of 1D steady-state Schrodinger eigenproblems describe z-dimension for each
valley v € {1,2,3} (valleys are physical properties of the semiconductor).

AL ddy,
mz v dZ

input: V

- Vv VC v,p — €u v
2 dz } q(V+Ve)bup = €pthuy output:{ey,p,wyy,,}pa

v

Effects of the confinement

The confinement produces a discretization of the electrons’ energy levels, and a split
of the electron population.

Quantized magnitudes

The eigenvalues {€, ,(x)},>1 represent the energy levels.
The eigenfunctions {¢,,(x,z) },>1 are called wave functions in physics.
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The unconfined dimension

Classical transport along x

free motion

fvp
ot h Ok, Ox
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The unconfined dimension

Classical transport along x

free motion force field :
T —N— scatterings Boltzmann
vp 186,, v _ 186””’ v = Q [f] Transport
ot " h ok, Ox h Ox Ok T E :
quations
(v,p)

The electron-phonon interactions

Each of the seven electron-phonon scattering mechanisms has structure:
vap [f] (x, k) = Z /2 [S(u’,p’,k’)a(u,p,k)fw,p’ (k/) - S(v,p,k)—%v’,p’,k’)fvyp(k)] dk/,
v’ R

where S(l/,p,k)*)(l/’,p’,k’) =Cysp m(; ( o (kl) lot (k) + energy)

1 L 2
and = Jo ) WJVW

2 .
dz is called overlap integral.
Wewpyer (v ") L pumies
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The model

BTE

The Boltzmann Transport Equation (one for each pair (v, p)) reads

Wy | 106" Ofvp  10eup Ofop

ot h Ok, Ox h Ox Ok

= Qv,p [f]
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The model

BTE

The Boltzmann Transport Equation (one for each pair (v, p)) reads

Wy | 106" Ofvp  10eup Ofop

o Thok ox hoox ok 2l
Schrodinger-Poisson block
2 : .
St v RIS VRO B
— divy: [enVeV] = =L <zz ovolf] 1wy — ND> L‘jﬁ;ﬁf;*”

These equations cannot be decouuf)pled because we need the eigenfunctions to compute
the potential, and we need the potential to compute the eigenfunctions.
Seen as a block: input: 0vp[f] — output: {€vp, Y}, ) and V.




The model
[e]elelele] ]
Modelling

Outline

o The model
@ Introduction
@ Modelling

e Numerical schemes
@ Time integration
@ Transport
@ Confinement

o Publications

e Parallelization
@ Summary
@ Parallelization

e Experiments
@ Speedups and GigaFlops/s

@ Future plans



Numerical schemes
o0
Time inte; on

Outline

e Numerical schemes
@ Time integration



Numerical schemes
oe
Time integration

Time integration

Adimensionalization

After complete adimensionalization, and in particular by a change of variables into
ellipsoidal variables for k, we obtain the pdf in conservation-law form

s fo] - 2 [

] = g [ahes] = 55 [ + Qusllst)

Hy,p(®)
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Time integration

Adimensionalization

After complete adimensionalization, and in particular by a change of variables into
ellipsoidal variables for k, we obtain the pdf in conservation-law form

s fo] - 2 [

] = g [ahes] = 55 [ + Qusllst)

Hy,p(®)

Runge-Kutta

We advance in time by the third order Total Variation Diminishing Runge-Kutta
scheme (no explicit time-dependency):

Qo (I)'L’,}, = AtH, ,(®")

Q O = (L, + (DU + AHL, (P

© @ = Lo, + 3013 4 3H,,(@")
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Transport part

Partial derivatives J

The three partial derivatives are approximated by means of WENO methods.




Transport

Transport part

Partial derivatives
The three partial derivatives are approximated by means of WENO methods.

Inelastic phenomena

Qup[®s(w)
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The Newton scheme

Iterative scheme

The Schrodinger-Poisson block

_nd [ 1 di,[V]

e [ ] - g v ] = eIV

—div[eRVV] = —— (22 v [Yup[VIP = ND)

v,p

is solved thanks to a Newton-Raphson iterative methods. After calculations, the
scheme boils down to refining (indexed on k)

— divy,, [ER(x, 2) VV(HI)(X, z)] + /.A(k) (x,z,¢) V<k+l)(x, ¢)d¢

=-2 Z Ov,p
vip

[ + [ A9z VOO u

which represents a linear system on V& We iterate on k until convergence.
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Framework
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The dimensions

0]

(ii). The subband (the energy level’s index): p € {0, ..., Ngon —
(iii). The longitudinal dimension (unconfined): x; = i x N_1
X
Ax
(iv). The transversal dimension (confined): z; = j X N1
HZ,_/
Az
(v). The energy: w, = (£ +0.5) x Nwmixl
\L,_/
Aw
. 27
(vi). The angle: ¢, =m x —.
Ny
~—
A¢
(vii). As for the time step, it is adapted following a CFL condition.

. The valley (the silicon band structure) v € {0, 1,2}.

1}.
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Summary: the transport part

The magnitudes

| [ dimensions N [ 1 [ 2 [3[4]5] RAM (KB)
Do piem 5 m| L | p|lv]i =~ 130000
Dy piem 5 m| £ |plv]|i ~ 130000
Qupiit,m 5 m| L | p|lv]i ~ 130000
Hop,it,m 5 m| L |p|v]|i ~ 130000
Wy pov! o i 5 plvip|lv]i ~ 165
Dy i 4 Ll p v ~ 2740
| [ dimensionsN [ 1 [ 2 [3 ][4 ][5 [ RAMand DRAM (KB) |
€vp,i 3 p v | i ~ 28
Ou,p,i 3 p v | i ~ 28
Yupi 4 ilplv]i ~ 1800
| || dimensionsN [ 1 [ 2 [3[4]5] DRAM (KB)
Vij 2 jli ~33
Nu,p,[,j 4 P v J i = 1800
Ay 3 ARRE ~ 2140
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Summary: the transport part
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Summary: the transport part

Scatterings

Ngpn —1

0 =02 3 Y W
p'=0 v'=0
{ (Fl:p v/ plil = 2 0) : (Nf/t’,u + 1) 'SV’(WZ) -LI [éu’,p’,i,<i| (FV:V/ iy

+1 (Fﬁp v! o p ik 2 ) v 'SV(W‘Z) -LI [éu’,p’,i»'] (Pﬁ,’p,u’,p’,i,z)}

Ngpn —1

1,loss _ K
Qu,p,i,é,m - C 47‘(‘@ v,p,i,l,m E § Wup vl pi

p'=0 v’'=0
-+ w o+
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Summary: the transport part

Scatterings
N.—2
. . 2 2
The overlap integral is: W, , ./ /i = Az E [0 il [P pr gl -
j=1
N¢—]

The ¢-integrated distribution function is éyw,g = A¢ Z @f,y,,yl-,g’m.
m=0

The linear interpolation is:

= Dy ity — Pupi we, * Pupity = Wey - Pupis,
LI [@V,,,,,-,] (T) 1=t A 2bl poy Th” Tvpih AWW“d ipibt
xIT>0 A La<N,—2)

Surface densities

Ny—1
The surface densities are g, = Aw E Dy pie
£=0
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Summary: the confinement

Schrodinger
We have to compute selected eigenvalues and eigenvectors of matrices whose
1/4 1/2 1/4

. . My vij—1 Mz, v,i.j My v i j+1

elements in the diagonal are A2 —Vij
Jj=1,...,N;—=2
1/4 1/4
and in the sub- and super-diagonals are | — W
z
Jj=1,N:—3

We have 195 independent problems of diagonalization of 63 x 63 matrices.
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Summary: the confinement

The linear system

(i v,

P

5(er)im1y+ ;(5R)i,j> V(k+l) N <§(€R)i,jl + ;(5R)i,j> )

Ax2 Az2 ij—1

5(€r)i—14 + (er)iy + 5 (Er)ir1, n 3(€r)ij—1 + (er)iy + 5 (ER)ij+1 YOt
Ax? AZ? ”/

_|_

TN TN T/

5(r)iy + 5 (er)ije1 y 5(eR)iy + 5 (er)it1y D
AZ2 ij+1 + Ax? i+1,

l\)‘l>

Z AWy kD Z A® Yy EED | right hand side

iy i (NNARE NG

x+l .r
(k) _ vipsi Cupli (k) (k) (k)
where A, =23 vp > o £p ﬁ X, wu i Yot ig Vo

i’
€u,psi

The matrix is square of order 4225 has 129 diagonals and is sparse (98%).
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Some details

The language

The solver is implemented in C++.
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Some details

The language J

The solver is implemented in C++.

Parallel environment

Both the transport and the iterative part are solved on the GPU, by means of CUDA
extensions to C++.
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Some details

The language

The solver is implemented in C++.

Parallel environment

Both the transport and the iterative part are solved on the GPU, by means of CUDA
extensions to C++.

Shared memory

Use of shared memory for the sake of coalescent reading when the data distribution
in the DRAM is not favourable. This is exploited for the computations of the
w-derivative, the ¢-derivative, the ¢-integration of the pdf and the integration of the
loss part of the scattering operator.
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Some details

The language

The solver is implemented in C++.

Parallel environment

Both the transport and the iterative part are solved on the GPU, by means of CUDA
extensions to C++.

Shared memory

Use of shared memory for the sake of coalescent reading when the data distribution
in the DRAM is not favourable. This is exploited for the computations of the
w-derivative, the ¢-derivative, the ¢-integration of the pdf and the integration of the
loss part of the scattering operator.

Bank conflicts

Reading from the shared memory must be performed carefully in order to avoid bank
conflicts.

4
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The iterative part

The eigenvalue-eigenvector problem

First, the eigenvalues are computed by means of a bisection method. Then, the
corresponding eivenvectors are computed and normalized.
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The iterative part

The eigenvalue-eigenvector problem

First, the eigenvalues are computed by means of a bisection method. Then, the
corresponding eivenvectors are computed and normalized.

The linear system

At the state of the art, the Jacobi method is used. It has the advantage of being highly
parallel, and has so far proven to be better than other more sofisticated methods.
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Speedups

[ Version [[ sep [[ BTE | DENS | ITER [[ FD-WENO-5 [ scatt. |[ lin.sys. | Schrod. | NRKernel |

sequential 19.82 18.56 0.044 122 3.69 13.70 0.59 0.23 0.37
OMP 2-core 10.05 935 0.024 0.67 1.87 6.89 0.34 0.12 0.19
OMP 4-core 5.60 5.18 0.0146 0.40 1.03 382 0.207 0.066 0.106
OMP 6-core 2.05 372 0.011 0317 0.74 274 0.167 0.048 0.076
OMP 8-core 332 3.04 0.0103 0.27 0.61 224 0.145 0.04 0.063
OMP 10-core 2.83 2.58 0.0086 0.24 0.618 18 0.136 0.032 0.051
OMP 12-core 2.39 2.16 0.0075 0.21 0.53 15 0.119 0.026 0.042
OMP 14-core 2.07 1.85 0.0068 0.208 0.46 1.28 0.121 0.022 0.036
OMP 16-core 1.73 .53 0.0062 0.199 031 .12 0.119 0.02 0.032

[ OMP16-core/lGPU [[ 047 [[ 021 | 0.00618 [ 026 | 0.087 [ 0105 [ 015 [ 003 [ 005 ]
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Main computational phases

absolute weight (in seconds)

relative weight over one step (percentage)
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GFlops/s

kernel | avg. time | GFlops/s
phonons, loss 32.8 ms 539
¢-derivative 10.7 ms 598
w-derivative 10.6 ms 284
x-derivative 6.66 ms 389
@ computation 2.92 ms 226
¢-integrated pdf 1.81 ms 9
phonons, gain 2.47 ms 275
RK, 2nd stage 3.59 ms 28
RK, 3rd stage 3.59 ms 28
RK, 1st stage 2.90 ms 11
overlap integral 297 ms 16
surface densities .160 ms 2
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Future plans

Future plans

@ Optimization of the iterative part on GPU, and test of other methods.
@ Implementation of the surface roughness among the scattering phenomena.

@ Comparison with the numerical results from other solvers.
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