		Experiments	Acknowledgements
000000	00000000000	0000	

GPU implementation of a Schrödinger–Poisson solver for a nanoscaled DG MOSFET

Francesco Vecil, José Miguel Mantas

ECMI 2021, online, 2021/04/15

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

	Experiments	Acknowledgements

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outline

The model

- Introduction
- Historical perspective

Numerical schemes

- Iterative schemes for the eigenstates
- CUDA model of programming
- Schemes' implementation on CUDA

Speedups

The model	Experiments	Acknowledgements
•••••		
Introduction		
Outline		

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The model

Introduction

• Historical perspective

Numerical schemes

- Iterative schemes for the eigenstates
- CUDA model of programming
- Schemes' implementation on CUDA

The model	Numerical schemes	Experiments	
Introduction			
Geometry			
Photoshop im	pression from TEM images of	f real interfaces	
The model			1
	upper g	ate	
	silicon oxid	e layer	

The model			Experiments	Acknowledgements
000000		0000000000		
Introduction				
~	-			

Chronological partial overview

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々で

Numerical schemes	Experiments	Acknowledgements
000000000000	0000	
nsion		1
	Numerical schemes 00000000000000000000000000000000000	Numerical schemes Experiments 000000000000000000000000000000000000

Schödinger-Poisson block

$$-\frac{\hbar^2}{2}\frac{\mathrm{d}}{\mathrm{d}z}\left[\frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}[V]}{\mathrm{d}z}\right] - q\left(V+V_c\right)\psi_{\nu,p}[V] = \epsilon_{\nu,p}[V]\psi_{\nu,p}[V]$$
$$-\mathrm{div}_{x,z}\left[\varepsilon_R\nabla_{x,z}V\right] = -\frac{q}{\varepsilon_0}\left(2\sum_{\nu,p}\varrho_{\nu,p}\left|\psi_{\nu,p}[V]\right|^2 - N_D\right).$$

The model	Experiments	Acknowledgements
000000		
Historical perspective		
Outline		

The model

- Introduction
- Historical perspective

Numerical schemes

- Iterative schemes for the eigenstates
- CUDA model of programming
- Schemes' implementation on CUDA

The model		Experiments	Acknowledgements
00000			
Historical perspective			
Historical pers	pective		

- Naoufel Ben Abdallah, María J. Cáceres, José Antonio Carrillo F. Vecil, *A deterministic solver for a hybrid quantum-classical transport model in nanoMOSFETs*, Journal of Computational Physics Volume 228, Issue 17, 2009, Pages 6553–6571.
- José M. Mantas, Mará J. Cáceres, Carlos Sampedro, Andrés Godoy, Francisco Gámiz, *A parallel deterministic solver for the Schrödinger-Poisson-Boltzmann system in ultra-short DG-MOSFETs: Comparison with Monte-Carlo*, Computers and Mathematics with Applications, Volume 67, Issue 9, 2014, Pages 1703–1721.
- José M. Mantas, Francesco Vecil, *Hybrid OpenMP-CUDA parallel implementation of a deterministic solver for ultrashort DG-MOSFETs*, The International Journal of High Performance Computing Applications, Volume 34, Issue 1, 2020, Pages 81–102.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

	Numerical schemes	Experiments	Acknowledgements
	• 0000 00000000		
Iterative schemes for the eigenstates			
Outline			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The model

2

- Introduction
- Historical perspective

Numerical schemes

• Iterative schemes for the eigenstates

- CUDA model of programming
- Schemes' implementation on CUDA

• Speedups

	Numerical schemes	Experiments	Acknowledgements
	000000000000000000000000000000000000000		
Iterative schemes for the eige	nstates		
The Newto	on scheme		

Reminder

We recall here the Schrödinger–Poisson block for the computation of the advection field:

$$-\frac{\hbar^2}{2}\frac{\mathrm{d}}{\mathrm{d}z}\left[\frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}[V]}{\mathrm{d}z}\right] - q\left(V+V_c\right)\psi_{\nu,p}[V] = \epsilon_{\nu,p}[V]\psi_{\nu,p}[V]$$
$$-\operatorname{div}_{x,z}\left[\varepsilon_R\nabla_{x,z}V\right] = -\frac{q}{\varepsilon_0}\left(2\sum_{\nu,p}\varrho_{\nu,p}\left|\psi_{\nu,p}[V]\right|^2 - N_D\right).$$

Blackbox

$$\varrho_{\nu,p}(x) \longrightarrow$$
 Schrödinger–Poisson block $\longrightarrow \epsilon_{\nu,p}(x), \ \psi_{\nu,p}(x,z), \ V(x,z).$

Strategy

Using an iterative method: the Newton-Raphson scheme. This leads to iteratively solving a linear system and an eigenvalue/eigenvector problem.

	Numerical schemes	Experiments	Acknowledgements
	000000000000000000000000000000000000000		
Iterative schemes for the eige	nstates		
The Newto	on scheme		

Reminder

We recall here the Schrödinger–Poisson block for the computation of the advection field:

$$-\frac{\hbar^2}{2}\frac{\mathrm{d}}{\mathrm{d}z}\left[\frac{1}{m_{z,\nu}}\frac{\mathrm{d}\psi_{\nu,p}[V]}{\mathrm{d}z}\right] - q\left(V+V_c\right)\psi_{\nu,p}[V] = \epsilon_{\nu,p}[V]\psi_{\nu,p}[V]$$
$$-\operatorname{div}_{x,z}\left[\varepsilon_R\nabla_{x,z}V\right] = -\frac{q}{\varepsilon_0}\left(2\sum_{\nu,p}\varrho_{\nu,p}\left|\psi_{\nu,p}[V]\right|^2 - N_D\right).$$

Blackbox

$$\varrho_{\nu,p}(x) \longrightarrow$$
Schrödinger–Poisson block $\longrightarrow \epsilon_{\nu,p}(x), \ \psi_{\nu,p}(x,z), \ V(x,z).$

Strategy

Using an iterative method: the Newton-Raphson scheme. This leads to iteratively solving a linear system and an eigenvalue/eigenvector problem.

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
Iterative schemes for the eigen	istates		
The Newto	on scheme		

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
Iterative schemes for the eigensta	tes		
The Newton	n scheme		

The Schrödinger equation

We compute selected eigenvalues and relative eigenvectors of the Schrödinger matrices (one for each valley ν and each longitudinal position *i*)

$$\mathcal{L}_{\nu,i} = \begin{pmatrix} d_0 & e_0 & & & \\ e_0 & d_1 & e_1 & & & \\ & e_1 & d_2 & e_2 & & \\ & & \ddots & \ddots & \ddots & \\ & & & e_{n-3} & d_{n-2} & e_{n-2} \\ & & & & & e_{n-2} & d_{n-1} \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
Iterative schemes for the eigens	tates		
The Newto	n scheme		

The linear system

At iteration k, we refine the potential V by $L^{(k)} V^{(k+1)} = R^{(k)}$.

The system has bandwidth $2N_z + 1$, and contains non-local terms.

	Numerical schemes	Experiments	Acknowledgements
	00000 00 00000		
CUDA model of programming			
Outline			

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The model

2

- Introduction
- Historical perspective

Numerical schemes

• Iterative schemes for the eigenstates

• CUDA model of programming

Schemes' implementation on CUDA

3 Experiments• Speedups

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
CUDA model of programming			
Cuda programn	ning model on GPU		

(from book CUDA C Programming Guide)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
CUDA model of programming			

Fine grain

To be exploited as much as possible: many threads, each of them with a light weight.

Shared memory

Use of block's shared memory to minimize reads from DRAM or to load data from DRAM in a coalescent manner.

Avoid transfer of information

The amount of information being copied between the RAM of the CPU and the GPU should be kept as small as possible.

イロト 不得 とうほう イヨン

Exploit warps

	Numerical schemes	Experiments	Acknowledgements
000000	00000000000	0000	
CUDA model of programming			

Fine grain

To be exploited as much as possible: many threads, each of them with a light weight.

Shared memory

Use of block's shared memory to minimize reads from DRAM or to load data from DRAM in a coalescent manner.

Avoid transfer of information

The amount of information being copied between the RAM of the CPU and the GPU should be kept as small as possible.

イロト 不得 とうほう イヨン

-

Exploit warps

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
CUDA model of programming			

Fine grain

To be exploited as much as possible: many threads, each of them with a light weight.

Shared memory

Use of block's shared memory to minimize reads from DRAM or to load data from DRAM in a coalescent manner.

Avoid transfer of information

The amount of information being copied between the RAM of the CPU and the GPU should be kept as small as possible.

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Exploit warps

	Numerical schemes	Experiments	Acknowledgements
	00000000000		
CUDA model of programming			

Fine grain

To be exploited as much as possible: many threads, each of them with a light weight.

Shared memory

Use of block's shared memory to minimize reads from DRAM or to load data from DRAM in a coalescent manner.

Avoid transfer of information

The amount of information being copied between the RAM of the CPU and the GPU should be kept as small as possible.

Exploit warps

	Numerical schemes	Experiments	Acknowledgements
	000000000000000000000000000000000000000		
Schemes' implementation on CUDA			
Outline			

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

The model

2

- Introduction
- Historical perspective

Numerical schemes

- Iterative schemes for the eigenstates
- CUDA model of programming
- Schemes' implementation on CUDA

	Numerical schemes	Experiments	Acknowledgements
	000000000000000000000000000000000000000		
Schemes' implementation on	CUDA		
The eigen	values		

Bisection/Multisection

- Iterative method: selected eigenvalue lie inside shrinking intervals.
- We assign one eigenvalue to each warp.

Some more details

- Shared memory is exploited in order to read in a coalescent way from the matrices L_{ν,i}.
- Shuffle functions are used to perform reductions at warp level.
- Some data are declared as volatile in order to prevent the compiler from trying any optimization and introduce rush conflicts.

イロト 不得 とうほう イヨン

3

	Numerical schemes	Experiments	Acknowledgements
	0000000000000		
Schemes' implementation on CUDA			
The eigenvalue	S		

Bisection/Multisection

- Iterative method: selected eigenvalue lie inside shrinking intervals.
- We assign one eigenvalue to each warp.

Some more details

- Shared memory is exploited in order to read in a coalescent way from the matrices L_{ν,i}.
- Shuffle functions are used to perform reductions at warp level.
- Some data are declared as volatile in order to prevent the compiler from trying any optimization and introduce rush conflicts.

	Numerical schemes	Experiments	Acknowledgements
	000000000000000000000000000000000000000		
Schemes' implementation on C	UDA		
The eigenv	ectors		

Parallel Cyclic Reduction

Once the eigenvalues have been computed, in order to obtain the eigenvectors we solve tridiagonal (non-symmetric) linear systems by the PCR algorithm

Some remarks

- PCR is not very efficient but very parallel.
- One block per linear system, of size multiple of 32.

The model	Numerical schemes	Experiments	Acknowledgements	
	000000000000000			
Schemes' implementation on CUDA				
Updating potential				

Jacobi scheme

Jacobi iterative algorithm is very parallel but also particularly inefficient.

Relaxed Jacobi scheme

Suppose we are solving (for the sake of lighter notations) linear system A x = b. If we decompose matrix A as L + D + U, the relaxed Jacobi iteration of parameter $\omega > 0$ reads

$$\mathcal{L}_{\omega} \mathbf{x} := \mathbf{M}_{\omega}^{-1} \mathbf{N}_{\omega} \mathbf{x} + \mathbf{M}_{\omega}^{-1} \mathbf{b}.$$

where

$$M_{\omega} := \frac{1}{\omega} D, \qquad N_{\omega} := \frac{1-\omega}{\omega} D - L - U.$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

	Numerical schemes	Experiments	Acknowledgements		
	00000000000				
Schemes' implementation on C	UDA				
Updating potential					

Successive Relaxed Jacobi (SRJ) scheme

The SRJ consists in defining sequences of relaxed Jacobi steps:

$$\mathcal{L} := \underbrace{\mathcal{L}_{\omega_{P}} \circ \ldots \circ \mathcal{L}_{\omega_{P}}}_{q_{P} \text{ times}} \circ \cdots \circ \underbrace{\mathcal{L}_{\omega_{2}} \circ \ldots \circ \mathcal{L}_{\omega_{2}}}_{q_{2} \text{ times}} \circ \underbrace{\mathcal{L}_{\omega_{1}} \circ \ldots \circ \mathcal{L}_{\omega_{1}}}_{q_{1} \text{ times}}$$

and updating the guess for the solution of system $A \cdot x = b$ using these:

 $\boldsymbol{x}^{(\ell+1)} = \mathcal{L}\boldsymbol{x}^{(\ell)}.$

We shall use the following parameters: P = 7 for the number of SRJ "blocks", $q_1 = q_2 = \ldots = q_7 = 93$ for the iterations inside each "block", and as relaxation parameters

$$\omega_1 = 370.035, \quad \omega_2 = 167.331, \quad \omega_3 = 51.1952, \quad \omega_4 = 13.9321$$

 $\omega_5 = 3.80777, \quad \omega_6 = 1.18727, \quad \omega_7 = 0.556551.$

		Experiments	Acknowledgements
000000	000000000000	0000	
Speedups			
Outline			

The model

- Introduction
- Historical perspective

Numerical schemes

- Iterative schemes for the eigenstates
- CUDA model of programming
- Schemes' implementation on CUDA

	Experiments	Acknowledgements
	0000	
Speedups		

Performances of the code

Overview

	Experiments	Acknowledgements
	0000	
Speedups		

Performances of the code

The Schrödinger-Poisson block

Deuterman and a fither and				
Speedups				
000000	00000000000	0000		
		Experiments	Acknowledgements	

Performances of the code

CUDA kernels of the Schrödinger-Poisson block

		Experiments	Acknowledgements
000000	000000000000	0000	•

GRAZIE!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The authors acknowledge Spanish projects **MTM2011-27739-C04-02** and **MTM2014-52056-P** and the European Fund for Development.