
The model Numerical schemes Experiments Acknowledgements

GPU implementation of a Schrödinger–Poisson
solver for a nanoscaled DG MOSFET

Francesco Vecil, José Miguel Mantas

ECMI 2021, online, 2021/04/15

The model Numerical schemes Experiments Acknowledgements

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups

The model Numerical schemes Experiments Acknowledgements

Introduction

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups

The model Numerical schemes Experiments Acknowledgements

Introduction

Geometry

Photoshop impression from TEM images of real interfaces

The model

so
u
rc

e
co

n
ta

ct

d
ra

in
 c

o
n
ta

ct

upper gate

lower gate

source channel drain

silicon oxide layer

silicon oxide layer

The model Numerical schemes Experiments Acknowledgements

Introduction

Chronological partial overview

The model Numerical schemes Experiments Acknowledgements

Introduction

The modeling

Transversal dimension

Schödinger–Poisson block

−~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

−divx,z [εR∇x,zV] = − q
ε0

(
2
∑
ν,p

%ν,p |ψν,p[V]|2 − ND

)
.

The model Numerical schemes Experiments Acknowledgements

Historical perspective

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups

The model Numerical schemes Experiments Acknowledgements

Historical perspective

Historical perspective

Naoufel Ben Abdallah, María J. Cáceres, José Antonio Carrillo F. Vecil, A
deterministic solver for a hybrid quantum-classical transport model in
nanoMOSFETs, Journal of Computational Physics Volume 228, Issue 17, 2009,
Pages 6553–6571.

José M. Mantas, Mará J. Cáceres, Carlos Sampedro, Andrés Godoy, Francisco
Gámiz, A parallel deterministic solver for the Schrödinger-Poisson-Boltzmann
system in ultra-short DG-MOSFETs: Comparison with Monte-Carlo,
Computers and Mathematics with Applications, Volume 67, Issue 9, 2014,
Pages 1703–1721.

José M. Mantas, Francesco Vecil, Hybrid OpenMP-CUDA parallel
implementation of a deterministic solver for ultrashort DG-MOSFETs, The
International Journal of High Performance Computing Applications, Volume
34, Issue 1, 2020, Pages 81–102.

The model Numerical schemes Experiments Acknowledgements

Iterative schemes for the eigenstates

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups

The model Numerical schemes Experiments Acknowledgements

Iterative schemes for the eigenstates

The Newton scheme

Reminder
We recall here the Schrödinger–Poisson block for the computation of the advection
field:

−~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

−divx,z [εR∇x,zV] = − q
ε0

(
2
∑
ν,p

%ν,p |ψν,p[V]|2 − ND

)
.

Blackbox

%ν,p(x) −→ Schrödinger–Poisson block −→ εν,p(x), ψν,p(x, z), V(x, z).

Strategy
Using an iterative method: the Newton-Raphson scheme. This leads to iteratively
solving a linear system and an eigenvalue/eigenvector problem.

The model Numerical schemes Experiments Acknowledgements

Iterative schemes for the eigenstates

The Newton scheme

Reminder
We recall here the Schrödinger–Poisson block for the computation of the advection
field:

−~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

−divx,z [εR∇x,zV] = − q
ε0

(
2
∑
ν,p

%ν,p |ψν,p[V]|2 − ND

)
.

Blackbox

%ν,p(x) −→ Schrödinger–Poisson block −→ εν,p(x), ψν,p(x, z), V(x, z).

Strategy
Using an iterative method: the Newton-Raphson scheme. This leads to iteratively
solving a linear system and an eigenvalue/eigenvector problem.

The model Numerical schemes Experiments Acknowledgements

Iterative schemes for the eigenstates

The Newton scheme

ρ ν,

ε ν,p,i ν,p,i,j

s+1

s+1 s+1

p,i

ψ i,j

pick an initial
guess for V

Schroedinger

compute densities

Schroedinger

test convergence

compute densities

yes

no

update V

V

The model Numerical schemes Experiments Acknowledgements

Iterative schemes for the eigenstates

The Newton scheme

The Schrödinger equation
We compute selected eigenvalues and relative eigenvectors of the Schrödinger
matrices (one for each valley ν and each longitudinal position i)

Lν,i =



d0 e0

e0 d1 e1

e1 d2 e2

. . .
. . .

. . .
en−3 dn−2 en−2

en−2 dn−1



The model Numerical schemes Experiments Acknowledgements

Iterative schemes for the eigenstates

The Newton scheme

The linear system

At iteration k, we refine the potential V by L(k) V(k+1) = R(k).

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

The system has bandwidth 2 Nz + 1, and contains non-local terms.

The model Numerical schemes Experiments Acknowledgements

CUDA model of programming

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups

The model Numerical schemes Experiments Acknowledgements

CUDA model of programming

Cuda programming model on GPU
Programming Model

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v9.0 | 10

Grid

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Figure 6 Grid of Thread Blocks

The number of threads per block and the number of blocks per grid specified in the
<<<...>>> syntax can be of type int or dim3. Two-dimensional blocks or grids can be
specified as in the example above.

Each block within the grid can be identified by a one-dimensional, two-dimensional,
or three-dimensional index accessible within the kernel through the built-in blockIdx
variable. The dimension of the thread block is accessible within the kernel through the
built-in blockDim variable.

(from book CUDA C Programming Guide)

The model Numerical schemes Experiments Acknowledgements

CUDA model of programming

Some remarks on the Cuda implementation

Fine grain
To be exploited as much as possible: many threads, each of them with a light weight.

Shared memory
Use of block’s shared memory to minimize reads from DRAM or to load data from
DRAM in a coalescent manner.

Avoid transfer of information
The amount of information being copied between the RAM of the CPU and the GPU
should be kept as small as possible.

Exploit warps
Warps are groups of 32 threads. They are physically executed concurrently at
hardware level and can exchange information in the fastest way.

The model Numerical schemes Experiments Acknowledgements

CUDA model of programming

Some remarks on the Cuda implementation

Fine grain
To be exploited as much as possible: many threads, each of them with a light weight.

Shared memory
Use of block’s shared memory to minimize reads from DRAM or to load data from
DRAM in a coalescent manner.

Avoid transfer of information
The amount of information being copied between the RAM of the CPU and the GPU
should be kept as small as possible.

Exploit warps
Warps are groups of 32 threads. They are physically executed concurrently at
hardware level and can exchange information in the fastest way.

The model Numerical schemes Experiments Acknowledgements

CUDA model of programming

Some remarks on the Cuda implementation

Fine grain
To be exploited as much as possible: many threads, each of them with a light weight.

Shared memory
Use of block’s shared memory to minimize reads from DRAM or to load data from
DRAM in a coalescent manner.

Avoid transfer of information
The amount of information being copied between the RAM of the CPU and the GPU
should be kept as small as possible.

Exploit warps
Warps are groups of 32 threads. They are physically executed concurrently at
hardware level and can exchange information in the fastest way.

The model Numerical schemes Experiments Acknowledgements

CUDA model of programming

Some remarks on the Cuda implementation

Fine grain
To be exploited as much as possible: many threads, each of them with a light weight.

Shared memory
Use of block’s shared memory to minimize reads from DRAM or to load data from
DRAM in a coalescent manner.

Avoid transfer of information
The amount of information being copied between the RAM of the CPU and the GPU
should be kept as small as possible.

Exploit warps
Warps are groups of 32 threads. They are physically executed concurrently at
hardware level and can exchange information in the fastest way.

The model Numerical schemes Experiments Acknowledgements

Schemes’ implementation on CUDA

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups

The model Numerical schemes Experiments Acknowledgements

Schemes’ implementation on CUDA

The eigenvalues

Bisection/Multisection

Iterative method: selected eigenvalue lie inside shrinking intervals.

We assign one eigenvalue to each warp.

ε ε ε ε ε ε
0 1 2 3 4 5

σ=0

σ=1

σ=2

σ=3

σ=4

σ=5

σ=6

Some more details

Shared memory is exploited in order to read in a coalescent way from the
matrices Lν,i.
Shuffle functions are used to perform reductions at warp level.

Some data are declared as volatile in order to prevent the compiler from
trying any optimization and introduce rush conflicts.

The model Numerical schemes Experiments Acknowledgements

Schemes’ implementation on CUDA

The eigenvalues

Bisection/Multisection

Iterative method: selected eigenvalue lie inside shrinking intervals.

We assign one eigenvalue to each warp.

ε ε ε ε ε ε
0 1 2 3 4 5

σ=0

σ=1

σ=2

σ=3

σ=4

σ=5

σ=6

Some more details

Shared memory is exploited in order to read in a coalescent way from the
matrices Lν,i.
Shuffle functions are used to perform reductions at warp level.

Some data are declared as volatile in order to prevent the compiler from
trying any optimization and introduce rush conflicts.

The model Numerical schemes Experiments Acknowledgements

Schemes’ implementation on CUDA

The eigenvectors

Parallel Cyclic Reduction
Once the eigenvalues have been computed, in order to obtain the eigenvectors we
solve tridiagonal (non-symmetric) linear systems by the PCR algorithm



d̃0 e0
e0 d̃1 e1

e1 d̃2 e2

. . .
. . .

. . .
ej−2 d̃j−1 ej−1

0 1 0
ej d̃j+1 ej+1

. . .
. . .

. . .
en−2 d̃n−1





ψ0
ψ1
ψ2

.

.

.
ψj−1
ψj
ψj+1

.

.

.
ψn−1



=



0
0
0

.

.

.
0
1
0

.

.

.
0



.

Some remarks

PCR is not very efficient but very parallel.

One block per linear system, of size multiple of 32.

The model Numerical schemes Experiments Acknowledgements

Schemes’ implementation on CUDA

Updating potential

Jacobi scheme
Jacobi iterative algorithm is very parallel but also particularly inefficient.

Relaxed Jacobi scheme
Suppose we are solving (for the sake of lighter notations) linear system A x = b.
If we decompose matrix A as L + D + U, the relaxed Jacobi iteration of parameter
ω > 0 reads

Lωx := M−1
ω Nωx + M−1

ω b.

where
Mω :=

1
ω

D, Nω :=
1− ω
ω

D− L− U.

The model Numerical schemes Experiments Acknowledgements

Schemes’ implementation on CUDA

Updating potential

Successive Relaxed Jacobi (SRJ) scheme
The SRJ consists in defining sequences of relaxed Jacobi steps:

L := LωP ◦ . . . ◦LωP︸ ︷︷ ︸
qP times

◦ · · · ◦Lω2 ◦ . . . ◦Lω2︸ ︷︷ ︸
q2 times

◦Lω1 ◦ . . . ◦Lω1︸ ︷︷ ︸
q1 times

and updating the guess for the solution of system A · x = b using these:

x(`+1) = Lx(`).

We shall use the following parameters: P = 7 for the number of SRJ “blocks”,
q1 = q2 = . . . = q7 = 93 for the iterations inside each “block”, and as relaxation
parameters

ω1 = 370.035, ω2 = 167.331, ω3 = 51.1952, ω4 = 13.9321

ω5 = 3.80777, ω6 = 1.18727, ω7 = 0.556551.

The model Numerical schemes Experiments Acknowledgements

Speedups

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups

The model Numerical schemes Experiments Acknowledgements

Speedups

Performances of the code

Overview

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

O
penM

P-16-cores

Tesla-R
TX-2080

Tesla-K40

Tesla-V100

speedup
4.0

speedup
5.7

speedup
24.2

a
b

s
o

lu
te

 w
e

ig
h

t
(i
n

 s
e

c
o

n
d

s
)

BTE
dens

iter
other

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

O
penM

P-16-cores

Tesla-R
TX-2080

Tesla-K40

Tesla-V100

re
la

ti
v
e

 w
e

ig
h

t
o

v
e

r
o

n
e

 s
te

p
 (

p
e

rc
e

n
ta

g
e

)

BTE
dens

iter
other

The model Numerical schemes Experiments Acknowledgements

Speedups

Performances of the code

The Schrödinger-Poisson block

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

O
penM

P-16-cores

Tesla-R
TX-2080

Tesla-K40

Tesla-V100

speedup
6.4

speedup
3.9

speedup
7.1

a
b

s
o

lu
te

 w
e

ig
h

t
(i
n

 s
e

c
o

n
d

s
)

iter.eigenstates
iter.NRkernel

iter.constrlinsys
iter.solvelinsys

other

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

O
penM

P-16-cores

Tesla-R
TX-2080

Tesla-K40

Tesla-V100

re
la

ti
v
e

 w
e

ig
h

t
o

v
e

r
o

n
e

 s
te

p
 (

p
e

rc
e

n
ta

g
e

)

iter.eigenstates
iter.NRkernel

iter.constrlinsys
iter.solvelinsys

other

The model Numerical schemes Experiments Acknowledgements

Speedups

Performances of the code

CUDA kernels of the Schrödinger-Poisson block

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

RTX
2080

K40
V100

a
v
e
ra

g
e
 e

x
e
c
u
ti

o
n
 t

im
e
 [

m
s
]

Kernels for the computation of the eigenstates

GPU matrix vector product3
cuda compute kernel 4

tridiag solve 2
GPU update x 2

cuda constr linsys
cuda eigenvalues NewtonRaphson

The model Numerical schemes Experiments Acknowledgements

GRAZIE!

The authors acknowledge Spanish projects MTM2011-27739-C04-02 and
MTM2014-52056-P and the European Fund for Development.

	The model
	Introduction
	Historical perspective

	Numerical schemes
	Iterative schemes for the eigenstates
	CUDA model of programming
	Schemes' implementation on CUDA

	Experiments
	Speedups

	Acknowledgements

