
The model Numerical schemes Experiments Acknowledgements

GPU implementation of a Schrödinger–Poisson
solver for a nanoscaled DG MOSFET

Francesco Vecil, José Miguel Mantas

ECMI 2021, online, 2021/04/15



The model Numerical schemes Experiments Acknowledgements

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups



The model Numerical schemes Experiments Acknowledgements

Introduction

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups



The model Numerical schemes Experiments Acknowledgements

Introduction

Geometry

Photoshop impression from TEM images of real interfaces
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Introduction

The modeling

Transversal dimension

Schödinger–Poisson block
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Historical perspective

Historical perspective

Naoufel Ben Abdallah, María J. Cáceres, José Antonio Carrillo F. Vecil, A
deterministic solver for a hybrid quantum-classical transport model in
nanoMOSFETs, Journal of Computational Physics Volume 228, Issue 17, 2009,
Pages 6553–6571.

José M. Mantas, Mará J. Cáceres, Carlos Sampedro, Andrés Godoy, Francisco
Gámiz, A parallel deterministic solver for the Schrödinger-Poisson-Boltzmann
system in ultra-short DG-MOSFETs: Comparison with Monte-Carlo,
Computers and Mathematics with Applications, Volume 67, Issue 9, 2014,
Pages 1703–1721.

José M. Mantas, Francesco Vecil, Hybrid OpenMP-CUDA parallel
implementation of a deterministic solver for ultrashort DG-MOSFETs, The
International Journal of High Performance Computing Applications, Volume
34, Issue 1, 2020, Pages 81–102.



The model Numerical schemes Experiments Acknowledgements

Iterative schemes for the eigenstates

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups



The model Numerical schemes Experiments Acknowledgements

Iterative schemes for the eigenstates

The Newton scheme

Reminder
We recall here the Schrödinger–Poisson block for the computation of the advection
field:

−~2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = εν,p[V]ψν,p[V]

−divx,z [εR∇x,zV] = − q
ε0

(
2
∑
ν,p

%ν,p |ψν,p[V]|2 − ND

)
.

Blackbox

%ν,p(x) −→ Schrödinger–Poisson block −→ εν,p(x), ψν,p(x, z), V(x, z).

Strategy
Using an iterative method: the Newton-Raphson scheme. This leads to iteratively
solving a linear system and an eigenvalue/eigenvector problem.
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Iterative schemes for the eigenstates

The Newton scheme
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Iterative schemes for the eigenstates

The Newton scheme

The Schrödinger equation
We compute selected eigenvalues and relative eigenvectors of the Schrödinger
matrices (one for each valley ν and each longitudinal position i)

Lν,i =



d0 e0

e0 d1 e1

e1 d2 e2

. . .
. . .

. . .
en−3 dn−2 en−2

en−2 dn−1





The model Numerical schemes Experiments Acknowledgements

Iterative schemes for the eigenstates

The Newton scheme

The linear system

At iteration k, we refine the potential V by L(k) V(k+1) = R(k).
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The system has bandwidth 2 Nz + 1, and contains non-local terms.



The model Numerical schemes Experiments Acknowledgements

CUDA model of programming

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups



The model Numerical schemes Experiments Acknowledgements

CUDA model of programming

Cuda programming model on GPU
Programming Model

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v9.0 | 10

Grid

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Figure 6 Grid of Thread Blocks

The number of threads per block and the number of blocks per grid specified in the
<<<...>>> syntax can be of type int or dim3. Two-dimensional blocks or grids can be
specified as in the example above.

Each block within the grid can be identified by a one-dimensional, two-dimensional,
or three-dimensional index accessible within the kernel through the built-in blockIdx
variable. The dimension of the thread block is accessible within the kernel through the
built-in blockDim variable.

(from book CUDA C Programming Guide)
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CUDA model of programming

Some remarks on the Cuda implementation

Fine grain
To be exploited as much as possible: many threads, each of them with a light weight.

Shared memory
Use of block’s shared memory to minimize reads from DRAM or to load data from
DRAM in a coalescent manner.

Avoid transfer of information
The amount of information being copied between the RAM of the CPU and the GPU
should be kept as small as possible.

Exploit warps
Warps are groups of 32 threads. They are physically executed concurrently at
hardware level and can exchange information in the fastest way.
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Schemes’ implementation on CUDA

The eigenvalues

Bisection/Multisection

Iterative method: selected eigenvalue lie inside shrinking intervals.

We assign one eigenvalue to each warp.

ε ε ε ε ε ε
0 1 2 3 4 5

σ=0

σ=1

σ=2

σ=3

σ=4

σ=5

σ=6

Some more details

Shared memory is exploited in order to read in a coalescent way from the
matrices Lν,i.
Shuffle functions are used to perform reductions at warp level.

Some data are declared as volatile in order to prevent the compiler from
trying any optimization and introduce rush conflicts.
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Schemes’ implementation on CUDA

The eigenvectors

Parallel Cyclic Reduction
Once the eigenvalues have been computed, in order to obtain the eigenvectors we
solve tridiagonal (non-symmetric) linear systems by the PCR algorithm



d̃0 e0
e0 d̃1 e1

e1 d̃2 e2

. . .
. . .

. . .
ej−2 d̃j−1 ej−1

0 1 0
ej d̃j+1 ej+1

. . .
. . .

. . .
en−2 d̃n−1




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

=


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

.

Some remarks

PCR is not very efficient but very parallel.

One block per linear system, of size multiple of 32.
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Schemes’ implementation on CUDA

Updating potential

Jacobi scheme
Jacobi iterative algorithm is very parallel but also particularly inefficient.

Relaxed Jacobi scheme
Suppose we are solving (for the sake of lighter notations) linear system A x = b.
If we decompose matrix A as L + D + U, the relaxed Jacobi iteration of parameter
ω > 0 reads

Lωx := M−1
ω Nωx + M−1

ω b.

where
Mω :=

1
ω

D, Nω :=
1− ω
ω

D− L− U.
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Schemes’ implementation on CUDA

Updating potential

Successive Relaxed Jacobi (SRJ) scheme
The SRJ consists in defining sequences of relaxed Jacobi steps:

L := LωP ◦ . . . ◦LωP︸ ︷︷ ︸
qP times

◦ · · · ◦Lω2 ◦ . . . ◦Lω2︸ ︷︷ ︸
q2 times

◦Lω1 ◦ . . . ◦Lω1︸ ︷︷ ︸
q1 times

and updating the guess for the solution of system A · x = b using these:

x(`+1) = Lx(`).

We shall use the following parameters: P = 7 for the number of SRJ “blocks”,
q1 = q2 = . . . = q7 = 93 for the iterations inside each “block”, and as relaxation
parameters

ω1 = 370.035, ω2 = 167.331, ω3 = 51.1952, ω4 = 13.9321

ω5 = 3.80777, ω6 = 1.18727, ω7 = 0.556551.
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Speedups

Performances of the code

Overview
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Speedups

Performances of the code

The Schrödinger-Poisson block
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Speedups

Performances of the code

CUDA kernels of the Schrödinger-Poisson block
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Kernels for the computation of the eigenstates

GPU matrix vector product3
cuda compute kernel 4
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