
The model Numerical schemes Experiments Future work Acknowledgements

CUDA port to GPU of a
Boltzmann–Schrödinger–Poisson solver for

confined devices

Francesco Vecil, José Miguel Mantas, Pedro Alonso–Jordá

ECMI 2023, Wrocław, 2023/06/27

The model Numerical schemes Experiments Future work Acknowledgements

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups

4 Future work
Future work

The model Numerical schemes Experiments Future work Acknowledgements

Introduction

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups

4 Future work
Future work

The model Numerical schemes Experiments Future work Acknowledgements

Introduction

The modeling: transversal dimension

so
u
rc

e
co

n
ta

ct

d
ra

in
 c

o
n
ta

ct

upper gate

lower gate

source channel drain

silicon oxide layer

silicon oxide layer

Schödinger–Poisson block

−ℏ2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = ϵν,p[V]ψν,p[V]

−divx,z [εR∇x,zV] = − q
ε0

(
2
∑
ν,p

ϱν,p |ψν,p[V]|2 − ND

)
.

Longitudinal dimension

The description of the transport from source to drain is outside the scope of this talk.

The model Numerical schemes Experiments Future work Acknowledgements

Historical perspective

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups

4 Future work
Future work

The model Numerical schemes Experiments Future work Acknowledgements

Historical perspective

Historical perspective

1 Naoufel Ben Abdallah, María J. Cáceres, José Antonio Carrillo F. Vecil, A
deterministic solver for a hybrid quantum-classical transport model in
nanoMOSFETs, Journal of Computational Physics Volume 228, Issue 17, 2009,
Pages 6553–6571.

2 José M. Mantas, Mará J. Cáceres, Carlos Sampedro, Andrés Godoy, Francisco
Gámiz, A parallel deterministic solver for the Schrödinger-Poisson-Boltzmann
system in ultra-short DG-MOSFETs: Comparison with Monte-Carlo,
Computers and Mathematics with Applications, Volume 67, Issue 9, 2014,
Pages 1703–1721.

3 José M. Mantas, Francesco Vecil, Hybrid OpenMP-CUDA parallel
implementation of a deterministic solver for ultrashort DG-MOSFETs, The
International Journal of High Performance Computing Applications, Volume
34, Issue 1, 2020, Pages 81–102.

4 Francesco Vecil, José M. Mantas, Pedro Alonso–Jordá Efficient GPU
implementation of a Boltzmann-Schrödinger-Poisson solver for the simulation
of nanoscale DG MOSFETs, The Journal of Supercomputing, 2023, Pages
1–32.

The model Numerical schemes Experiments Future work Acknowledgements

Iterative schemes for the eigenstates

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups

4 Future work
Future work

The model Numerical schemes Experiments Future work Acknowledgements

Iterative schemes for the eigenstates

The iterative scheme

Reminder
We recall here the Schrödinger–Poisson block for the computation of the advection
field:

−ℏ2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = ϵν,p[V]ψν,p[V]

−divx,z [εR∇x,zV] = − q
ε0

(
2
∑
ν,p

ϱν,p |ψν,p[V]|2 − ND

)
.

Blackbox

ϱν,p(x) −→ Schrödinger–Poisson block −→ ϵν,p(x), ψν,p(x, z), V(x, z).

Strategy
Using an iterative method: Newton-Raphson or Gummel scheme. This leads to
iteratively solving a linear system and an eigenvalue/eigenvector problem.

The model Numerical schemes Experiments Future work Acknowledgements

Iterative schemes for the eigenstates

The iterative scheme

Reminder
We recall here the Schrödinger–Poisson block for the computation of the advection
field:

−ℏ2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = ϵν,p[V]ψν,p[V]

−divx,z [εR∇x,zV] = − q
ε0

(
2
∑
ν,p

ϱν,p |ψν,p[V]|2 − ND

)
.

Blackbox

ϱν,p(x) −→ Schrödinger–Poisson block −→ ϵν,p(x), ψν,p(x, z), V(x, z).

Strategy
Using an iterative method: Newton-Raphson or Gummel scheme. This leads to
iteratively solving a linear system and an eigenvalue/eigenvector problem.

The model Numerical schemes Experiments Future work Acknowledgements

Iterative schemes for the eigenstates

The iterative scheme

The model Numerical schemes Experiments Future work Acknowledgements

Iterative schemes for the eigenstates

The iterative scheme

The Schrödinger equation
We compute selected eigenvalues and relative eigenvectors of the Schrödinger
matrices (one for each valley ν and each longitudinal position i)

Lν,i =

d0 e0

e0 d1 e1

e1 d2 e2

. . .
. . .

. . .
en−3 dn−2 en−2

en−2 dn−1

The model Numerical schemes Experiments Future work Acknowledgements

Iterative schemes for the eigenstates

The iterative scheme

The linear system

At iteration k, we refine the potential V by L(k) V(k+1) = R(k).

 0

 50

 100

 150

 200

 250

 0 50 100 150 200 250

The system has bandwidth 2 Nz + 1, and contains non-local terms.

The model Numerical schemes Experiments Future work Acknowledgements

CUDA model of programming

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups

4 Future work
Future work

The model Numerical schemes Experiments Future work Acknowledgements

CUDA model of programming

Cuda programming model on GPU
Programming Model

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v9.0 | 10

Grid

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Figure 6 Grid of Thread Blocks

The number of threads per block and the number of blocks per grid specified in the
<<<...>>> syntax can be of type int or dim3. Two-dimensional blocks or grids can be
specified as in the example above.

Each block within the grid can be identified by a one-dimensional, two-dimensional,
or three-dimensional index accessible within the kernel through the built-in blockIdx
variable. The dimension of the thread block is accessible within the kernel through the
built-in blockDim variable.

(from book CUDA C Programming Guide)

The model Numerical schemes Experiments Future work Acknowledgements

CUDA model of programming

Cuda programming model on GPU

(from book CUDA C Programming Guide)

The model Numerical schemes Experiments Future work Acknowledgements

CUDA model of programming

Cuda programming model on GPU: how it looks like

Allocation of the GPU memory

Implementation of a kerel

Call to the kerel

Object compilation

The model Numerical schemes Experiments Future work Acknowledgements

CUDA model of programming

Some remarks on the Cuda implementation

Fine grain
To be exploited as much as possible: many threads, each of them with a light weight.

Shared memory: avoid costly transfer of information
The amount of information being copied between the RAM of the CPU and the GPU
should be kept as small as possible.
Use of block’s shared memory to minimize reads from DRAM or to load data from
DRAM in a coalescent manner.

Exploit warps
Warps are groups of 32 threads. They are physically executed concurrently at
hardware level and can exchange information in the fastest way.

The model Numerical schemes Experiments Future work Acknowledgements

CUDA model of programming

Some remarks on the Cuda implementation

Fine grain
To be exploited as much as possible: many threads, each of them with a light weight.

Shared memory: avoid costly transfer of information
The amount of information being copied between the RAM of the CPU and the GPU
should be kept as small as possible.
Use of block’s shared memory to minimize reads from DRAM or to load data from
DRAM in a coalescent manner.

Exploit warps
Warps are groups of 32 threads. They are physically executed concurrently at
hardware level and can exchange information in the fastest way.

The model Numerical schemes Experiments Future work Acknowledgements

CUDA model of programming

Some remarks on the Cuda implementation

Fine grain
To be exploited as much as possible: many threads, each of them with a light weight.

Shared memory: avoid costly transfer of information
The amount of information being copied between the RAM of the CPU and the GPU
should be kept as small as possible.
Use of block’s shared memory to minimize reads from DRAM or to load data from
DRAM in a coalescent manner.

Exploit warps
Warps are groups of 32 threads. They are physically executed concurrently at
hardware level and can exchange information in the fastest way.

The model Numerical schemes Experiments Future work Acknowledgements

Schemes’ implementation on CUDA

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups

4 Future work
Future work

The model Numerical schemes Experiments Future work Acknowledgements

Schemes’ implementation on CUDA

Reminder

Three computational phases:

selected eigenvalues (usually 6) of ∼ 1000 matrices

their relative eigenvectors

banded linear system of order ∼ 4000

The model Numerical schemes Experiments Future work Acknowledgements

Schemes’ implementation on CUDA

The eigenvalues

Newton-Raphson
Iterative method. We give an eigenvalue to each thread. The seeding is by the
eigenvalues computed at the previous stage.
The implementation does not use any sophisticated technique worth mentioning.

Seeding
In order to converge to the correct eigenvalues, the algorithm must be initialized not
too far from the target value. It is therefore used only after the first step, at which the
robust bisection algorithm is used, which only requires an interval.

The model Numerical schemes Experiments Future work Acknowledgements

Schemes’ implementation on CUDA

The eigenvectors

IPIM
The Inverse Power Iterative Method (IPIM) is used.
To approximate eigenvector ψν,p,i,· we iterate, until a certain tolerance parameter is
fulfilled:

ψ
(0)
ν,p,i,· ∈ RNz−2 is given

for k ≥ 0

solve (Lν,i − ϵν,p,i)ψ(k+1)
ν,p,i,· = ψ

(k)
ν,p,i,·

normalize ψ(k+1)
ν,p,i,j ←−

ψ
(k+1)
ν,p,i,j∥∥∥ψ(k+1)
ν,p,i,·

∥∥∥
The linear system
In order to solve the linear system, Thomas algorithm is used.

The model Numerical schemes Experiments Future work Acknowledgements

Schemes’ implementation on CUDA

Updating potential

Jacobi scheme
Jacobi iterative algorithm is very parallel but also particularly inefficient.

Relaxed Jacobi scheme
Suppose we are solving (for the sake of lighter notations) linear system A x = b.
If we decompose matrix A as L + D + U, the relaxed Jacobi iteration of parameter
ω > 0 reads

Lωx := M−1
ω Nωx + M−1

ω b.

where
Mω :=

1
ω

D, Nω :=
1− ω
ω

D− L− U.

The model Numerical schemes Experiments Future work Acknowledgements

Schemes’ implementation on CUDA

Updating potential

Scheduled-Relaxation Jacobi (SRJ) scheme
The SRJ consists in defining sequences of relaxed Jacobi steps:

L := LωP ◦ . . . ◦LωP︸ ︷︷ ︸
qP times

◦ · · · ◦Lω2 ◦ . . . ◦Lω2︸ ︷︷ ︸
q2 times

◦Lω1 ◦ . . . ◦Lω1︸ ︷︷ ︸
q1 times

and updating the guess for the solution of system A · x = b using these:

x(ℓ+1) = Lx(ℓ).

Avoiding rounding errors
In practice, we do not use ωℓ consecutive steps with parameter qℓ. Rather, we
“shuffle” the relaxation steps, to avoid rounding errors.
The way they follow each other is of fundamental relevance for the stability.

The model Numerical schemes Experiments Future work Acknowledgements

Schemes’ implementation on CUDA

Updating potential

Avoiding rounding errors
For example, the following sequence proves stable

387.38, 0.53448, 0.87254, 1.9628, 0.53448, 5.1286, 0.53448, 0.87254, 14.127,
0.53448, 0.87254, 1.9628, 0.53448, 1.9628, .53448, 38.971, 0.53448, 0.87254,
1.9628, 0.53448, 5.1286, 0.53448, 0.87254, 5.1286, 0.87254, 0.87254, 102.42,
0.53448, 0.87254, 1.9628, 0.53448, 5.1286, 0.53448, 0.87254, 14.127, 0.87254,
0.53448, 0.87254, 1.9628, 0.53448, 14.127, 0.87254, 0.53448, 1.9628, 1.9628,
0.53448, 38.971, 0.53448, 0.87254, 1.9628, 0.53448, 5.1286, 0.53448, 0.87254,
233.47, 0.53448, 0.87254, 1.9628, 0.53448, 5.1286, 0.53448, 0.87254, 5.1286,
0.87254, 0.87254, 14.127, 0.53448, 0.87254, 1.9628, 0.53448, 1.9628, 0.53448,
38.971, 0.53448, 0.87254, 1.9628, 0.53448, 5.1286, 0.53448, 0.87254, 5.1286,
0.53448, 0.87254, 102.42, 0.87254, 0.87254, 0.53448, 1.9628, 5.1286, 0.53448,
0.87254, 14.127, 0.53448, 0.87254, 1.9628, 0.53448, 14.127, 0.53448, 0.87254,
1.9628, 0.53448, 1.9628, 1.9628, 0.53448, 0.87254, 0.87254, 0.53448, 0.53448

while, if we choose an unsuitable order, the magnitude of the solution vector may
explode and contract even by 14-15 orders, hence leading to rounding errors.

The model Numerical schemes Experiments Future work Acknowledgements

Speedups

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups

4 Future work
Future work

The model Numerical schemes Experiments Future work Acknowledgements

Speedups

Performances of the code

The Schrödinger-Poisson block

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

C
PU

 16 cores

R
TX 3090

Tesla V100

speedup
8.4

speedup
93.2

speedup
129.6

a
b

s
o

lu
te

 w
e

ig
h

t
(i
n

 s
e

c
o

n
d

s
)

iter.eigen
iter.Frechet

iter.constrlinsys
iter.solvelinsys

The model Numerical schemes Experiments Future work Acknowledgements

Speedups

Performances of the code

Phases of the Schrödinger-Poisson block

 0

 200

 400

 600

 800

 1000

 1200

 1400

C
PU

 16 cores

R
TX 3090

Tesla V100

s
p

e
e

d
u

p

iter.eigen
iter.Frechet

iter.constrlinsys
iter.solvelinsys

The model Numerical schemes Experiments Future work Acknowledgements

Future work

Outline

1 The model
Introduction
Historical perspective

2 Numerical schemes
Iterative schemes for the eigenstates
CUDA model of programming
Schemes’ implementation on CUDA

3 Experiments
Speedups

4 Future work
Future work

The model Numerical schemes Experiments Future work Acknowledgements

Future work

Future work

Add the roughness scattering phenomenon.

Make the code available.

Split the computation of the eigenstates from the rest.

Extend or modify the code to simulate other objects.

The model Numerical schemes Experiments Future work Acknowledgements

GRAZIE!

The authors acknowledge Spanish projects MTM2011-27739-C04-02,
MTM2014-52056-P, PID2020-117846GB-I00, and the European Fund for
Development.

	The model
	Introduction
	Historical perspective

	Numerical schemes
	Iterative schemes for the eigenstates
	CUDA model of programming
	Schemes' implementation on CUDA

	Experiments
	Speedups

	Future work
	Future work

	Acknowledgements

