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Introduction

Geometry

Photoshop impression from TEM images of real interfaces

The model
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Introduction

The modeling: transversal dimension
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Schödinger–Poisson block

−ℏ2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = ϵν,p[V]ψν,p[V]

−divx,z [εR∇x,zV] = − q
ε0

(
2
∑
ν,p

ϱν,p |ψν,p[V]|2 − ND

)
.

Longitudinal dimension

The description of the transport from source to drain is outside the scope of this talk.
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Historical perspective

Historical perspective
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Iterative schemes for the eigenstates

The iterative scheme

Reminder
We recall here the Schrödinger–Poisson block for the computation of the advection
field:

−ℏ2

2
d
dz

[
1

mz,ν

dψν,p[V]

dz

]
− q (V + Vc)ψν,p[V] = ϵν,p[V]ψν,p[V]

−divx,z [εR∇x,zV] = − q
ε0

(
2
∑
ν,p

ϱν,p |ψν,p[V]|2 − ND

)
.

Algorithmically

ϱν,p(x) −→ Schrödinger–Poisson block −→ ϵν,p(x), ψν,p(x, z), V(x, z).

Strategy
Using an iterative method: Newton-Raphson or Gummel scheme. This leads to
iteratively solving a linear system and an eigenvalue/eigenvector problem.
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Iterative schemes for the eigenstates

The iterative scheme

The Schrödinger equation
We compute selected eigenvalues and relative eigenvectors of the Schrödinger
matrices (one for each valley ν and each longitudinal position i)

Lν,i =



d0 e0

e0 d1 e1

e1 d2 e2

. . .
. . .

. . .
en−3 dn−2 en−2

en−2 dn−1


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Iterative schemes for the eigenstates

The iterative scheme

The linear system

At iteration k, we refine the potential V by L(k) V(k+1) = R(k).
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The system has bandwidth 2 Nz + 1, and contains non-local terms.
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CUDA model of programming

Cuda programming model on GPU
Programming Model

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v9.0 | 10

Grid

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Figure 6 Grid of Thread Blocks

The number of threads per block and the number of blocks per grid specified in the
<<<...>>> syntax can be of type int or dim3. Two-dimensional blocks or grids can be
specified as in the example above.

Each block within the grid can be identified by a one-dimensional, two-dimensional,
or three-dimensional index accessible within the kernel through the built-in blockIdx
variable. The dimension of the thread block is accessible within the kernel through the
built-in blockDim variable.

(from book CUDA C Programming Guide)
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CUDA model of programming

Cuda programming model on GPU

(from book CUDA C Programming Guide)
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CUDA model of programming

Cuda programming model on GPU: how it looks like

Allocation of the GPU memory

Implementation of a kerel

Call to the kerel

Object compilation



The model Numerical schemes Experiments Work in progress: surface roughness Future work Acknowledgements

CUDA model of programming

Some remarks on the Cuda implementation

Fine grain
To be exploited as much as possible: many threads, each of them with a light weight.

Shared memory: avoid costly transfer of information
The amount of information being copied between the RAM of the CPU and the GPU
should be kept as small as possible.
Use of block’s shared memory to minimize reads from DRAM or to load data from
DRAM in a coalescent manner.

Exploit warps
Warps are groups of 32 threads. They are physically executed concurrently at
hardware level and can exchange information in the fastest way.
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Schemes’ implementation on CUDA

Reminder

Three computational phases:

selected eigenvalues (usually 6) of ∼ 1000 matrices

their relative eigenvectors

banded linear system of order ∼ 4000
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Schemes’ implementation on CUDA

The eigenvalues

Newton-Raphson
Iterative method. We give an eigenvalue to each thread. The seeding is by the
eigenvalues computed at the previous stage.
The implementation does not use any sophisticated technique worth mentioning.

Seeding
In order to converge to the correct eigenvalues, the algorithm must be initialized not
too far from the target value. It is therefore used only after the first step, at which the
robust bisection algorithm is used, which only requires an interval.
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Schemes’ implementation on CUDA

The eigenvectors

IPIM
The Inverse Power Iterative Method (IPIM) is used.
To approximate eigenvector ψν,p,i,· we iterate, until a certain tolerance parameter is
fulfilled:

ψ
(0)
ν,p,i,· ∈ RNz−2 is given

for k ≥ 0

solve (Lν,i − ϵν,p,i)ψ(k+1)
ν,p,i,· = ψ

(k)
ν,p,i,·

normalize ψ(k+1)
ν,p,i,j ←−

ψ
(k+1)
ν,p,i,j∥∥∥ψ(k+1)
ν,p,i,·

∥∥∥
The linear system
In order to solve the linear system, Thomas algorithm is used.
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Schemes’ implementation on CUDA

Updating potential

Jacobi scheme
Jacobi iterative algorithm is very parallel but also particularly inefficient.

Relaxed Jacobi scheme
Suppose we are solving (for the sake of lighter notations) linear system A x = b.
If we decompose matrix A as L + D + U, the relaxed Jacobi iteration of parameter
ω > 0 reads

Lωx := M−1
ω Nωx + M−1

ω b.

where
Mω :=

1
ω

D, Nω :=
1− ω
ω

D− L− U.
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Schemes’ implementation on CUDA

Updating potential

Scheduled-Relaxation Jacobi (SRJ) scheme
The SRJ consists in defining sequences of relaxed Jacobi steps:

L := LωP ◦ . . . ◦LωP︸ ︷︷ ︸
qP times

◦ · · · ◦Lω2 ◦ . . . ◦Lω2︸ ︷︷ ︸
q2 times

◦Lω1 ◦ . . . ◦Lω1︸ ︷︷ ︸
q1 times

and updating the guess for the solution of system A · x = b using these:

x(ℓ+1) = Lx(ℓ).

Avoiding rounding errors
In practice, we do not use ωℓ consecutive steps with parameter qℓ. Rather, we
“shuffle” the relaxation steps, to avoid rounding errors.
The way they follow each other is of fundamental relevance for the stability.
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Schemes’ implementation on CUDA

Updating potential

Avoiding rounding errors
For example, the following sequence proves stable

387.38, 0.53448, 0.87254, 1.9628, 0.53448, 5.1286, 0.53448, 0.87254, 14.127,
0.53448, 0.87254, 1.9628, 0.53448, 1.9628, .53448, 38.971, 0.53448, 0.87254,
1.9628, 0.53448, 5.1286, 0.53448, 0.87254, 5.1286, 0.87254, 0.87254, 102.42,
0.53448, 0.87254, 1.9628, 0.53448, 5.1286, 0.53448, 0.87254, 14.127, 0.87254,
0.53448, 0.87254, 1.9628, 0.53448, 14.127, 0.87254, 0.53448, 1.9628, 1.9628,
0.53448, 38.971, 0.53448, 0.87254, 1.9628, 0.53448, 5.1286, 0.53448, 0.87254,
233.47, 0.53448, 0.87254, 1.9628, 0.53448, 5.1286, 0.53448, 0.87254, 5.1286,
0.87254, 0.87254, 14.127, 0.53448, 0.87254, 1.9628, 0.53448, 1.9628, 0.53448,
38.971, 0.53448, 0.87254, 1.9628, 0.53448, 5.1286, 0.53448, 0.87254, 5.1286,
0.53448, 0.87254, 102.42, 0.87254, 0.87254, 0.53448, 1.9628, 5.1286, 0.53448,
0.87254, 14.127, 0.53448, 0.87254, 1.9628, 0.53448, 14.127, 0.53448, 0.87254,
1.9628, 0.53448, 1.9628, 1.9628, 0.53448, 0.87254, 0.87254, 0.53448, 0.53448

while, if we choose an unsuitable order, the magnitude of the solution vector may
explode and contract even by 14-15 orders, hence leading to rounding errors.
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Speedups

Performances of the code

The Schrödinger-Poisson block
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Speedups

Performances of the code

Phases of the Schrödinger-Poisson block
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Surface roughness

Surface roughness

1902 J. Electrochem. Sac.: S O L I D - S T A T E  S C I E N C E  A N D  T E C H N O L O G Y  
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Fig. 3. Plot similar to Fig. 1 for thin oxides grown under a postoxi- 
dation anneal process. 
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Fig. 4. Plot of cumulative probability of failures (percent) vs. elec- 
tric field for thin oxides grown under a standard process at 950~ and 
a two-step oxidation process. 
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Fig. 5. Interface trap density vs .  bandgap position for thin oxides 
grown at 950~ with a two-step oxidation process. 

109/cm~-eV, c o m p a r e d  to a va lue  of 2 • 10~~ for ox- 
ides g rown  by the  s tandard  process  at 950~ 

The in t e rmed ia t e  anneal ing  step reduces  not  only the 
defect  densi ty  in the oxides,  but  also the  densi ty  Of inter- 
face traps. 

H R E M  Structural Observat ions 
Figure  6a i l lustrates the th in  oxide  interface morphol -  

ogy for the sample  that  had  u n d e r g o n e  the  s tandard pro- 
cess. It  is ev iden t  that  cons iderable  a tomic-scale  rough- 
ness  exists  at the  in terface  be tween  the substrate  and the  
oxide. The he igh t  of  the  individual  crystal l ine prot rus ions  
above the  single-crystal  region may  be  as m u c h  as 20i  or 
more.  The irregular ,  mot t led  pa t te rn  in the oxide  is typi-  
cal of  the  appearance  of  a m o r p h o u s  materia]s  w h e n  
v iewed  at h igh  magnif ica t ion  us ing H R E M  (12). 

The resul ts  for the sample  which  had unde rgone  the  in- 
t e rmedia te  annea l ing  at 1050~ for l h  are qui te  different. 
As i l lustrated in Fig. 6b, both  interfaces  in this sample  are 
found to be  a tomica l ly  smooth.  No sizable sil icon protru- 

Fig. 6. High resolution electron micrographs illustrating the thin ox- 
ide interface morphologies for samples that had undergone: the 
standard process (a), the two-step oxidation process (b), and the post- 
oxidation anneal process (c). 

sions are observed,  and the degree of  in terface  roughness  
never  exceeds  the  wid th  of a single monolayer .  

Material  wh ich  rece ived  a pos tox ida t ion  anneal  only 
(Fig. 6c) shows a morpho logy  that  is in te rmedia te  be- 
tween those  observed  in the  o ther  two cases. Si/SiO2 in- 
terface roughness  existed,  bu t  not  near ly  on the scale of 
that  encoun te red  in the  s tandard  process  specimen.  

Discussion and Conclusion 
As seen f rom the  results  of the  electr ical  b r e a k d o w n  

vol tage measurement s ,  the in te rmedia te  anneal ing  step is 
more  effect ive than  the  pos tox ida t ion  anneal ing step in 
reduc ing  the  defect  dens i ty  in thin oxides.  Moreover ,  th in  
oxides  g rown at 950 ~ compared  to 900~ produce  reduced  
defect  density.  There  seems to be a definite correlat ion 
be tween  the  electr ical  proper t ies  of th in  oxides  and the  
nature  of  the  Si-SiO2 interface as obse rved  by HREM. The 
smoothes t  in ter face  is obta ined with  the  in te rmedia te  an- 
neal ing step, which- gives the  best  e lectr ical  proper t ies  for 
the  th in  oxides.  

Stress at the  Si-SiO~ interface  is caused by the mis- 
ma tch  be tween  si l icon latt ice spacings and the  restr ic ted 
range of  in te ra tomic  separat ions and bond angles  in the 
amorphous  the rmal  oxide. This molecu la r  mi sma tch  is 
expressed  (13) by the  t h e r m o d y n a m i c  "free v o l u m e  sup- 
ply condi t ion,"  and the release of  stress requires  the oper- 
ation of v iscous  flow in the  oxide  film. It  has also been 
firmly es tabl ished,  th rough  in situ wafer  curva ture  mea- 
su rements  (7), tha t  the  v iscous  flow point  of  thermal ly  
g rown SiO~ on Si is be tween  950 ~ and 975~ The domi-  
nant  free energy  t e r m  in the  init ial  g rowth  reg ime is ex- 
pec ted  to be that  associated with  defects  and strain (13, 
14). In  the absence  of v iscous  flow (as in our  samples  oxi- 
dized at 900~ strains that  a ccumula t e  in the  oxide  are 
not  easily rel ieved.  Thus,  the  addi t ional  energy  requ i red  
to create s t rained oxide  near  any small  in terface  per turba-  
t ion slows d o w n  the  ox ida t ion  react ion locally and leads 
to cont inued  growth  of the  asperity.  

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 130.203.136.75Downloaded on 2016-05-12 to IP 

The real Si/SiO2 interface is not smooth. This affects the properties of the transistor.
The impact of the surface roughness is described as an additional scattering
phenomenon.



The model Numerical schemes Experiments Work in progress: surface roughness Future work Acknowledgements

Surface roughness

Scattering operator

The usual structure of the scattering operator

Qν,p[f ] =
∫
R2

[
S(ν,p,k′)→(ν,p,k)fν,p(k

′)− S(ν,p,k)→(ν,p,k′)fν,p(k)
]

dk′.

The scattering rates are

Sk→k′ = Kupp ·
Iupp
ν,p · δ

(
ϵtot
ν,p(k) − ϵtot

ν,p(k′)
)

(
1 +

|k − k′|2 (λupp
m )2

2

)3/2
+ Klow ·

I low
ν,p · δ

(
ϵtot
ν,p(k) − ϵtot

ν,p(k′)
)

(
1 +

|k − k′|2 (λlow
m )2

2

)3/2
.

The overlap integral is replaced by a first-order approximation for the electric field’s
perturbation:

Iupp
(ν,p)(x) =

∣∣∣∣∫ Lz

0
|ψν,p(x, z)|2

∆Vupp(x, z)
∆upp

m
dz
∣∣∣∣2 .

All the magnitudes will be adimensionalized.
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Surface roughness

Scattering operator
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Surface roughness

Scattering operator

The integrator performs several computational phases:

(i). It stretches by interpolation the total volume density onto the extended domain ž

Ňi,ȷ̌ = li [Ni,·]
(

S−1(̌zȷ̌)
)
.

(ii). It solves on ž the Poisson equation
(
D V̌
)

i,ȷ̌
= −Cp

(
Ňi,ȷ̌ − (ŇD)i,ȷ̌

)
.

(iii). It interpolates (∆Vupp)i,j = Vi,j − LI
[(

V̌
)

i,·

]
(zj), then(

∆V low)
i,j
= Vi,j − LI

[(
V̌
)

i,·

] (
zj +

∆m
Lz

)
.

(iv). It integrates

Iν,p,i =
∆z

Nz−2∑
j=1

(ψν,p,i,j)
2
∆Vupp

i,j

2

︸ ︷︷ ︸
Iupp
ν,p,i

+

∆z
Nz−2∑
j=1

(ψν,p,i,j)
2
∆V low

i,j

2

︸ ︷︷ ︸
Ilow
ν,p,i

.
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Surface roughness

Scattering operator

(v). It computes the gain and loss parts of the scattering operator:

QSR,gain
ν,p,i,ℓ,m = C Iν,p,i sν,ℓ ∆ϕ

Nϕ−1∑
m′=0

Φν,p,i,ℓ,m′ Dν,ℓ,m,m′ (1)

QSR,loss
ν,p,i,ℓ,m = C Iν,p,i sν,ℓ Φν,p,i,ℓ,m D̃ν,ℓ,m. (2)

where

Dν,ℓ,m,m′ =

(
1 + 4(k∗)2 λ2

m wℓ(1 + ανϵ
∗wℓ) sin

2
(
ϕm − ϕm′

2

)
×
[

mx,ν sin
2
(
ϕm + ϕm′

2

)
+ my,ν cos

2
(
ϕm + ϕm′

2

)])−3/2

(3)

D̃ν,ℓ,m =∆ϕ

Nϕ−1∑
m′=0

Dν,ℓ,m,m′ . (4)
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Preliminary results
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Future work

Future work

Validate and optimize the code including the roughness scattering phenomenon.

Make the code available.

Split the computation of the eigenstates from the rest.

Extend or modify the code to simulate other objects.
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