CUDA port to GPU of a
Boltzmann—Schrodinger—Poisson solver for
confined devices

Francesco Vecil, José Miguel Mantas, Pedro Alonso—Jorda

séminaire de 1I’équipe EDPAN, LMPB, 2023/10/19

Outline

o The model
@ Introduction
@ Historical perspective

e Numerical schemes
@ [terative schemes for the eigenstates
@ CUDA model of programming
@ Schemes’ implementation on CUDA

e Experiments
@ Speedups

e Work in progress: surface roughness
@ Surface roughness

e Future work
@ Future work

The model
@000

Introduction

Outline

o The model
@ Introduction

The model
[e] le]e]

Introduction

Geometry

Photoshop impression from TEM images of real interfaces

.
The model
upper gate
silicon oxide layer
g g
£ 2
g i S
> | source channel drain 2
2 e
3 S
2
silicon oxide layer
lower gate
4

The model
[e]e] o]

Introduction

Chronological partial overview

10nm

14nm 2.7x
Intel

Transistor 22nm

Density
MTr/ mm? 10 32nm

45nm

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
HVM Wafer Start Date

The model
[e]e]e]]

Introduction

The modeling: transversal dimension

upper gate

silicon oxide layer

source channel drain

source contact
drain contact

silicon oxide layer

lower gate
Schodinger—Poisson block

md { 1 du, V]

T | 2] a4 vV = VvV

—divy: [er Vi V] = _g (22 ovp [YupVII* = ND) .
vp

Longitudinal dimension

The description of the transport from source to drain is outside the scope of this talk.
V.

—————=— - =

The model

Historical perspective

Outline

o The model

@ Historical perspective

The model

Historical perspective

Historical perspective

@ Naoufel Ben Abdallah, Maria J. Céceres, José Antonio Carrillo F. Vecil, A
deterministic solver for a hybrid quantum-classical transport model in
nanoMOSFETs, Journal of Computational Physics Volume 228, Issue 17, 2009,
Pages 6553-6571.

@ José M. Mantas, Mard J. Céceres, Carlos Sampedro, Andrés Godoy, Francisco
Gémiz, A parallel deterministic solver for the Schrodinger-Poisson-Boltzmann
system in ultra-short DG-MOSFETs: Comparison with Monte-Carlo,
Computers and Mathematics with Applications, Volume 67, Issue 9, 2014,
Pages 1703-1721.

@ José M. Mantas, Francesco Vecil, Hybrid OpenMP-CUDA parallel
implementation of a deterministic solver for ultrashort DG-MOSFETs, The
International Journal of High Performance Computing Applications, Volume
34, Issue 1, 2020, Pages 81-102.

@ Francesco Vecil, José M. Mantas, Pedro Alonso-Jorda Efficient GPU
implementation of a Boltzmann-Schriodinger-Poisson solver for the simulation
of nanoscale DG MOSFETs, The Journal of Supercomputing, 2023, Pages
1-32.

Numerical schemes
@0000

Iterative schemes for the eigenstates

Outline

e Numerical schemes
@ Iterative schemes for the eigenstates

Numerical schemes
[¢] le]e]e}

Iterative schemes for the eigenstates

The iterative scheme

Reminder

‘We recall here the Schrodinger—Poisson block for the computation of the advection
field:

Bd [1 dg,V) B
2 {E T] —q (V4 Vo) YupV] = €vp[VIw,p[V]

)

—divy: [er Ve V] = _g (22 ovp [YupVII* = ND) .
vp

Numerical schemes
[¢] le]e]e}

Iterative schemes for the eigenstates

The iterative scheme

Reminder

‘We recall here the Schrodinger—Poisson block for the computation of the advection

field:
Bd [1 dg,V)
—_—— | — | - c v = €v v \4
o [2] = g v v V] = e V01V
—divy, [erVV] = _g (22 0up |u [V — ND) .
v,p J
Algorithmically

ovplx) — ‘Schrédinger—Poisson block‘ — eup(X), Yup(x,2), V(x,2).

v

Numerical sc
o] lee]

Iterative schemes for the eigenstates

The iterative scheme

Reminder

‘We recall here the Schrodinger—Poisson block for the computation of the advection
field:

mz v dZ

)

_%d% {; M] — g (V+ V) YuslV] = €0 [Vthup[V]

—divy: [er Ve V] = _g (22 ovp [YupVII* = ND) .
vp

Algorithmically

ovplx) — ‘Schrédinger—Poisson block‘ — eup(X), Yup(x,2), V(x,2).

v

Strategy

Using an iterative method: Newton-Raphson or Gummel scheme. This leads to
iteratively solving a linear system and an eigenvalue/eigenvector problem.

= i - = =

Numerical schemes
[e]e] lele}

Iterative schemes for the eigenstates

The iterative scheme

Pick the initial
guess for V.

! Approximate) |

| no eS| Eigenvalues | |

| Using Using I

| (newton-Rapnson Mutisection) | Schrédinger
| | Solution
| |
| !
|

‘Approximate
Eigenvalues

Approximate Eigenvectors
Using Inverse Power lterative Method.

Solve the linear System
using SRJ

Approximate

‘Approximate
Eigenvalues Eigenvalues
Using Using
Newton-Raphson Muitisection | | Schrodinger
| Solution

‘Approximate Eigenvectors
Using Inverse Power lterative Method.

Numerical schemes
[e]e]e] lo}

Iterative schemes for the eigenstates

The iterative scheme

The Schrodinger equation

We compute selected eigenvalues and relative eigenvectors of the Schrodinger
matrices (one for each valley v and each longitudinal position i)

do (1)
() d 1 (4]
el dz [}

€n-3 dn—Z €pn—2
en—2 doi

Numerical schemes
[e]e]e]e] }

Iterative schemes for the eigenstates

The iterative scheme

The linear system

At iteration k, we refine the potential V by LWyt — g,

250 T

200 1

150 T

100 - 1

The system has bandwidth 2 N; + 1, and contains non-local terms.

™ = - =

Numerical schemes
@0000

CUDA model of programming

Outline

e Numerical schemes

@ CUDA model of programming

Numerical schemes

[¢] lele]e}

CUDA model of programming

Cuda programming model on GPU

Grid

Block (0,0) Block (1,0) | Block (2, 0)

Block (0, 1)/" Block (1,1) Block (2, 1)
/ AN

/ / \ N
/ Block (1, 1) \

(from book CUDA C Programming Guide)

Numerical schemes
[e]e] le]e}

CUDA model of programming

Cuda programming model on GPU

SM-0 SM-1
Regicte isters
6 KB pe A100 (256 KB per SM in A100)

ead L1/SMEM
A100 0 {192 KB in A100)

L2 Cache (40 MB in A100)

I

Global Memory (DRAM, 40 GB in A100)

(from book CUDA C Programming Guide)

Numerical schemes
[e]e] o]

CUDA model of programming

Cuda programming model on GPU: how it looks like

Allocation of the GPU memory

cudaMalloc((**)8&_GPU_pdf, _NVALLEYS*NSBN*NX*NW*NPHI*4*

”glotat:

[T
cocaca

= blockIdx.x*blockDim.x + threadIdx.x;

(global_index < _NVALLEYS*NSBN*NX*NW*NPHI)

GPU_map_1D_to_5D(global_index, &L, NX, &nu, _NVALLEYS, &p, NSBN, &L, NW, &m, NPHI);

GPU_pdf(nu,p,i,1,m,1) = GPU_pdf(nu,p,i,1,m,0) + DT*GPU_rhs_pdf(nu,p,i,1,m);

Call to the kerel

ogaDey mas s
cuda_perform_RK_1_3 <<< gridSize, blockSize, shmemSize >>> (device_dm, _GPU_pdf, _GPU_rhs_pdf, DT);

Object compilation

Nuj ical schemes
[e]e]e]e]]

CUDA model of programming

Some remarks on the Cuda implementation

Fine grain

To be exploited as much as possible: many threads, each of them with a light weight.)

Numerical schemes
[e]e]e]e]]

CUDA model of programming

Some remarks on the Cuda implementation

Fine grain

To be exploited as much as possible: many threads, each of them with a light weight.)

Shared memory: avoid costly transfer of information

The amount of information being copied between the RAM of the CPU and the GPU
should be kept as small as possible.

Use of block’s shared memory to minimize reads from DRAM or to load data from
DRAM in a coalescent manner.

Numerical schemes
[e]e]e]e]]

CUDA model of programming

Some remarks on the Cuda implementation

Fine grain

To be exploited as much as possible: many threads, each of them with a light weight.)

Shared memory: avoid costly transfer of information

The amount of information being copied between the RAM of the CPU and the GPU
should be kept as small as possible.

Use of block’s shared memory to minimize reads from DRAM or to load data from
DRAM in a coalescent manner.

Exploit warps

Warps are groups of 32 threads. They are physically executed concurrently at
hardware level and can exchange information in the fastest way.

Schemes’ implementation on CUDA

Outline

e Numerical schemes

@ Schemes’ implementation on CUDA

Numerical schemes
O@00000

Schemes’ implementation on CUDA

Reminder

Three computational phases:
@ selected eigenvalues (usually 6) of ~ 1000 matrices
@ their relative eigenvectors

@ banded linear system of order ~ 4000

Numerical schemes
00@0000

Schemes’ implementation on CUDA

The eigenvalues

Newton-Raphson

Iterative method. We give an eigenvalue to each thread. The seeding is by the
eigenvalues computed at the previous stage.
The implementation does not use any sophisticated technique worth mentioning.

Seeding

In order to converge to the correct eigenvalues, the algorithm must be initialized not
too far from the target value. It is therefore used only after the first step, at which the
robust bisection algorithm is used, which only requires an interval.

Numerical schemes
000e000

Schemes’ implementation on CUDA

The eigenvectors

IPIM

The Inverse Power Iterative Method (IPIM) is used.
To approximate eigenvector 1), p, ;. We iterate, until a certain tolerance parameter is

fulfilled:
° wi?,),,,-f € RY~2 is given
@ fork>0
e solve (E’/,i - 61’7!’71') wulf;:ll,) = 1?:;);,;‘,»
D
o normalize wilf;il} 7" ?kill‘;
v,p,i,- ‘

The linear system

In order to solve the linear system, Thomas algorithm is used.

Numerical schemes
0000800

Schemes’ implementation on CUDA

Updating potential

Jacobi scheme

Jacobi iterative algorithm is very parallel but also particularly inefficient.

Relaxed Jacobi scheme

Suppose we are solving (for the sake of lighter notations) linear system A x = b.
If we decompose matrix A as L + D + U, the relaxed Jacobi iteration of parameter
w > 0 reads
Lox:=M_'Nox +M_'b.
where

M,=1p, N,=1"%p_rL_u.
w

Numerical schemes
0000080

Schemes’ implementation on CUDA

Updating potential

Scheduled-Relaxation Jacobi (SRJ) scheme
The SRIJ consists in defining sequences of relaxed Jacobi steps:
L:=L,,0...0L,,0---0Ly,0...0L,0L, 0...0L,,

—————
qp times ¢, times ¢; times

and updating the guess for the solution of system A - x = b using these:

D — O

Avoiding rounding errors

In practice, we do not use w, consecutive steps with parameter g,. Rather, we
“shuffle” the relaxation steps, to avoid rounding errors.
The way they follow each other is of fundamental relevance for the stability.

Numerical schemes
0O00000e

Schemes’ implementation on CUDA

Updating potential

Avoiding rounding errors

For example, the following sequence proves stable

387.38,0.53448, 0.87254, 1.9628, 0.53448, 5.1286, 0.53448, 0.87254, 14.127,
0.53448, 0.87254, 1.9628, 0.53448, 1.9628, .53448, 38.971, 0.53448, 0.87254,
1.9628, 0.53448, 5.1286, 0.53448, 0.87254, 5.1286, 0.87254, 0.87254, 102.42,
0.53448, 0.87254, 1.9628, 0.53448, 5.1286, 0.53448, 0.87254, 14.127, 0.87254,
0.53448, 0.87254, 1.9628, 0.53448, 14.127, 0.87254, 0.53448, 1.9628, 1.9628,
0.53448, 38.971, 0.53448, 0.87254, 1.9628, 0.53448, 5.1286, 0.53448, 0.87254,
233.47, 0.53448, 0.87254, 1.9628, 0.53448, 5.1286, 0.53448, 0.87254, 5.1286,
0.87254, 0.87254, 14.127, 0.53448, 0.87254, 1.9628, 0.53448, 1.9628, 0.53448,
38.971, 0.53448, 0.87254, 1.9628, 0.53448, 5.1286, 0.53448, 0.87254, 5.1286,
0.53448, 0.87254, 102.42, 0.87254, 0.87254, 0.53448, 1.9628, 5.1286, 0.53448,
0.87254, 14.127, 0.53448, 0.87254, 1.9628, 0.53448, 14.127, 0.53448, 0.87254,
1.9628, 0.53448, 1.9628, 1.9628, 0.53448, 0.87254, 0.87254, 0.53448, 0.53448

while, if we choose an unsuitable order, the magnitude of the solution vector may
explode and contract even by 14-15 orders, hence leading to rounding errors.

—_——r = - =3

Experiments

Speedups

Outline

e Experiments
@ Speedups

Experiments

Speedups

Performances of the code

The Schrodinger-Poisson block

0.12 -
iter.eigen ——
— ite echet mmmmm
iter.constrlinsys I:I
iter.solvelinsys
0.1 -
@
2 008 -
o
o
(o3
&
<
g 0.06 - speedup speedup speedup
Kl 8.4 93.2 129.6
3
o
=]
g 004 -
Qo
@©
0.02 -
0 I \D [} [D - = D
&) 4 8
2 % %
%, % 4,
%, 4 (2
S

Experiments

Speedups

Performances of the code

Phases of the Schrodinger-Poisson block

1400 —
iter.eigen
iter.Frechet mmmmm
iter.constrlinsys ===
1200 -| iter.solvelinsys ===
1000 -
o 800 -
=
o
I3
@
Q
® 600 -
400 -
200 -

1
=

2
&
K
N
Qt)

Work in progress: surface roughness
©000000

Surface roughness

Outline

e Work in progress: surface roughness
@ Surface roughness

Work in progress: surfac
0®00000

Surface roughness

Surface roughness

The real Si/SiO; interface is not smooth. This affects the properties of the transistor.
The impact of the surface roughness is described as an additional scattering
phenomenon.

Surface roughness

Scattering operator

The usual structure of the scattering operator

Qu,p[f] = / [S(Vpk')%(upk}f”l’ S(Upk)%(upk')f"l’] dk”
The scattering rates are

S o T8 (00 = e, () T () — e, ()

i = K 3/2 +K 3/2°
<1+ k= K ()2) (,+ |k—k'\2(x:W>2>
2 2

The overlap integral is replaced by a first-order approximation for the electric field’s
perturbation:
2
AV (x,z)
2)
?Bpp) '/ |w1’ p X Z AUPP dz| .
All the magnitudes will be adimensionalized.

Surface roughness

Work in progress: surface roughness
0008000

Scattering operator

density [m‘a]

potential [V]

1.6e+25
1.4e+25
1.2e+25
1e+25
8e+24
6e+24
4e+24
2e+24
0

PERTURBATION OF THE VOLUME DENSITY (x IS INSIDE THE CHANNEL)

original
perturbed —----——-

confinement dimension [nm]

7 T+hy 8 8+A,

PERTURBATION OF THE POTENTIAL (x IS INSIDE THE CHANNEL)

original
perturbed —---—-—-

confinement dimension [nm]

Surface roughness

Scattering operator

The integrator performs several computational phases:

(i). It stretches by interpolation the total volume density onto the extended domain Z
Nig =1 [N,] (57 25)) -

(ii). It solves on Z the Poisson equation (D V). - = —C, (Ni; — (Np)i5)-

i,J
(iii). Itinterpolates (AV'™), . = Vi; — LI [(V)i } (zj), then
(av), =vi—1i[(V),] (z+4=).

i

(iv). It integrates

N;—2 2 N,—2 2
Topi= | 82> (hopi)? AV |+ [A2 (i) AV | .

j=1 Jj=1

T"PP Tlow

v,p,i v,p,i

Surface roughness

Scattering operator

(v). It computes the gain and loss parts of the scattering operator:

N
SR,gain
Qu,p,i,é,m - CIV,]’J Sv,e A¢ E (pu,p,i,é,m’ Du,l,m,m’ (1)
m'=0
SR, loss g
Qu,p,i,e,m =CZup,isv,e Pup,it,m Duem- 2

where

DV,Z,m,m’ = (1 + 4(k*)2)\rzn WZ(I + auE*Wz) Sil’l2 (¢m _ ¢ml)

2
’ , —3/2
X {mx,u sin’ (M) + my,, cos? (m>}>
2 2
(3)
N¢7l
Dy,@,m :A¢ Z Du,é,m,);z/- (4)

m'=0

Surface roughness

Preliminary results

Work in progres:
000000@

average current for Vo

surface roug

hness

000018
000016 1 phononsuoughness
0.00014 Vps=02, phuncns O ehammons
000012 <203, phonone
Vo=03, oo rcugness
00001 |
. oo s TougmeRs
8010 e
A o roughness
exi0® =
ax10®
2x10®
0
2010%
0 510" x10™2 151072 210" 25x107
time 5]
) Total elciron mass for Vyqe-0.5
7810
7.6x10° |
7a410° VLVR’_—A
7.2x10°
o? Vom0 horBea.s oomoness
710 s=0.2, phonons
o Vos02, Dhununs roughnoss
6.8x10° 087 ‘phonons
soxie® Vos=03, pronts + voughness
Vos=0.4,phonbs + mughness
6.4xi0” os” Vpg=0.5, phonor
Vis=0.5. phondF s 1o
62x10° T 12 12 1
I sx107"% 10 2x10° 2.5x10°
time [s]
ol 6 for Vgg=05
x10®
x10% =01, phomc
Vos-0.1, phonBBas rouponans
Voe-02. phonane
1x10% D¢
° Vos03, mm%s 3 vouqhness
4. phonons
8 Dnuns ‘ |
I el 5. phonons
Vose05. Em)nons s voughnsss
J sxio ™ 1x102 151072 2x10™? 25x10"

time 5]

Future work
®0

Future work

Outline

e Future work
@ Future work

Future work
oe

Future work

Future work

@ Validate and optimize the code including the roughness scattering phenomenon.
@ Make the code available.
@ Split the computation of the eigenstates from the rest.

@ Extend or modify the code to simulate other objects.

Acknowledgements
.

GRAZIE!

The authors acknowledge Spanish projects MTM2011-27739-C04-02,
MTM2014-52056-P, PID2020-117846GB-100, and the European Fund for
Development.

	The model
	Introduction
	Historical perspective

	Numerical schemes
	Iterative schemes for the eigenstates
	CUDA model of programming
	Schemes' implementation on CUDA

	Experiments
	Speedups

	Work in progress: surface roughness
	Surface roughness

	Future work
	Future work

	Acknowledgements

